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Course details and how to use these
notes

These lecture notes are intended for students studying PC235 Thermal and Statistical Physics.
They are not a substitute for lectures, nor for text books, but are intended to help understand
the most important ideas.

Important equations are displayed in yellow boxes.

But note that not every equation is universally true, so be sure to understand the context.
The text has lots of hypertext links. Some link back to previous sections to remind you of

results and definitions which are about to be used; others link to examples or help with maths,
and still others link to details of derivations. Don’t over-use these links, especially of the first
kind, or you will easily lose the thread of the argument. It is good practice to read a section
through before exploring any of the links, and then ask yourself what you hope to find before
exploring a link. That said, don’t skip the examples!

Other sources
The recommended texts for the course are

Mandl, F. Statistical Physics 2nd edition (Wiley)
Bowley, R. and Sanchez, M. Introductory Statistical Mechanics (Oxford)

For the thermal section of the course, there is also
Adkins, C. J. Equilibrium Thermodynamics 2nd edition (McGraw Hill)
Zemansky, M. W. and Dittman, R. H. Heat and Thermodynamics 7th edition (McGraw Hill)

and for the statistical sections,
Kittel, C. and Kroemer, H. Thermal Physics 2nd Edition (Freeman)

Here are some links to external sites on statistical thermodynamics. (I’ll check them occa-
sionally, but I apologise in advance for broken links!)

An almost entirely non-mathematical introduction to the subject by T. W. Leland is here.
If you find the current site lacking in words, you might like it. Note that “correct” on the
penultimate line of the last page should read incorrect!

Various other UK universities run courses like this and have material available on the web.
The closest to ours seems to be PHYS-213 at Keele. They use Mandl as a textbook too.
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http://www.uic.edu/labs/trl/1.OnlineMaterials/BasicPrinciplesByTWLeland.pdf
http://www.learn.keele.ac.uk/03-04/ug-mod/phys/phys-213/


At Leeds it’s a third year course, PHYS 3370. The main difference from ours is that they
tackle isolated systems with fixed energy directly, via Lagrange multipliers, rather than indi-
rectly via systems in contact with a heat bath (see remarks at the start of the section Statistical
Physics of Non-isolated Systems). With that proviso, though, it could be useful. Note they
use “localised systems” to mean those, like the paramagnet, with distinguishable particles, and
“non-localised systems” to mean those, like the ideal gas, with indistinguishable particles.

An interesting “timeline” history of ideas in statistical physics can be found here, courtesy
of Jeff Biggus, formerly of the University of Colorado, USA

Disclaimer
These notes are available from outside the department at the following URL:

External users are welcome to browse them, and I’d be happy to hear your comments. However
please be aware that these are in no way a substitute for a textbook (the closest, and the one
which I have used heavily in preparing the course, is Mandl), and many subtleties are glossed
over or totally ignored!

There are bound to be many misprints in these pages, and small rewards are available to
Manchester students who point them out! Click here to mail me.

http://www.irc.leeds.ac.uk/~phy6pdo/teaching/thermo/hw/
http://history.hyperjeff.net/statmech.html
mailto:judith.mcgovern@man.ac.uk


Chapter 1

Classical Thermodynamics: the first
law

In this section we revise the concepts of heat, work and internal energy. You should check that
you remember the properties of an ideal gas, summarised without proof here. You should also
check out the glossary for the meaning of terms like “adiabatic” and “function of state” which
will be assumed.

The only new material in this section is the definition of work in systems other than hydro-
static. However if past years are anything to go by, it is unlikely you will remember much of it
without revision.

1.1 The First Law of Thermodynamics

Take-home message: The sum of the work done on and the heat added to a system
is a function of state. It is called the internal energy.

For adiabatic changes the amount of work required to produce a given change of state is
independent of the way the work is done. This suggests that the internal energy E of the
system is a function of state.

For non-adiabatic changes energy can also enter or leave the system as heat, and the work
done is no longer independent of the process. However the sum of energy added in the form of
heat and work is. This is the first law of thermodynamics:

∆E = Q + W

Remember Q is the heat added to the system and W is the work done on the system (eg by
compression). (Warning: if you surf the web you will come across sites written by chemists,
and they use a different sign convention.)

Mancunian James Joule was a key figure in establishing the interconvertability of work and
heat.

Here we have an example of two different processes which involve the same change in state.
We start with an ideal gas at (V0, T0) and in both cases the final state is (2V0, T0).

In the first case the gas is initially confined to one half of an insulated container. When the
partition is removed it fills the whole container. Here no heat is exchanged or work done, so

∆E = 0
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Because the gas is ideal, the energy is a function of temperature only, so no change in internal
energy means no change in temperature.

In the second case the temperature is held constant by a heat bath. The expansion does
work against an external force, so W < 0. However the endpoint is the same as in the previous
case, so once again ∆E = 0. Thus there must be a flow of heat into the system:

Q = ∆E − W = |W |

References

• Mandl 1.3

• Bowley and Sánchez 1.5

• Adkins 3.1-4

• Zemansky 4.1-6

1.1.1 James Joule

James Joule - Mancunian (born Salford 1818, died Sale 1889), brewer and Physicist
Experiments like the one above around 1845 helped to establish the 1st law beyond reason-

able doubt. The temperature of the system can be raised either by doing Mgh of mechanical
work on it or by adding C∆T of heat (where h is the distance through which the weight falls
and C is the heat capacity of the fluid). Afterwards there is no way of deducing which method
was used to increase the internal energy.

A photo of actual apparatus used by Joule can be found here, courtesy of the Science
Museum in London. The text of one of his papers is here. In it he speculates about the
temperature increase of water in a waterfall. During his honeymoon in the Alps in 1849 he
attempted to verify his speculations, but inconclusively. Mrs Joule’s reactions are not recorded.
More about Joule here c©”Zephyrus”.

http://www.scienceandsociety.co.uk/results.asp?image=10301513
http://spiff.rit.edu/classes/phys314/refs/dbhs.wvusd.k12.ca.us/Chem-History/Joule-Heat-1845.html
http://www.zephyrus.co.uk/jamesjoule.html


1.2 The First Law for Small Changes

Take-home message: Heat and work are not functions of state
In mathematics, if f is a function, df is the notation used for an infinitesimal change in

f . Internal energy is a function (of the other state variables) so we can use dE for the change
in E between two nearly identical states. During this infinitesimal change, tiny amounts of
heat have been added to, and work done on, the system. These are not changes in anything,
though, so we use a different notation for them, ÃdQ and ÃdW :

dE = ÃdQ + ÃdW

Finite changes in state variables are written with a ∆, but finite amounts of heat and work
are just written Q and W , as in ∆E = Q + W

More on notation here.
References

• Mandl 1.3

• Bowley and Sánchez 1.5

• Adkins 3.4

• Zemansky 4.6

1.2.1 Notation for finite and infinitesimal changes

After marking last year’s exam, I realised that some students have a problem with the manip-
ulation of finite and infinitesimal changes. I hope the following helps.

If we are dealing with functions of state, there are three ways they could enter:



C∆T=Mgh

M

T

• As totals, for instance in the following expressions for a classical ideal gas

PV = nRT ; E =
3

2
nRT ; S = nR

(

ln V + 3
2
ln E

)

+ S0.

• As differentials, for instance in the fundamental thermodynamic relation,

dE = TdS − PdV

• As finite changes, for instance for a process at constant volume with a heat capacity
which is independent of temperature

∆S ≡ S2 − S1 = C ln
T2

T1

There are two basic rules:

• If one term in an equation involves an infinitesimal, all the other terms must also contain
one (and only one!).

• If finite changes are involved, all terms will have reference to the initial and final states.

Introducing things like heat and work which aren’t functions of state complicates things
slightly; the first rule still holds (though we write ÃdQ and ÃdW ). However changes in functions
of state can be related to amounts of heat and work, as in ∆E = Q + W .

Another common mistake is to assume that if something involving a differential holds, the
same relation will hold for finite changes. This is not generally true. For instance for an
isothermal expansion of an ideal gas E is constant, so

TdS = PdV and T∆S =

∫ V2

V1

PdV but T∆S 6= P∆V.



Why not? Well T is constant so TdS can be integrated to T∆S, but P certainly isn’t
constant so

∫

PdV 6= P
∫

dV . What we can do here is substitute P = nRT/V , giving
T∆S = nR ln(V2/V1).

Similarly,

dS =
ÃdQrev

T
6⇒ ∆S =

Qrev

T

unless T is constant. However if the heat capacity is constant, as is a reasonably good ap-
proximation for most solids and gases at STP, we can write ÃdQ = CdT and integrate to get
∆S = C ln(T2/T1).

1.3 Cycles

Take-home message: If a process returns a system to its starting point, all functions
of state are unchanged, but net heat may be added to the system, and work done
by it.

By definition, functions of state return to their starting value at the end of a cycle. However
heat and work are not functions of state, so

∮

dE = 0 =

∮

ÃdQ +

∮

ÃdW

and
∮

ÃdQ = −
∮

ÃdW

but in general
∮

ÃdQ 6= 0 and

∮

ÃdW 6= 0

(Note that
∮

is used for the integral round a cycle.)
References

• Mandl 1.3

1.4 Work

Take home-message: the expressions for reversible work for various systems
First, we consider the work done in compressing a fluid (hydrodynamic system).

F>PA

dx
V

P



In any real case, compression requires the applied force to be greater than the internal
pressure times the area of the piston: F > PA. The work done in moving the piston though
dx is

ÃdW = Fdx = −F

A
dV > −P dV

Note this is positive for compression, because dV is negative.
If there is no friction, and the compression is done extremely slowly, the applied force will

only be barely greater than PA. In that case the process is reversible, and the inequality will
become an equality:

ÃdW rev = −P dV

See here to revisit a previous example.
Similarly to reversibly stretch a wire of tension Γ (that’s a capital gamma) by dl requires

ÃdW rev = Γ dl

and to increase the area of a film of surface tension γ by dA requires

ÃdW rev = γ dA

Note in the last two cases the sign is different from the first; that’s because it takes work to
stretch a wire or a soap film (dl or dA positive) but to compress a gas (dV negative).

