
PHYS30201 Mathematical Fundamentals of Quantum Mechanics 2016-17:
Solutions 2

1. i) Ket; bra is 〈b|Â† + 〈d|β∗.
ii) Bra; ket is β∗|d〉+ α|c〉. Note the placement of the scalars is purely conventional.

iii) Strictly, nothing. Assuming βÎ is meant, it is an operator with adjoint |b〉〈a|+ Â† + β∗Î.

iv) Operator with adjoint Ĝ†〈a|b〉
v) Operator with adjoint Ĝ†|b〉〈a|
vi) Nothing. An operator Ĝ cannot sit to the left of a bra or the right of a ket. (Example (iv)

doesn’t contradict this, as Ĝ is on the right of an inner product, not a ket.)

vii) Nothing

viii) Ket; bra is
(
〈a| ⊗ 〈b|

)(
F̂ † ⊗ Ĝ†

)
=
(
〈a|F̂ †

)
⊗
(
〈b|Ĝ†

)
ix) We can’t tell. IF |♥〉 is in the product space (while |a〉 and |b〉 are in the individual spaces),

and if Q̂ is an operator in the product space, then this is a ket in the product space with bra(
〈a| ⊗ 〈b|+ 〈♥|

)
Q̂†. If Q̂ is an operator in one of the individual spaces and it is clear which,

i.e. Q̂⊗ Î or Î ⊗ Q̂ is implied, the expression would still make sense as a ket. However there
is no acceptable interpretation in which |♥〉 is not in the product space.

2. i) N0 = 1/ 4
√
π, N1 =

√
2N0, N2 = N0/

√
2, N3 = N0/

√
3

ii) 〈0|2〉 = N0N2

∫∞
−∞ φ

∗
0(x)φ2(x)dx = N0N2

∫∞
−∞(2x2 − 1)e−x

2
dx = 0.

iii) 〈f |g〉 =
(
−2i〈0| + 3〈2|

)(
4|0〉 − i|2〉 + 4i|3〉

)
= −11i. Note the need to take the complex

conjugate of the coefficients of |f〉. We have used 〈m|n〉 = δmn.
iv) By inspection we see that f(x) = φ2(x)/(2N2)+φ0(x)/(2N0). So f0 = π1/4/2, f2 = π1/4/

√
2,

f1 = f3 = 0 (and indeed fn = 0 for all other n).

3. 〈f |K̂|g〉 = −i
∫ ∞
−∞

f ∗(x)
dg

dx
dx =

[
−if ∗g

]∞
−∞

+ i

∫ ∞
−∞

df ∗

dx
g(x) dx

=

∫ ∞
−∞

(
−idf

dx

)∗
g(x) dx = 〈g|K̂|f〉∗

〈f |D̂2|g〉 =

∫ ∞
−∞

f ∗(x)
d2g

dx2
dx =

[
f ∗g′

]∞
−∞
−
∫ ∞
−∞

df ∗

dx

dg

dx
dx

= −
[
f ∗′g

]∞
−∞

+

∫ ∞
−∞

d2f ∗

dx2
g(x) dx = 〈g|D̂2|f〉∗

where we have used the fact that f and g vanish at x = ±∞ to drop the boundary terms.

4. The equation for f would be Hermite’s equation if E − 1 were replaced by 2n. The finite
solutions of Hermite’s equation (those in which the recursion relation for the coefficients of a
series solution terminates) are those for which n is an non-negative integer. Hence we need
E− 1 = 2n, i.e. E is a positive odd integer. (See the course notes appendix.)

5. We can do this question with Gaussian integrals: 〈1|D̂|0〉 =
∫∞
−∞ φ1(x) d

dx
φ0(x)dx etc. However

an easier way is to use orthogonality of the basis functions as follows.
By explicit differentiation of the corresponding function φ0(x), we find D̂|0〉 = −N0/N1|1〉 and
D̂|1〉 = N1/(2N0)|0〉 −N1/(2N2)|2〉. So:
〈1|D̂|0〉 = −N0/N1 = −1/

√
2 and 〈2|D̂2|0〉 = N0/(2N2) = 1/

√
2.



6. i) If |f〉 =
∑∞

n=0 fn|n〉, then 〈n|f〉 =
∞∑
m=0

fm〈n|m〉 =
∞∑
m=0

fmδmn = fn as required. (Note the

need to choose another dummy variable if we are using n as our free varible.)

ii) Inserting the identity operator, we have 〈f |g〉 =
∞∑
n=0

〈f |n〉〈n|g〉 =
∞∑
n=0

f ∗ngn.

iii) From (ii) 〈f |f〉 =
∑∞

n=0 |fn|2. But 〈f |f〉 =
∫∞
−∞ f

∗(x)f(x) dx also, and that must be finite

if f is square integrable. So
∑∞

n=0 |fn|2 <∞.