Lastly, to reversibly increase the magnetic field B imposed upon a paramagnetic sample
requires

ÃdW rev = −m · dB = −V M · dB
where M is the magnetisation per unit volume, and m is the total magnetic moment of the
sample.

P

V

a

V V1 2

b

If reversible processes are represented by lines on a plot of pressure against volume (or
tension against length, or...), then the magnitude of the work done is equal to the area under
the line. Cycles are closed loops as in the picture above, and the magnitude of the work done
is equal to the area of the loop (that is, the difference between the areas under the two lines).

Test yourself with this example. More can be found on the tutorial sheet.
References



• Mandl 1.3-4

• Bowley and Sánchez 1.6

• Adkins 3.5

• Zemansky 3

(Be warned: Adkins and Zemansky use a different definition of magnetic work, which is less
convenient for statistical thermodynamics.)

1.4.1 Work during free and reversible expansions

0T

V0 V02

0T

0T

V0 V02

0T

F<PA

In this example (see here) we saw that the work done by an ideal gas during isothermal
expansion could be zero (for free expansion into a vacuum) or non-zero (for expansion against
a force). In the first case the process is non-reversible. We now see that in the second case, if
the process is reversible, the work done by the gas on the surroundings will be

−W rev =

∫

PdV =

∫ V2

V1

nRT

V
dV = nRT

∫ V2

V1

dV

V
= nRT ln

V2

V1

where we used the ideal gas law P = nRT/V , and we could take T out of the integral because
the process is isothermal.

The reversible process extracts the maximum work from the gas, as no work is lost overcom-
ing friction or creating sound waves. In a non-reversible process, these are both mechanisms
which convert energy which could have gone into work into internal energy of the gas instead,
and so the gas will need to extract less heat from the surroundings. Thus Q + W = 0 will still
hold.



P0

P0

V0

V0

2VV /20 0

V

P

i
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1.4.2 Example of calculation of work

In this cycle the system, which is an ideal monatomic gas, undergoes first isothermal (i) then
adiabatic (ii) compression steps, each of which halve the volume, then returns to its starting
point via first isothermal (iii) and then adiabatic (iv) expansions, each of which double the
volume. How much work is done by the system during the cycle if P0 is 1 atmosphere and
V0 = 1 litre?

The short answer is 41.3 J. The full answer is here.

V 2VV /20 0 0

P0

V

P

i

ii

iv

iii
iv

i

ii

iii

V 2VV /20 0 0

V

T

T

T0

H

Answer Above we see the cycle plotted both on a P − V and T − V plot. Note that P0 and
V0 are the pressure and volume at the end of the first step, not at the beginning!

We have already calculated the work done on the gas during an isothermal volume change:

W isoth = −nRT1 ln(V2/V1)

For the adiabatic stages we use PV γ = const (see properties of an ideal gas) to get

W adiab = −P1V
γ
1

∫ V2

V1

1

V γ
dV =

P1V1

γ − 1

[

(

V1

V2

)γ−1

− 1

]

=
nRT1

γ − 1

[

(

V1

V2

)γ−1

− 1

]

= cV (T2 − T1)



(Note that nR/(γ − 1) = cV ! Can you think of an easier way of obtaining this expression for
the work? Hint: no heat is exchanged, so W = ∆E.)

All we need is the temperature of the isothermal expansion, which is also the temperature
at the end of the adiabatic compression. Using TV γ−1 = const gives T2 = T1(V1/V2)

γ−1 so
TH = 2γ−1T0 where T0 = P0V0/nR.

So

W (i) = −nRT0 ln(1/2) = nRT0 ln 2

W (ii) = cV (TH − T0)

W (iii) = −nRTH ln 2

W (iv) = cV (T0 − TH)

W tot = nR ln 2(T0 − TH) = −P0V0 ln 2
(

2γ−1 − 1
)

The work done by the system is minus this; using γ = 5/3 for a monatomic gas we get
0.407 atmosphere-litres or 41.3 J.

The work done during the adiabatic steps (ii) and (iv) cancels. We could have guessed
this, as the work done by the system during the cycle must equal the net heat absorbed.
Heat is only absorbed or given out in the isothermal steps, and its magnitude is equal and
opposite to the work done on the system in those steps. So we could more simply have written
W tot = −(Q(i) + Q(iii)) = W (i) + W (iii).

1.5 Temperature

Take-home message: Systems have a property, temperature, which is the same for
two systems in thermal equilibrium

Two bodies are in thermal equilibrium if no heat flow occurs when they are brought
into contact. This is an extension of the idea of equilibrium for a single system, when no net
internal heat flow occurs.

The Zeroth law of thermodynamics says that if two bodies are separately in thermal
equilibrium with a third body, they are also in thermal equilibriums with one another. All
three are then said to be at the same temperature.

If the third body changes visibly as it is heated, then it can be used as a thermoscope to
verify equality of temperature or to rank bodies according to temperature. This is independent
of any numerical scale.

A thermometer is a calibrated thermoscope. Any thermoscope can be used to define a
numerical temperature scale over some range. Thermoscopes based on the volume of gases led
finally to the ideal gas temperature scale, measured in Kelvin and defined to be 273.16 K at
the triple point of water:

T = lim
P→0

PV

(PV )triple

× 273.16 K

The low pressure limit is taken because real gases approach ideal behaviour in that limit.
The numerical value at the triple point was chosen so that the degree Kelvin matched the
degree Celsius to high accuracy. Unlike earlier temperature scales there is no need to define
the temperature at two points, because the zero of the Kelvin scale is absolute zero. This is
the temperature at which the pressure of an ideal gas would vanish, because (classically) the
motion of its molecules would cease.



A nice elementary site on the history of temperature from the US National Center for
Atmospheric Research can be found here.

Off-line, Adkins and Zemansky each devote a whole chapter to the subject.
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Chapter 2

Classical Thermodynamics: The second
law

In this section, we start from the experimental fact that heat engines are never 100% efficient,
and also that there is a natural direction to spontaneous processes (such as the cooling of a cup
of coffee), and derive the existence of a new function of state, entropy.

In classical thermodynamics, entropy “completes the set” of relevant thermodynamic vari-
ables and, starting with the fundamental thermodynamic relation and using Maxwell’s
relations, enables us to work out what is happening to systems during a variety of processes.

The underlying meaning of entropy however is only clarified when we progress to statistical
physics.

(Some of the early part of this section will be revision, but the overall approach to entropy
is new.)

2.1 Heat Engines and Refrigerators

Take-home message: The production of work from heat requires a temperature
gradient. It is an inefficient process—most of the energy is lost as waste heat

In any heat engine, heat is extracted from a hot source (eg hot combustion products in a
car engine). The engine does work on its surroundings and waste heat is rejected to a cool
reservoir (such as the outside air). It is an experimental fact that the waste heat cannot be
eliminated, however desirable that might be. Indeed in practical engines, more of the energy
extracted from the hot source is wasted than is converted into work.

The efficiency η of a heat engine is the ratio of the work done W to the heat extracted
from the hot source QH :

ηengine =
W

QH

If QC is the rejected heat, we have by conservation of energy

QH − QC = W

More details on heat engines can be found here.
An example of an efficiency calculation for a particular cycle (the Otto cycle) can be found

here.
Heat engines can also be used to pump heat from colder to hotter bodies. This always

needs an input of work. Examples are fridges, air conditioners and heat pumps. These are all

16



essentially the same, but the in the first two the purpose is to cool (or keep cool) a fridge, room
or building and in the last, the purpose is to heat (or keep hot) a building. In these cases what
we call the efficiency is different. In general

efficiency =
desired output

costly input

In the heat engine, it is QH that is costly (eg, petrol!) and W that we want out, so as already
given,

ηengine =
W

QH

< 1 always

In the fridge or air conditioner, it is the work that is costly (electricity) and the desired result
is the extraction of QC from the room or fridge, so

ηfridge =
QC

W
> 1 usually

In the heat pump, it is again the work that is costly (electricity) and the desired result is
the addition of QH to the building, so

ηpump =
QH

W
> 1 always

These are sometimes called “coefficients of thermal performance” because students are wor-
ried by “efficiencies” greater than one. There would be no point in the heat pump if its efficiency,
as we’ve defined it, were less than one—we’d just use an electric heater (efficiency exactly one)
instead!

Note that real engines are optimized to perform forward or backwards, and are not re-
versible in the technical sense (there is friction, processes are not quasistatic). Thus relative
sizes of W , QH and QC will depend on the direction. However for idealized, reversible engines
only the signs will change, and we have

ηrev
pump =

1

ηrev
engine

Often we are concerned with engines operating between only two reservoirs - one hot and
one cold. In that case there is a standard way of denoting a heat engine, given below with the
corresponding cycle in the P − V plot. If all the arrows are reversed it represents a heat pump
or fridge.

Questions about heat engines and pumps are often concerned with the most efficient possible
engines, not with specific cycles. Examples of such questions can be found in the section on
Carnot engines.
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2.1.1 More extensive introduction to Heat Engines

It is easy to turn heat into work. The first stage (A→B) of the picture above illustrates the
process: hot gas compressed above atmospheric pressure will expand and the movement of the
piston can be harnessed to do work. If the expansion is isothermal the gas will draw heat from
the reservoir and convert it into work.

But it is not so easy to continue. To re-compress the gas we would need to do an equivalent
amount of work! A useful heat engine is not a one-off stroke, it is a cyclical process during
which the system periodically returns to its initial state, and the process can be repeated again
and again.

To continue the cycle, we can cool the gas (B→C), after which it can be compressed with
less work than before (C→D). If we cool it enough, we can even get the atmosphere to do work
on it during the compression phase, as suggested above. Or we might need to supply some
work externally, but less than we got out during the main power stroke (A→B). Finally we
heat the gas again and repeat the cycle. On returning to A, the engine is unchanged but the
surroundings are not. The mass has been raised (useful work has been obtained), heat has been
supplied from the hot reservoir (D→B), and, crucially, waste heat has been supplied to the cold

reservoir (B→D). By conservation of energy, of course, the net work done on the gas equals
the difference in the heat supplied and the heat discarded.



This is a crude approximation of a Stirling engine, in which the gas cycles between two reser-
voirs. A→B and C→D are shown as isothermal expansion and contraction, and the other two
processes as isochoric (constant volume). The net work done by the gas is the area within the
curve; the parameters chosen for the sketch are somewhat unrealistic. The gas in the cylinder
is called the working fluid. By drawing the cycle with solid lines on a PV diagram, we are
implicitly assuming quasi-static, frictionless processes—rather a strong idealisation!

Most other engines do not actually keep the same working fluid throughout, for instance
drawing in steam from a reservoir and getting rid of exhausts, but the concept of a cycle with
the initial state recurring periodically is common to all.

The Newcomen engine used steam as the working fluid, and cold water to condense it making
for a powerful return stroke with essentially a vacuum in the cylinder. Internal combustion
engines use the Otto or Diesel cycles; in these ignition of the fuel-air mix takes place when the
gas is compressed and takes the place of contact with a hot reservoir. These have an extra
(constant pressure) stroke in which the piston drives out the exhaust gases and draws in air
and fuel. In the absence of heat reservoirs, the main working strokes of the Otto and Diesel
cycles are adiabatic rather than isothermal.

It is also important that real engines run continuously, and most make use of the momentum
of a flywheel (or of the driven vehicle) to power the compression phase.

This link, courtesy of Xing Min Wang, has clear and helpful animations of the idealised
Otto, Diesel and Carnot cycles.

Animated Engines has animations of a large variety of realistic engines, though without the
accompanying cycles.

2.1.2 Example: The Otto cycle

Here is a particular example of a heat engine - the Otto cycle, which approximates the working
cycle of a car engine. The work done is the area enclosed by the curve in the P − V plane.
The expansion and compression stokes are adiabatic, so heat enters and leaves only during
the constant volume phases. (This ignores the exhaust stroke, which can be modelled as a
horizontal line from point 1 left and then right again.)

This link, courtesy of Xing Min Wang, has clear and helpful animations of the idealised
Otto, Diesel and Carnot cycles.

Animated Engines has animations of a large variety of realistic engines, though without the
accompanying cycles.

The efficiency of a reversible Otto cycle for an ideal gas is

η = 1 −
(

V2

V1

)γ−1

"http://www.shermanlab.com/xmwang/physDemo.html#thermo"
http://www.animatedengines.com
http://www.shermanlab.com/xmwang/physDemo.html##thermo
http://www.animatedengines.com
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Try to prove it yourself. More details are given here.
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Answer For the adiabatic strokes, Q = 0 and W = cV (Tf − Ti). (See a previous example.)
For the isochoric (constant volume) paths, W = 0 and Q = cV (Tf − Ti).
Also

T2 =

(

V1

V2

)γ−1

T1 and T3 =

(

V1

V2

)γ−1

T4

The total work done by the system is

W = −(W12 + W34) = cV (T1 − T2 + T3 − T4)

so

η =
W

QH

=
T1 − T2 + T3 − T4

T3 − T2

= 1 −
(

V2

V1

)γ−1



2.2 The Second Law of Thermodynamics

Take-home message: You can’t pass heat from the cooler to the hotter
Try it if you like but you far better notter
’Cos the cold in the cooler will get hotter as a ruler
’Cos the hotter body’s heat will pass to the cooler

Courtesy of Flanders and Swann (full text reproduced, legally I hope, here..)
There are two classic statements of the second law of thermodynamics
One due to Kelvin and Planck:

It is impossible to construct an engine which, operating in a cycle,
will produce no other effect than the extraction of heat from a
reservoir and the performance of an equivalent amount of work.

And another due to Clausius:

It is impossible to construct an refrigerator which, operating in a
cycle, will produce no other effect than the transfer of heat from a
cooler body to a hotter one.

Note the careful wording: of course it is possible to think of processes which convert heat
into work (expansion of a hot gas in a piston) or which pass heat from a cool to a hot body
(real fridges) but other things change as well (the gas ends up cooler; you have an electricity
bill to pay). The bit about “operating in a cycle” ensures that the engine is unchanged by the
process.

The two statements may not appear to have anything to do with one another, but in fact
each one implies the other. See here for details.
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2.2.1 Equivalence of Kelvin and Clausius statements of 2nd law.

The two statements of the second law may not appear to have anything to do with one another,
but in fact each one implies the other.

The top line shows yellow engines representing hypothetical engines violating each of the
two statements of the second law. The second line shows that an engine which violates Kelvin’s
statement, together with a normal heat pump, violates Clausius’s statement. A similar draw-
ing can be used to show that an pump which violates Clausius’s statement, together with a
normal heat engine, violates Kelvin’s statement. Hence the two statements—which seem quite
different—are actually equivalent.

http://www.columbia.edu/itc/chemistry/chem-c140498/jack/ch11.html
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2.3 Carnot cycles

Take-home message: The efficiency of a Carnot engine is independent of its con-
struction, and no irreversible engine can beat it.

A Carnot engine is, simply, a reversible engine acting between only two heat reservoirs.
That means that all processes are either isothermal (heat transfer at a constant temperature)
or adiabatic (no heat transfer). By contrast the Otto cycle, which has heating at constant
volume, would need a whole series of heat reservoirs at incrementally higher temperatures to
carry out the heating reversibly.

Carnot’s theorem says that a reversible engine is the most efficient engine which can
operate between two reservoirs. If you want to see the proof, see here. An equally important
corollory is that any reversible engine working between two heat reservoirs has the same
efficiency as any other, irrespective of the details of the engine.

Much is made of the fact that the Carnot engine is the most efficient engine. Actually, this is
not mysterious. First, if we specify only two reservoirs, then all it says is that a reversible engine
is more efficient than an irreversible engine, which isn’t surprising (no friction...) Second, we will
see that the efficiency of a Carnot engine increases with the temperature difference between the
reservoirs. So it makes sense to use only the hottest and coldest heat baths you have available,
rather than a whole series of them at intermediate temperatures. But the independence of the
details of the engine is rather deeper, and has far-reaching consequences.

As a result, if we can calculate the efficiency for one Carnot engine, we know it for all. We
can calculate it for an ideal gas Carnot cycle, and find



ηcarnot = 1 − TC

TH
,

details here. Hence this is true for all Carnot engines.
By comparing with the definition of the efficiency of any heat engine, η = W/QH = 1 −

QC/QH , we get the even more useful relation:

QC

QH
=

TC

TH
.

See here for examples of questions about Carnot heat engines.

Carnot developed the concept of reversibility and showed that no engine could be more
efficient than a reversible one before either the first or second law of thermodynamics had been
formulated! See here for a link to his essay, and to a good description of his contribution to
thermodynamics.
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2.3.1 Carnot wins

TH

TC

Q’

Q’

Q

Q C C

HH
W

TH

TC

Q’’

Q’’

Q

Q C C

HH
W

I II

In the above the green engines/pumps are Carnot, and the brown ones are irreversible.
Because the Carnot engine is reversible, if the engine efficiency is ηC , the pump efficiency is
1/ηC . (See here for details.)

I) In the first case, a Carnot pump is driven by an engine. Overall, to avoid violating
Clausius’s statement of the second law, there must be no net heat transfer to the hot reservoir,
so Q′

H ≥ QH . Also, by conservation of energy, QH − QC = Q′
H − Q′

C = W . Thus

W

Q′
H

=
QH

Q′
H

W

QH

so ηengine ≤ ηcarnot

http://www.thermohistory.org


II) In the second case, a Carnot engine drives a pump. Now we need QH ≥ Q′′
H . Thus

Q′′
H

W
=

Q′′
H

QH

QH

W

so ηpump ≤ 1

ηcarnot

So no engine can be more efficient than a Carnot engine, and no pump can be more efficient
than a Carnot pump.

If the brown pumps were in fact reversible, there could be no overall heat flow, since heat
flow from a hot to a cold body is an irreversible process. In that case the inequalities would
become equalities.

Thus any reversible engine working between two heat reservoirs has the same efficiency as
any other.

2.3.2 Efficiency of ideal gas Carnot cycle

0T 0T

HT TH

(i) Isothermal compression (ii) Adiabatic compression

(iv) Adiabatic expansion(iii) Isothermal expansion

Above we see the four steps which make up an ideal gas Carnot cycle, two isothermal, (i)
and (iii), and two adiabatic, (ii) and (iv). Below the cycle is sketched on a P − V plot.

We have already analyzed this particular cycle (see here.) We worked out the work for the
four steps. We note further that the heat exchanged during the isothermal steps is just minus
the work done, since the internal energy is unchanged.

Thus we have W = nR ln 2(TH − T0) and (from stage iii) QH = nRTH ln 2, so

η =
W

QH

= 1 − T0

TH

.

Note this cycle wasn’t general, because we chose to make both the isothermal and adiabatic
stages volume-halving. But form of the answer is general.
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2.3.3 Reversible processes

Imagine a cylinder, with a perfectly smooth piston, which contains gas. If you push with a
force only just large enough to overcome the internal pressure, the volume will start to decrease
slowly. Then if you decrease the force only slightly, the volume will start to increase. This is
the hallmark of a reversible process: an infinitesimal change in the external conditions reverses
the direction of the change. Heat flow is only reversible if the temperature difference between
the bodies is infinitesimally small.