7. i) B̂[Â, Ĉ] + [Â, B̂]Ĉ = B̂ÂĈ − B̂ĈÂ+ ÂB̂Ĉ − B̂ÂĈ = −B̂ĈÂ+ ÂB̂Ĉ = [Â, B̂Ĉ]

ii) [Â, Ân] = Â(ÂÂ . . . Â)− (ÂÂ . . . Â)Â = Ân+1 − Ân+1 = 0.

iii) First note that ÂB̂ = B̂Â + cÎ, so B̂mÂB̂n−m = B̂m+1ÂB̂n−m−1 + cB̂n−1. Using this
repeatedly, we can take Â through the list of B̂s in n steps, picking up a term cB̂n−1 at each
step. So ÂB̂n = B̂nÂ+ ncB̂n−1.
We can also do it by induction: assume it is true for some k: [Â, B̂k] = ckB̂k−1. Then

[Â, B̂k+1] = [Â, B̂kB̂] = [Â, B̂k]B̂ + B̂k[Â, B̂] = ckB̂k−1B̂ + cB̂k = c(k + 1)B̂k;

so if it holds for n = k it also holds for n = k + 1. But it is true by definition for n = 1, so
it is true for all n ≥ 1.

iv) Let Q(x) =
∑

m qmx
m, so R(x) =

∑
mmqmx

m−1. Then from the result above, with c = −i,
[K̂, Q̂] = −i

∑
m qm[K̂, X̂m] = −i

∑
mmqmX̂

m−1 = −iR̂.
An alternative approach is as follows. Let |f〉 be an arbitrary vector; then in the x-
representation, 〈x|Q̂|f〉 = Q(x)f(x). Then

[K̂, Q̂]|f〉 −→
x
〈x|K̂Q̂− Q̂K̂|f〉 =

∫
〈x|K̂|x′〉〈x′|Q̂|f〉 − 〈x|Q̂|x′〉〈x′|K̂|f〉dx′

=− i
∫
δ(x− x′)

( d

dx′
(Q(x′)f(x′))−Q(x′)

d

dx′
f(x′)

)
= −idQ

dx
f(x) = −iR(x)f(x)

With experience, we can just write

[K̂, Q̂]|f〉 −→
x
−i
(

dQf

dx
−Q(x)

df

dx

)
= −idQ

dx
f(x) = −iR(x)f(x).

Since |f〉 and hence f(x) is arbitrary, this must imply the operator relation [K̂, Q̂] = −iR̂.

v) We can use [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ and [Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ] to reduce the
compound commutators to simple ones, without ever writing expressions like ÂB̂ − B̂Â.
Clearly if Â commutes with B̂ and Ĉ, it commutes with the product B̂Ĉ.
Furthermore we use the fact that the only non-vanishing commutators among the X̂i and
K̂j are [X̂i, K̂i] = iÎ.

(a) [L̂X , X̂] = [L̂X , K̂X ] = 0 because X̂ and K̂X commute with all of Ŷ , K̂Z , Ẑ and K̂Y .
(b) [L̂X , Ŷ ] = ~[Ŷ K̂Z , Ŷ ]− ~[ẐK̂Y , Ŷ ] = 0− ~Ẑ[K̂Y , Ŷ ]− ~[Ẑ, Ŷ ]K̂Y = i~Ẑ.
(c) [L̂X , K̂Z ] = −~[ẐK̂Y , K̂Z ] = −~[Ẑ, K̂Z ]K̂Y = −i~K̂Y .

The full set of relations like these are

[L̂i, X̂j] = i~
∑
k

εijkX̂k [L̂i, K̂j] = i~
∑
k

εijkK̂k

where εijk = 1 if i, j, k is a cyclic permutation of 1, 2, 3, −1 if an anticylic permutation such as

2, 1, 3 and 0 if any two indices are the same, and we have defined {X̂1, X̂2, X̂3} ≡ {X̂, Ŷ , Ẑ}.



vi) In the x-representation (see part (iv)), we have

[K̂, V (X̂)]|f〉 −→
x
−i
(
∇
(
V (r)f(r)

)
− V (r)∇f(r)

)
=
(
−i∇V (r)

)
f(r).

However since |f〉 is arbitrary, the relation must hold for the operators:
[K̂, V (X̂)] −→

x
−i∇V (r).

If V = V (r),

∇V =
∑
i

ei
∂

∂xi
V (r) =

∑
i

ei
∂r

∂xi

dV (r)

dr
=
∑
i

ei
xi
r

dV (r)

dr
= r̂

dV

dr
.

8. If k0 =
(
2 ex − ez

)
—or (2, 0,−1) in coordinate notation,

〈r|k0〉 = ( 1
2π

)3/2eik0·r = ( 1
2π

)3/2ei(2x−z) and 〈k|k0〉 = δ(k− k0) = δ(kx − 2)δ(ky − 0)δ(kz + 1)

9. f(x) ≡ 〈x|f〉 =
∫∞
−∞〈x|k〉〈k|f〉 dk =

√
1
2π

∫∞
−∞ eikxF (k) dk, so f(x) is the inverse F. T. of F (k).

10. 〈k|K̂|f〉 =

∫ ∞
−∞
〈k|x〉〈x|K̂|f〉 dx = −i

√
1
2π

∫ ∞
−∞

e−ikx
df

dx
dx

= i
√

1
2π

∫ ∞
−∞

de−ikx

dx
f(x) dx = k

√
1
2π

∫ ∞
−∞

e−ikxf(x) dx = kF (k)

11.
Φ0(k) = 〈k|0〉 =

∫ ∞
−∞
〈k|x〉〈x|0〉 dx = N0(2π)−1/2

∫ ∞
−∞

e−ikxe−x
2/2dx

= N0(2π)−1/2e−k
2/2

∫ ∞
−∞

e−(x+ik)
2/2dx = N0 e−k

2/2

where to obtain the second-last expression we used the trick of completing the square, and then
to perform the Gaussian integral we have changed variable x = x′ − ik; those who have done
the “complex variables” course know that this is legitimate. (See the course notes appendix.)
It is easy to see that Φ0(k) is normalised.

The states |n〉 are eigenstates of K̂2 + X̂2. The symmetry between k and x is obvious; the
differential equation in the k-basis is identical in form to that in the x-representation, and the
solutions are Φn(k) = NnHn(k)e−k

2/2. (If one carries out the Fourier transform, the result may
differ by a phase such as i or −1.)