Reversible processes require the absence of friction or other hysteresis effects. They must
also be carried out infinitesimally slowly. Otherwise pressure waves and finite temperature
gradients will be set up in the system, and irreversible dissipation and heat flow will occur.
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irreversible

Because reversible processes are very slow, the system is always very nearly in equilibrium
at all times. In that case all its state variables are well defined and uniform, and the state of the
system can be represented on a plot of, for instance, pressure versus volume. A finite reversible
process passes through an infinite set of such states, and so can be drawn as a solid line on the
plot. During an irreversible process the system is not in an equilibrium state, and so cannot be
represented on the plot; an irreversible process is often drawn as a straight dotted line joining
the initial and final equilibrium states. The work done during the process is not then equal to
the area under the line, but will be greater than that for the corresponding reversible process.



2.3.4 Heat engine examples

The master-equations for generic heat-engine problems are the conservation of energy and the
heat-temperature relation for a Carnot engine:

W = QH − QC and
QC

QH
=

TC

TH

The question will give you one of QH , QC and W , and the master-equations give you the other
two.

Try these problems for yourself before checking the detailed answers!

• Ex. 1 A power station contains a heat engine operating between two heat reservoirs, one
consisting of steam at 100oC and the other consisting of water at 20oC. What is the
maximum amount of electrical energy which can be produced for every Joule of heat
extracted from the steam?

Answer: 0.21 J. Details here.

• Ex. 2 When a fridge stands in a room at 20oC, the motor has to extract 500 W of heat
from the cabinet, at 4oC, to compensate for less than perfect insulation. How much power
must be supplied to the motor if its efficiency is 80% of the maximium achievable?

Answer: 2.9 J. Details here.

Ex. 1 A power station contains a heat engine operating between two heatone consisting of
steam at 100oC and the other consisting of water at 20oC. What is the maximum amount of
electrical energy which can be produced for every Joule of heat extracted from the steam?

QC

QH

TH

TC

W

The maximum efficiency comes from using a Carnot (reversible) engine, for which QH/QC =
TH/TC , and so

W = QH − QC = QH

(

1 − TC

TH

)

With TH = 373 K and TC = 293 K, for every Joule of heat extracted from the hot reservoir
(QH = 1 J), Wmax = 0.21 J.



QC

QH

TH

TC

W

Ex. 2 When a fridge stands in a room at 20oC, the motor has to extract 500 W of heat from
the cabinet, at 4oC, to compensate for less than perfect insulation. How much power must be
supplied to the motor if its efficiency is 80% of the maximium achievable?

The maximum efficiency comes from using a Carnot (reversible) fridge, for which QH/QC =
TH/TC . Here QC is known, and so

W = QH − QC = QC

(

TH

TC

− 1

)

(In this question W , QH and QC will refer to energy transfer per second, measured in Watts.)
With TH = 293 K and TC = 277 K, QC = 500 W gives Wmax = 29 W. However the real fridge
works at 80% of the maximum efficiency, so W = (29/0.8) = 36 W

2.4 Thermodynamic Temperature

Take-home message: The fact that the efficiency of a Carnot engine depends only on
the operating temperatures provides an alternative way of defining a temperature
scale.

If we hadn’t already developed a good temperature scale, we could use the fact that the
efficiency of a Carnot engine depends only on the operating temperatures to develop one.

Given a heat bath at a reference temperature (eg a very large triple-point cell) we could
use the efficiency of a Carnot engine working between it and another body to label that other
body’s temperature.

By considering compound Carnot engines it can be shown that the dependence of the
efficiency on temperature θ, no matter what scale is used for the latter, has the form

ηcarnot = 1 − Θ(θC)

Θ(θH)

where Θ(θ) is some function of θ. Thus Θ itself is a perfectly good temperature scale, which
vanishes at absolute zero: this is called the thermodynamic temperature. (See here for
details.)

The reason you haven’t heard of it is that, if we compare it with the efficiency expressed in
terms of the ideal gas temperature scale,

ηcarnot = 1 − TC

TH



we see that Θ is simply proportional to the ideal gas temperature, and will therefore be identical
if we set Θtriple = 273.15. Since a nearly ideal gas is more achievable than a reversible heat
engine, that’s the name that has finally stuck.
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2.4.1 Construction of thermodynamic temperature

Below we have two engines (one consisting of two more in series) working between heat reservoirs
at θH and θC . Remember θH etc refer to temperatures on some unspecified scale. We know
that the efficiency of a Carnot engine working between θH and θC depends only on θH and θC ,
but we don’t know how: let us define a function f(θH , θC) such that

QC = f(θC , θH)QH so η = 1 − f(θC , θH).

QH

QC

QH
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W

W

W

Q

Q
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3
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C

Now considering the two engines in series,

Q3 = f(θ3, θH)QH and WA = (1 − f(θ3, θH)) QH

also QC = f(θC , θ3)Q3 = f(θC , θ3)f(θ3, θH)QH and WB = (1 − f(θC , θ3)) f(θ3, θH)QH

so WA + WB = (1 − f(θC , θ3)f(θ3, θH)) QH

But everything within the green oval in the diagram can be considered as a single, composite,
Carnot engine, so its output must be the same as the simple one for the same heat flow QH :
WA + WB = W . Thus we can match the efficiencies of the simple and composite engines to get

f(θC , θ3)f(θ3, θH) = f(θC , θH).

This has to be true independently of the value of θ3, which can only be true if f factorises:

f(θC , θH) =
Θ(θC)

Θ(θH)



where Θ is some function of θ
Thus we have the desired result,

ηcarnot = 1 − Θ(θC)

Θ(θH)
.
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2.5 Entropy

Take-home message: The second law leads us to define a new function of state,
entropy. The entropy of an isolated system can never decrease.

Clausius’s theorem says that if a system is taken through a cycle, the sum of the heat
added weighted by the inverse of the temperature at which it is added is less than or equal to
zero:

∮ ÃdQ

T
≤ 0

This follows from Clausius’s statement of the second law. The details of the proof are here.
The inequality becomes an equality for reversible systems:

∮ ÃdQrev

T
= 0.

We can verify that this holds for a system which is taken through a Carnot cycle, since
there heat only enters or leave at one of two temperatures:

∮ ÃdQrev

T
=

QH

TH

− QC

TC

= 0.

(A less rigorous proof of Clausius’s theorem, used in Bowley and Sánchez and in Zemansky,
involves approximating any reversible cycle by a large number of Carnot cycles.)

This is interesting because a quantity whose change vanishes over a cycle implies a function
of state. We know that heat itself isn’t a function of state, but it seems that in a reversible
process “heat over temperature” is a function of state. It is called entropy with the symbol
S:

dS =
ÃdQrev

T

and
∮

dS = 0.
So much for cycles. What about other processes? By considering a cycle consisting of one

reversible and one irreversible process, we can show that in general,

ÃdQ ≤ TdS.

(Details here.) This gives rise to the most important result of all. For an isolated system,
ÃdQ = 0. So for such a system,



dS ≥ 0.

This leads to an alternative statement of the second law: The entropy of an isolated system
can never decrease.

A system and its surroundings together (“the universe”) form an isolated system, whose
entropy never decreases: any decrease in the entropy of a system must be compensated by the
entropy increase of its surroundings.
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2.5.1 Proof of Clausius’s theorem
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In the diagram, the system is the gas in the piston. We use a Carnot heat engine/pump to
add heat Qsys to the system at a local, varying temperature T . During the process work W sys

is done on the system. (Both Qsys and W sys could be positive or negative.) The cold reservoir
of the Carnot engine is at T0.

The Kelvin-Planck statement of the second law says that at the end of a complete cycle of
the system, we cannot have extracted net work from the system (or else we would have turned
heat into work). Looking at the figure to see how the signs of the various works are defined,
that means W carnot + W sys > 0. By conservation of energy, and because the system and engine
have returned to their initial states, and net work put in must end up as heat added to the
reservoir: Qres ≤ 0 (less than zero because Qres is defined as heat extracted).

Looking now at the Carnot engine, we see that if at some point in the cycle we add heat
ÃdQsys at temperature T , heat ÃdQres is extracted from the reservoir, and

ÃdQres =
T0

T
ÃdQsys.



Since the total heat extracted is less than zero, we have

Qres =

∮

ÃdQres =

∮

T0

T
ÃdQsys = T0

∮ ÃdQsys

T
≤ 0

which proves the inequality: (dropping the superscript “sys”)
∮ ÃdQ

T
≤ 0.

Clearly if the system is taken through a reversible cycle, it can be run in reverse and all
quantities will simply change signs. But if Qres was less than zero originally, it will be greater for
the reversed cycle, implying a net extraction of work and violating the Kelvin-Planck statement.
Thus for a reversible system, Qres must be exactly zero, and

∮ ÃdQrev

T
= 0.

2.5.2 Increase of entropy

Here we imagine a cycle in which we go from point 1 to point 2 by an irreversible process and
back by a reversible process. (See here for an explanation of the picture.)
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1

The entropy change for a reversible process is given by

S2 − S1 =

∫ 2

1

ÃdQrev

T

What can we say about an irreversible process between the same endpoints? Clearly the entropy
change is the same (that’s what we mean by saying entropy is a function of state.) But if we
consider a cycle involving an irreversible process from 1 to 2 and a reversible process to return
to 1, we have a cycle for which Clausius’s theorem holds:

∮ ÃdQ

T
< 0

⇒
∫ 2

1

ÃdQirrev

T
+

∫ 1

2

ÃdQrev

T
< 0

⇒
∫ 2

1

ÃdQirrev

T
< S2 − S1.



Hence in general,
ÃdQ ≤ TdS,

and so for an isolated system, where ÃdQ = 0,

dS ≥ 0.

2.6 Examples of entropy changes

Take-home message: Spontaneous changes are aways associated with entropy in-
crease.

Below we have various examples of entropy change during various processes. From them we
can draw some general conclusions. First we see in general the entropy of anything increases
when it is heated, and the entropy of a gas increases when it expands at constant temperature.
A common theme (to be explored in more detail later) is that an increase in entropy is associated
with an increase in disorder.

Examples of spontaneous processes are the flow of heat from a hotter to a colder body (see
Ex. 1) and the free expansion of a gas (see Ex. 4). In both of these, the total entropy increases
(though that of parts of the system may decrease). This is completely general: spontaneous
processes are those which increase entropy.

Since heat flow from hotter to colder bodies is irreversible, reversible processes must involve
heat flow between bodies of the same temperature. It follows that any entropy change of the
system dSsys = ÃdQrev/T must be exactly balanced by that of the heat bath which provided the
heat: dSres = −ÃdQrev/T . Thus the entropy change of the universe during reversible processes
is zero.

During an adiabatic process no heat flows. Thus from dS = ÃdQrev/T we see that the entropy
change of a system during for a reversible, adiabatic process is zero. But note that both
qualifiers are needed; the entropy of a non-isolated system can change during a reversible process
(and the entropy change of the surroundings will compensate), and an irreversible change to
an isolated system will increase the entropy (see Ex. 1&4).

��
��
��
�� During reversible changes the entropy of the system may change,

��
��
��
�� The entropy of the universe always increases during spontaneous changes.

��
��
��
�� It follows that spontaneous changes are always irreversible

��
��
��
�� During reversible, adiabatic changes the entropy of the system is constant.

but that of the universe stays constant.

For an ideal gas, we can show that when the temperature and pressure change from (T1, V1)
to (T2, V2), the entropy change is given by

∆S = nR ln

(

V2

V1

)

+ ncV ln

(

T2

T1

)

.

Try these problems for yourself before checking the detailed answers!



• Ex. 1 Two identical blocks of iron, one at 100oC and the other at 0oC, are brought into
thermal contact. What happens? What is the total entropy change? (Assume the heat
capacity of each block, C, is constant over this temperature range, and neglect volume
changes)

Answer: Both blocks end up at 50oC and the entropy change is 0.024C. More details
here.

• Ex. 2 Two identical blocks of iron, one at 100oC and the other at 0oC, are brought into
thermal contact. What is the maximum work that can be extracted from the hot block
in the absence of other heat sinks?

Answer: The final temperature is 46oC and 14% of the energy lost by the hot block is
available to do work. More details here.

• Ex. 3 Heat engines revisited From the law of non-decrease of entropy, show that the
maximum efficiency of a heat engine operating between two reservoirs at TH and TC

occurs when the engine is reversible.

Answer here.

• Ex. 4 n moles of an ideal gas at temperature T0 are originally confined to half of an
insulated container by a partition. The partition is removed without doing any work.
What is the change in entropy?

Answer: ∆S = nR ln 2. More details here.

• Ex. 5 An insulated container is originally divided in half by a partition, and each half is
originally occupied by n moles of an different ideal gas at temperature T0. The partition
is removed without doing any work. What is the change in entropy?

Answer: ∆S = 2nR ln 2. More details here.
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2.6.1 Ex. 1

Two identical blocks of iron, one at 100oC and the other at 0oC, are brought into thermal
contact. What happens? What is the total entropy change? (Assume the heat capacity of each
block, c, is constant over this temperature range, and neglect volume changes)

We know what happens: heat flows from the hot to the cold body till they reach the same
temperature; conservation of energy requires that this will be at 50oC. Why does heat transfer
occur? If heat ÃdQ is transferred from a hot body at TH to a cold one at TC , the entropy decrease
of the hot body is dSH > −ÃdQ/TH , and the entropy increase of the cold body is dSC > ÃdQ/TC .
So the total entropy change is

dS = dSH + dSC >

(

1

TC

− 1

TH

)

ÃdQ > 0



So the decrease in entropy of the hot block is more than compensated by the increase in entropy
of the cold block. The spontaneous flow of heat is associated with an overall entropy increase,
and the two blocks exchange heat till their combined entropy is maximised.

What is the overall entropy change for the total process? Here we have to use a trick.
We can’t calculate entropy changes for irreversible processes directly; we need to imagine a
reversible process between the same endpoints. For the heating or cooling of a block, this
would involve bringing it in contact with a series of heat baths at infinitesimally increasing
or decreasing temperatures, so that the temperature difference between the heat bath and the
block is always negligible and the entropy change is zero.

During this process, the heat transfer and the infinitesimal temperature change are related
by ÃdQrev = C dT and so

∆S =

∫ 2

1

ÃdQrev

T
= C

∫ T2

T1

dT

T
= C ln

(

T2

T1

)

Thus the total entropy change is

∆S = ∆SC + ∆SH = C ln

(

Tf

TC

)

+ C ln

(

Tf

TH

)

= C ln

(

T 2
f

THTC

)

= C ln

(

3232

273 × 373

)

= 0.024C

Note this is positive, and also that entropy has the same units as heat capacity, Joules/Kelvin.

2.6.2 Ex. 2

Two identical blocks of iron, one at 100oC and the other at 0oC, are brought into thermal
contact. what is the maximum work that can be extracted from the hot block in the absence
of other heat sinks?

Remember, we can’t just extract heat from the hot block and turn it into work; the entropy
of the block would decrease without any compensating increase elsewhere. We need to add at
least enough heat to the cold block so that its entropy increases by as much as that of the hot
block decreases. (Work can always be used to do things which don’t increase the entropy of
the universe, such as lifting a weight.) Once the two blocks are at the same temperature, no
further work can be extracted.

At that point the entropy change of the two blocks together, from the previous example, is

∆S = c ln

(

T 2
f

THTC

)

≥ 0

The lowest final temperature is that for which ∆S = 0, ie Tf =
√

THTC = 319 K = 46oC. (Any
lower and ∆S would go negative, which isn’t allowed.) So although the total heat loss of the
hot block is QH = c(TH − Tf ), the work extracted is only the difference between this and the
heat gained by the cold block, QC = c(Tf − TC), namely W = c(TH + TC − 2Tf ) In this case,
the efficiency is

η =
W

QH

=
(TH + TC − 2Tf )

(TH − Tf )
= 0.144.

Only 14% of the heat lost by the hot block was available to do work! Note that the maximum
efficiency was obtained from a reversible process.



2.6.3 Ex. 3

Heat engines revisited: From the law of non-decrease of entropy, show that the maximum
efficiency of a heat engine operating between two reservoirs at TH and TC occurs when the
engine is reversible.

This is a bit circular, as we used the properties of Carnot engines to derive this form of the
second law! However we will see later in the course that it can be independently derived using
statistical methods.

The change in entropy of the two reservoirs, which must be non-negative, is

∆S = ∆SC + ∆SH =
QC

TC

− QH

TH

≥ 0 ⇒ QC

QH

≥ TC

TH

with the equality being for ∆S = 0, ie for a reversible process. So the efficiency is

η =
W

QH

= 1 − QC

QH

≤ 1 − TC

TH

This is maximum when the equality is satisfied, ie for a reversible engine.

2.6.4 Ex. 4

n moles of an ideal gas at temperature T0 are originally confined to half of an insulated container
by a partition. The partition is removed without doing any work. What is the final change in
entropy?

First, we must resist the temptation to say ÃdQ = 0 (because process is adiabatic) hence
dS = 0. In fact dS = ÃdQrev/T and this is not a reversible process. To solve this problem,
we need to find a reversible process linking the same two endpoints. We’ve already seen this;
the process is a reversible isothermal expansion (see here.) For such an expansion Q = −W =
nRT0 ln(V2/V1) so ∆S = Q/T0 = nR ln 2 (details of the work calculation here).

This is rather subtle; make sure you understand the difference between the actual process
(with Q = 0 and W = 0) and the reversible process for which we could calculate the entropy
change (with Q = −W 6= 0). Remember, Q and W are not functions of state - only the sum is.

2.6.5 Ex. 5

An insulated container is originally divided in half by a partition, and each half is originally
occupied by n moles of an different ideal gas at temperature T0. The partition is removed
without doing any work. What is the change in entropy?

Since these are ideal gases, they do not interact. Each species is oblivious of the existence
of the other and the entropy change for each is just the same as in the free expansion of Ex. 4.
Thus the total entropy change is given by ∆S = 2nR ln 2. Note that the total mixing - which
we know will happen eventually - is exactly the change which maximises the entropy.

2.7 The Fundamental Thermodynamic Relation

Take-home message: Remember this equation!
The first law for infinitesimal changes says dE = ÃdQ + ÃdW . Since it is obviously true for

reversible changes, we have dE = ÃdQrev+ÃdW rev. We have already found expressions for reversible



work for a variety of systems; now we have one for reversible heat transfer too: ÃdQrev = TdS.
So we can put these together to form an expression for dE which only involves functions of
state. For a hydrodynamic system, for instance,

dE = TdS − PdV.

This is called the fundamental thermodynamic relation. It involves only functions of
state, so it is true for all changes, not just reversible ones.

For other systems, −PdV is replaced by the appropriate expression for ÃdW rev, eg Γdl for a
stretched string.

The significance of this equation should become clear as the course continues: it is one of
the most important half-dozen equations we will meet.
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2.8 Thermodynamic potentials

Take-home message: Other quantities can be defined which, under common exper-
imental conditions, are more relevant than the energy.

Let’s look again at the fundamental thermodynamic relation for a hydrodynamic system:
dE = TdS − PdV .

This suggests that the natural variable in which to express E are S and V : E = E(S, V ).
That means that energy will be unchanged for processes at constant volume and entropy—not
the most common experimental conditions. It is useful to introduce other functions of state,
called “thermodynamic potentials”, which are conserved, or whose change is easily calculated,
in common experimental conditions.

These are

• Enthalpy:

H = E + PV so dH = dE + dPV + PdV

= TdS + V dP

At constant pressure (such as chemical reactions in a test tube), dP = 0 and so dH =
ÃdQrev. Heats of reaction are usually measured as enthalpies of reaction.

• Helmholtz free Energy:



F = E − TS so dF = dE − dTS − TdS

= −SdT − PdV

The Helmholtz free energy is constant at constant temperature and volume. It plays a
key role in statistical physics.

• Gibbs Free Energy:

G = E − TS + PV so dG = −SdT + V dP

The Gibbs free energy is constant if the temperature and pressure are constant. These
are the conditions under which phase transitions (melting, boiling) take place, and are
also relevant to chemical equilibrium.

Note that Enthalpy and Gibbs free energy are only relevant to hydrodynamic systems for
which ÃdW rev = −PdV . However the energy and the Helmholtz free energy is more general,
with dE = TdS + ÃdW rev and dF = −SdT + ÃdW rev
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2.9 The approach to equilibrium

Take-home message: Spontaneous changes maximise the entropy of an isolated
system, but minimise the appropriate free energy of non-isolated systems.

We have seen that, for an isolated system, the entropy change will always be greater than
or equal to zero. But more than that, we have seen in specific examples that if a change can
take place which increases the entropy, it will. A hot and a cold block brought in to contact
will exchange heat till they are at the same temperature, and not stop half way. Two gases
which are allowed to mix will mix fully, and not just partially. In both cases the final state
maximises the entropy with respect to the free parameter - the amount of heat exchanged, or
the degree of mixing.

But what about non-isolated systems? Obviously the entropy of the universe increases. But
it would be convenient if we could describe what happens by referring only to the system, and
not the surroundings. In fact there is a way. If the external temperature is T0 and pressure P0,
we can define the quantity

A = E − T0S + P0V,



called the availability, and we find that it always decreases during a spontaneous change. (See
here for details.)

For a process with starts and ends at the temperature and pressure of the surroundings,
the initial and final availabilities are just the initial and final Gibbs free energy, so any such
process minimises G.

For a process which starts and ends at the temperature of the surroundings and which is
at constant volume, ∆V = 0 and so ∆A = ∆F . Such a process minimises the Helmholtz free
energy F .

For an isolated system, both V and E must be constant, so a decrease of A simply means
an increase of S, as it should!

In all of the above, we are implicitly assuming that the system has unspecified internal
degrees of freedom which are initially out of equilibrium, such as un-mixed gases or unreacted
chemicals, or regions of different temperatures or pressures (for thermally- or mechanically-
isolated systems, repectively). Otherwise the state of the system is fully specified and no
evolution can happen.

Constant pressure
isothermal

MinimisedF G Minimised

Constant volume
isothermal

MaximisedS

Isolated
(Constant energy)
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2.9.1 Derivation of availability

Consider a system in thermal contact with its surrounding at T0, and at the pressure of the
surroundings P0. What spontaneous changes will occur? Taking the surroundings and the
system together, the entropy will be maximised. What does that mean for the system?

Imagine a spontaneous change during which Q is absorbed by the system, and the volume
change ∆V , so that work W = −P0∆V is done on the system. Then from the first law,
Q = ∆E + P0∆V . The total change in entropy has two parts, ∆S for the system and −Q/T0

for the surroundings. So

∆Stot = ∆S − Q

T0

=
T0∆S − ∆E − P0∆V

T0

≥ 0

⇒ ∆(E − T0S + P0V ) ≤ 0

The quantity A = E − T0S + P0V is called the availability, and it always decreases during a
spontaneous change.



2.10 Use of Gibbs Free Energy: Phase Transitions

Take-home message: The Gibbs free energies of two coexisting phases is the same.
We are interested in the cases where two phases of the same substance can coexist. An

example is ice in water at 0oC: if no heat is exchanged with the surroundings, the mixture will
persist indefinitely.

In practical cases we are interested in charting the behaviour of the substance as a function of
external temperature and pressure. For most choices, only one phase will persist at equilibrium
- water, or ice, or vapour, for example. But for certain choices, two or even three phases may
coexist.

The phase diagram for water is shown below. (Image c©M. Blaber, Florida State University)

It differs from a generic substance in the backward slope of the ice-water coexistence line:
putting ice under pressure may cause it to melt, whereas most liquids close to their freezing
point will freeze under pressure.

What determines the lines of phase coexistence?
Consider a system of two phases, 1 (say gas) and 2 (say liquid) at a fixed pressure and

temperature.
From the fact that the system will minimise its Gibbs free energy, we can derive the following

condition for phase coexistence: The Gibbs free energy per unit mass in each phase is the same.
At temperatures and pressures not on the coexistence line the Gibbs free energy of one

phase will be lower than the other, and only the phase with the lower energy will be present at
equilibrium.

Suppose we know the location of one point on a coexistence line (for instance the melting
point at atmospheric pressure). Can we discover other points - for instance, the melting point
at a higher or lower pressure? The answer is yes, for very small changes: in fact we can discover
the slope of the line:

dP

dT
=

L

T∆V

where L is the latent heat of the transition for some quantity of the substance, and ∆V is
the volume change of the same quantity as it undergoes the transition. This is called the
Clausius-Clapeyron equation. (Details of the derivation here.)



0T

0P

1

2

We can use this equation to estimate the boiling point of water at the top of Mount Everest,
where the pressure is only about a third of that at sea-level, to be 82oC.

(Input data: pressure at the top of Everest is 0.36 atmospheres, the density of water vapour
at 100oC is 0.598 kg/m3 and the latent heat is 2.257 × 103 J/g.)

Of course this estimate requires assuming that the phase coexistence line has negligible
curvature over a fairly large range, so it is no surprise that the result is only approximate. By
looking at the phase diagram above you should be able to say if the true temperature is higher
or lower.
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2.10.1 Proof of equality of Gibbs free energy at a phase coexistence
line

If the system is in equilibrium at a fixed pressure and temperature, the Gibbs free energy must
be a minimum. That means that G will be unchanged under a further small shift of mass from
one phase to the other.

Now the total Gibbs free energy is the sum of the gibbs free energy of each phase. If we
introduce the “specific Gibbs free energy”, the Gibbs free energy per unit mass, and if the mass
of each phase is m1 and m2, we can write

G = m1g1 + m2g2

At equilibrium a small transfer of mass dm from one phase to the other won’t change the
total G:

dG = dm1g1 + dm2g2 = dm g1 − dm g2 = 0



This can only be true if g1 = g2.
So the condition for phase coexistence is that the Gibbs free energy per unit mass in each

phase is the same.

2.10.2 The Clausius-Clapeyron Equation

Suppose we know the location of one point on a coexistence line (for instance the melting point
at atmospheric pressure). Can we discover other points - for instance, the melting point at a
higher or lower pressure? The answer is yes, for very small changes: in fact we can discover the
slope of the line.

g1 2g

2gg1

g1 2g=

<

>

T T+dT

P+dP

P

1

2

b

a

At both a and b the two phases are in equilibrium, so the specific Gibbs free energies of the
two phases at each point are the same: g

(a)
1 = g

(a)
2 and g

(b)
1 = g

(b)
2 . So if dg is the difference in

the Gibbs free energy between the two points, it is the same for both phases: dg1 = dg2. But
(using small letters s and v to denote specific entropy and volume),

dg1 = −s1 dT + v1 dP

dg2 = −s2 dT + v2 dP

⇒ (s2 − s1) dT = (v2 − v1) dP

⇒ dP

dT
=

S2 − S1

V2 − V1

The is called the Clausius-Clapeyron equation, and it relates the slope along the coex-
istence line with the change in entropy and volume of the substance as it crosses the line, ie

changes phase.
This doesn’t look very useful, as we can’t measure entropy directly. However, using ∆S =

Q/T for an isothermal process, we can find the change in entropy at a phase transition from
the latent heat L, and so the more useful form of the equation is

dP

dT
=

L

T∆V
.



2.10.3 Boiling point on Everest

We take the pressure at the top of Everest to be 0.36 atmospheres, the density of water vapour
at 100oC to be 0.598 kg/m3 and the latent heat to be 2.257 × 103 J/g.

The change in volume of 1 gram is well approximated by just the volume of the gas phase,
since the vapour is about a thousand times less dense than the liquid: ∆V = Vg − Vl ≈ Vg =
1/ρg.

So

dP

dT
=

L

T∆V
=

Lρg

T
= 3.6 × 103 Pa/K

⇒ ∆T ≈ ∆P/(3.6 × 103 Pa/K) = −18oC

Did you get the right numbers? If not, did you remember to convert the latent heat and
the density to refer to the same amount of water (1 kg or 1 g).

2.11 Available work

Take-home message: The availability is a measure of the useful work which can be
extracted from a system.

Here we consider the amount of useful work which can be extracted from a system which
is initially out of equilibrium with its surroundings, which are at temperature T0 and pressure
P0.

T
0

P0

MUseful Work

There are two factor which limit this. One is that if the system expands, it has to overcome
atmospheric pressure before doing any useful work, so P0∆V is wasted. The other is that if
its entropy decreases (as in cooling) the entropy of the surrounding must increase enough to
compensate. The system must discard heat Q to the surroundings so that ∆S + Q/T0 ≥ 0.

So of the total energy decrease of the system, ∆E, the amount available to do work is

W useful = (−∆E) − Q − P0∆V ≤ −∆E + T0∆S − P0∆V = −∆A

where the availability A is E − T0S + P0V .
The equality is satisfied for reversible processes, which maximises the useful work available.

(To cool reversibly with only a single cold reservoir would require the use of a heat engine to
extract the heat, rather than the direct transfer depicted above.)



This explains why the availability, which we have met in a slightly different context, is so
called.

Remember that it is the temperature and pressure of the surroundings that enter, not that
of the system (though they end up the same).

Follow this link for an example.
References

• Mandl 4.6

• Adkins 10.2

2.11.1 Example of available work

What is the maximum amount of work theoretically available from one mole of monatomic
ideal gas, cooled at constant volume from an initial temperature T to the temperature of the
surroundings T0?

Wmax = −∆A = −∆E + T0∆S

Now ∆E = −CV (T − T0) for an ideal gas and ∆S = −CV ln(T/T0) (see here.) So

Wmax = CV

(

T − T0 − T0 ln
T

T0

)

For 1 mole, CV = 3R/2.
The rest of the energy is discarded to the surroundings to ensure no overall decrease in

entropy. Of course this is simple enough that we could have done the calculation directly from
entropy considerations, taking the surroundings into account explicitly. Compare with this
example.

2.12 Maxwell’s Relations

Take-home message: Remember these relations!
As we have seen, the fundamental thermodynamic relation dE = TdS − PdV implies that

the natural variable in which to express E are S and V : E = E(S, V ).
That means that on purely mathematical grounds, we can write

dE =

(

∂E

∂S

)

V

dS +

(

∂E

∂V

)

S

dV

But comparison with the fundamental thermodynamic relation, which contains the physics,
we can make the following identifications:

T =

(

∂E

∂S

)

V

and P = −
(

∂E

∂V

)

S

These (especially the second) are interesting in their own right. But we can go further, by
differentiating both sides of the first equation by V and of the second by S:

(

∂T

∂V

)

S

=

(

∂

∂V

(

∂E

∂S

)

V

)

S

and

(

∂P

∂S

)

V

= −
(

∂

∂S

(

∂E

∂V

)

S

)

V



Using the fact that the order of differentiation in the second derivation doesn’t matter, we see
that the right hand sides are equal, and thus so are the left hand sides, giving

(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

By starting with F , H and G, we can get three more relations.

=
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The two equations involving derivatives of S are particularly useful, as they provide a handle
on S which isn’t easily experimentally accessible.

For non-hydrodynamic systems, we can obtain analogous relations involving, say, m and
B instead of P and V ; for instance by starting with dE = TdS + mdB we get (∂T/∂B)S =
(∂m/∂S)B.

To fully exploit these relations, some properties of partial derivatives are useful. See here
for a refresher course!

In maths, it’s usually quite obvious what the independent variables are: either x, y, z or
r, θ, φ, for instance, and if you differentiate with respect to one you know that you are keeping
the others constant. In thermal physics it isn’t obvious at all, so always specify what is being
held constant. Expressions like

∂P

∂T
and

dP

dT
are simply meaningless. (OK, we met the latter in the Clausius-Clapeyron equation, but there
it really was the slope of a line: the restriction to points of phase coexistence was understood.)
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2.12.1 The rules of partial differentiation

• Identify the independent variables, eg u and v.
• If w = w(u, v), the partial derivative of w with respect to u is obtained by holding v constant;
it is written

(

∂w

∂u

)

v



• It follows that
(

∂v

∂u

)

v

=

(

∂u

∂v

)

u

= 0 and

(

∂u

∂u

)

v

=

(

∂v

∂v

)

u

= 1

• The order of differentiation doesn’t matter:
(

∂

∂v

(

∂w

∂u

)

v

)

u

=

(

∂

∂u

(

∂w

∂v

)

u

)

v

• The change in w as a result of changes in u and v is

dw =

(

∂w

∂u

)

v

du +

(

∂w

∂v

)

u

dv (2.1)

• We could take v and w to be the independent variables, with u = u(v, w). Now the partial
derivatives are

(

∂u

∂v

)

w

and

(

∂u

∂w

)

v

Note the first is no longer required to be zero – it’s w, not u, that is held constant. In this case,

du =

(

∂u

∂v

)

w

dv +

(

∂u

∂w

)

v

dw (2.2)

• By comparing (2.1) and (2.2) with dv = 0, we see that
(

∂w

∂u

)

v

=
1

(

∂u

∂w

)

v

(2.3)

• From (2.1) we have

(

∂w

∂u

)

v

du = −
(

∂w

∂v

)

u

dv for constant w

⇒
(

∂w

∂u

)

v

(

∂u

∂v

)

w

= −
(

∂w

∂v

)

u

= −
[(

∂v

∂w

)

u

]−1

using (3)

⇒
(

∂w

∂u

)

v

(

∂u

∂v

)

w

(

∂v

∂w

)

u

= −1

(2.4)

In the second line, “dividing du by dv” gave
(

∂u
∂v

)

w
, not du

dv
, because the first line was only

true for constant w.
• Rearranging (2.4) also gives

(

∂u

∂v

)

w

= −

(

∂w

∂v

)

u
(

∂w

∂u

)

v

= −

(

∂u

∂w

)

v
(

∂v

∂w

)

u

(2.5)

The minus sign in these is counter-intuitive.
Equations (2.3), (2.4) and (2.5) are our main results, and may be new to you.
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2.13 Heat Capacities

Take-home message: Heat capacities are related to changes of entropy with tem-
perature.

A heat capacity C is the temperature change per unit heat absorbed by a system during
a reversible process: C dT = ÃdQrev. It is a poor name, since bodies don’t contain heat, only
energy, but we’re stuck with it. (Note the difference between “heat capacity (C)” and “specific
heat capacity (c)”; the latter is the heat capacity per kg or per mole - the units will make clear
which.)

The heat capacity is is different for different processes. Useful heat capacities are those at
constant volume or constant pressure (for a fluid). Since

ÃdQrev = TdS

we have at constant volume CV dT = TdS, so

CV = T

(

∂S

∂T

)

V

.

Similarly

CP = T

(

∂S

∂T

)

P

.

Furthermore at constant volume, no work is done on the system and so ÃdQrev = dE; hence

CV =

(

∂E

∂T

)

V

.

Also (usefully for chemists), at constant pressure ÃdQrev = dH where H is the enthalpy, so

CP =

(

∂H

∂T

)

P

.

The specific heat capacity is the heat capacity per unit mass (or per mole). Heat capaci-
ties are not independent of temperature (or pressure) in general, but over a narrow temperature
range they are often treated as such, especially for a solid.

Together with two of Maxwell’s relations, we now have expressions for the partial derivatives
of the entropy with respect to all easily manipulable variables (P , V , T ). These can be used
to derive expressions for the entropy change in real processes. (see here for an example.)

We can also derive a relation between CP , CV , and other measurable properties of a sub-
stance which can be checked experimentally: if α is the isobaric thermal expansivity and κT is
the isothermal compressibility

α =
1

V

(

∂V

∂T

)

P

and κT = − 1

V

(

∂V

∂P

)

T

Then we have the relation

CP − CV = V T
α2

κT



which is always greater than zero. (The derivation is set as an exercise.) This relation is a firm
prediction of thermal physics without any approximations whatsoever. It has to be true! For
real gases and compressible liquids and solids it can be checked. For relatively incompressible
liquids and solids it is hard to carry out processes at constant volume so CV may not be well
known and this equation can be used to predict it.

For one mole of a van der Waals gas this gives

CP − CV = R

(

1 − 2a(V − b)2

RTV 3

)−1

.

In the ideal gas limit a, b → 0 this reduces to CP − CV = R as expected.
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2.13.1 Entropy changes

What is the entropy change during the expansion of a van der Waals gas for which CV is a
constant?

The equation of state for one mole of a van der Waals gas is

P =
RT

V − b
− a

V 2
;

b represents the volume taken up by the finite size of the molecules, and a/V 2 is the reduction
in pressure due to interactions between the molecules. In this way the two most important
corrections neglected in the ideal gas are included. However the heat capacity at constant
volume is still independent of temperature and volume, as in an ideal gas.

During an expansion, both the temperature and the volume may change. To calculate the
change in entropy, we need

(

∂S

∂T

)

V

=
CV

T

and
(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

=
R

V − b

so

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV using a Maxwell relation

=
CV

T
dT +

R

V − b
dV

Note: Many problems on this section of the course involve choosing variables, either (T, V ) or
(T, P ), writing dS in terms of infinitesimal changes in these variables as in the first line, and



then using the definition of the heat capacities, and a Maxwell relation, to obtain something
like the second line.

Then we can calculate the total entropy change by integrating, first at constant T and then
at constant V :

S(T1, V2) = S(T1, V1) +

∫ V2

V1

(

∂S(T1, V )

∂V

)

T

dV

= S(T1, V1) +

∫ V2

V1

R

V − b
dV

= S(T1, V1) + R ln
V2 − b

V1 − b

and S(T2, V2) = S(T1, V2) +

∫ T2

T1

(

∂S(T, V2)

∂T

)

V

dT

= S(T1, V2) +

∫ T2

T1

CV

T
dT

= S(T1, V2) + CV ln
T2

T1

= S(T1, V1) + R ln
V2 − b

V1 − b
+ CV ln

T2

T1

so S(T2, V2) − S(T1, V1) = R ln
V2 − b

V1 − b
+ CV ln

T2

T1

where in the second integration we used the fact that CV is constant. (We can do this integration
because the two terms in dS are each functions of one variable only. Given that, the bottom
line may be obvious to you without all the careful intermediate steps.)

Note that we have not said what kind of process (reversible or non-reversible, isothermal,
adiabatic. . . ) has taken place; that will go into the relation between V2 and T2.

We can check our result against those we have already calculated for an ideal gas just by
setting b = 0 and using the correct CV (eg 3R/2 for a monatomic gas), as follows: First, for an
isothermal expansion (T1 = T2) we get ∆S = R ln(V2/V1) as before.
Also, for a reversible adiabatic expansion we can use T1V

γ−1
1 = T2V

γ−1
2 (see here) so

∆S = R ln
V2

V1

+ CV ln

(

V1

V2

)γ−1

=

(

R − CV

(

CP

CV

− 1

))

ln
V2

V1

= 0

(using CP −CV = R for an ideal gas). But that is as expected: entropy changes for reversible,
adiabatic processes are it always zero! (See here if you have forgotten why...)

Conversely, we can use the fact that ∆S = 0 for a reversible adiabatic process to see that
for a van der Waals gas, T (V − b)R/CV is constant. But R 6= Cp − CV so the exponent isn’t
γ − 1.

2.14 Joule-Thomson Expansion

Several times, we have noted that the free adiabatic expansion of an ideal gas does not result
in a change of temperature; this is because the energy depends only on the temperature and



not on the volume, so if the internal energy is unchanged, so is the temperature. This is not
true for a real gas though. In general a free expansion will result in cooling as internal work is
done against the forces of attraction between the molecules. More formally

(

∂T

∂V

)

E

= −
(

∂E

∂V

)

T

/ (

∂E

∂T

)

V

= − 1

CV

(

T

(

∂P

∂T

)

V

− P

)

where we have used the FTR and a Maxwell relation in the last step. For an ideal gas this is
zero, but for a van der Waal gas, it gives

(

∂T

∂V

)

E

= − 1

cV

a

V 2
< 0.

Something like this can be used to cool gases to low temperatures, but the process is a little
more complicated. For practical purposes we want a continuous flow of coolant which passes
through a throttle from a region of higher to lower pressure. If we consider a certain amount

Figure 2.1: Schematic diagram of the throttling process, considering a certain mass of gas.

of gas, stating at (V1, P1, T1) and ending after passing through the throttle at (V2, P2, T2), with
no heat flow, the energy change is due only to the work done by the pressures on either side, so

E2 − E1 = P1V1 − P2V2 ⇒ H1 = H2

In other words, the continuous-flow throttling process is isenthalpic (constant enthalpy). Now
the rate of change of temperature with pressure, which should be positive if cooling is to occur
as the pressure falls, is

(

∂T

∂P

)

H

= −
(

∂H

∂P

)

T

/ (

∂H

∂T

)

P

=
1

CP

(

T

(

∂V

∂T

)

P

− V

)

This can be positive or negative, as can be seen from the lines of constant enthalpy on the
plot above. The line on which the slope vanishes is called the inversion curve, and cooling will
only take place if we start at temperatures and pressures to the left of it. The inversion curve
intersects the T axis at a temperature Ti above which no cooling can occur, so pre-cooling may
be necessary e.g. for hydrogen. In the plot, if we start at point A and lower the pressure, we
can end up at the cooler, lower-pressure point B.

This effect, with recycling of the cooled gas to obtain further cooling, was pioneered by
James Joule and William Thomson (later Lord Kelvin) in Salford in 1852, and formed the
basis for the first successful liquefaction of oxygen and carbon monoxide in 1877 by Louis
Cailletet. See an interesting discussion by “Carnocycle”.

https://carnotcycle.wordpress.com/tag/joule-thomson-effect/


Figure 2.2: Isenthaps and the inversion curve for a typical gas. Figure taken from Mandl

2.15 Systems with more than one component

Take-home message: The chemical potential is important wherever the number of
molecules in a system isn’t fixed.

If we have a mixture of two substances present, the internal energy and all the other thermo-
dynamical potentials will depend on how much of each is present, since there will be interactions
between the molecules of each.

Here we focus on the Gibbs free energy, since the relevant conditions are usually those of
fixed temperature and pressure.

We have G = G(T, P,N1, N2) where N1 and N2 are the number of molecules of each sub-
stance. (This is easily generalised more than two components.) So

dG =

(

∂G

∂T

)

P,N1,N2

dT +

(

∂G

∂P

)

T,N1,N2

dP +

(

∂G

∂N1

)

T,P,N2

dN1 +

(

∂G

∂N2

)

T,P,N1

dN2

Now the first two partial derivatives are −S and V as before. We define

µ1 =

(

∂G

∂N1

)

T,P,N2

and µ2 =

(

∂G

∂N2

)

T,P,N1

giving
dG = −SdT + V dP + µ1dN1 + µ2dN2

µ1 is called the chemical potential of substance 1. But what is its significance?
First, imagine only one substance present. Then

µ =

(

∂G

∂N

)

T,P

But G is extensive, and P and T are intensive, so G must be directly proportional to N :
G(T, P,N) = Ng(T, P ) (where g is the Gibbs free energy per molecule), and so µ = g.



So for a single component system, µ is just the Gibbs free energy per molecule.
But for a two component system, G depends not only on the extensive variable N1 + N2

but also on the ratio N1/N2, which is intensive. The Gibbs free energy per molecule of one
substance can depend on the concentration of the other. All we can say is µ1 is the extra Gibbs
free energy per added molecule of substance 1. If substance 1 is ethanol and substance 2 water,
the chemical potential of ethanol is different in beer (5%) and vodka (40%).

However for ideal gases, since there are no intermolecular interactions, the Gibbs free ener-
gies are independent and additive: G = µ1N1 + µ2N2.

From E = G − PV + TS, F = G − PV and H = G + TS (see here), we see that the term
µ1dN1 + µ2dN2 is added to dE, dF and dH also, and

µ1 =

(

∂E

∂N1

)

S,V,N2

=

(

∂F

∂N1

)

T,V,N2

=

(

∂H

∂N1

)

S,P,N2

.

An important use of chemical potentials is in chemical reactions. But it is important to physi-
cists too. Not all reactions are chemical: in a neutron star, neutrons, protons and electrons can
interact via p + e− ⇋ n; they reach an equilibrium at which the chemical potentials on either
side of the reaction are equal. This is heavily biased toward neutrons, because the chemical
potential of the light electron is much higher for a given concentration than that of the heavy
proton or neutron. (Why? I’m afraid that must wait till next year!)

The chemical potential also governs systems which can exchange particles with a reservoir,
and that is the context in which we will meet it in statistical physics.

Note: the use of µ to mean magnetic moment as well as chemical potential should never
confuse, as magnets tend to have fixed numbers of atoms.

If like most students you find the chemical potential mystifying, look at this helpful slide
from Peter Saeta of Harvey Mudd College. The last point will only become clear once we’ve
done Gibbs distributions at the end of the course.
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2.16 Chemical reactions

Take-home message: At equilibrium the chemical potential of reactants and prod-
ucts are equal.

The treatment of chemical reactions is very like that of phase transitions. Again, we are
considering conditions of constant temperature and pressure, and the question is the following:
how far will a reaction go?

First consider the simplest case of a reaction with only one reactant and one product:
A ⇋ B. An example is the interconversion of n-pentane and isopentane (or pentane and
methyl-butane, for those of us who learned our chemistry in the last thirty years).

http://kossi.physics.hmc.edu/courses/p117/ChemPot.pdf


C C C C C HH

H H H H H

H H H H H

C C C C

C

pentane methylbutane
(hydrogens omitted)

Spontaneous changes will minimise the Gibbs free energy (see here). With temperature
and pressure fixed only the numbers of A and B can change. Since they can only interconvert,
dNA = −dNB and

dG = µAdNA + µBdNB = (µA − µB)dNA

So if µA > µB, A will convert to B, but if µB > µA, the opposite will happen. So at equilibrium,
when no further changes happen, the chemical potentials must be equal. (Remember that the
chemical potentials are functions of concentration, so they will change as the reaction proceed.)

−>B A−>A B

µ

µB

NA

A

E

In the figure “E” marks the equilibrium concentration, at the point where µA = µB.
If there are more reactants or products, say A + B ⇋ C + D, the numbers of A, B, C and

D change together: dNA = dNB = −dNC = −dND. So

dG = µAdNA + µBdNB + µCdNC + µDdND = (µA + µB − µC − µD)dNA

and equilibrium is when µA + µB = µC + µD.
This result is general: equilibrium is reached when the sum of the chemical potential of the

reactants equals that of the products. Further details here.
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2.16.1 More on chemical equilibrium

In general the chemical potential of species A will depend on the number of molecules of all
species present. However things simplify tremendously if we have a gaseous reaction and all
species can be treated as ideal gases at these temperatures and pressures. For a single ideal
gas we have

S(T, P ) = S(T0, P0) + CP ln
T

T0

− nR ln
P

P0

.

The Gibbs free energy is defined for an ideal gas as G = E − TS + PV = E(T ) − TS + nRT .
Hence for one mole at constant temperature T0,

g(P, T0) − g(P0, T0) = −T0

(

S(T0, P ) − S(T0, P0)
)

= RT0 ln
P

P0

.

Recall that in a mixture, the relevant pressure is the partial pressure of the species in question.
So for a reaction in which νA moles of A and νB moles of B react to form νX moles of X

and νY moles of Y,
νAA + νBB ⇋ νXX + νY Y,

we define the Gibbs free energy of reaction as

gr = νXgX + νY gY − νAgA − νBgB

and this will be zero at equilibrium. (Recall µ and g are the same for ideal gases.)
If we know this quantity gr at some reference temperature and pressure, the same for all

reactants and products, usually 25oC and 1 atm, call it g0
r , then at other partial pressures but

the same temperature it will be

gr(PX , PA, T0) = g0
r+RT0

(

νX ln
PX

P0

+ νY ln
PY

P0

− νA ln
PA

P0

− νB ln
PB

P0

)

= RT0 ln

[(

PX

P0

)νX
(

PY

P0

)νY
(

P0

PA

)νA

Hence, since at equilibrium gr = 0,
(

PX

P0

)νX
(

PY

P0

)νY
(

P0

PA

)νA
(

P0

PB

)νB

= exp

(

− g0
r

RT0

)

.

If at standard pressure and temperature g0
r < 0, the reaction will tend to increase the amount

of the products (X, Y) and decrease the amount of the reactants (A, B); if on the other hand
g0

r > 0 the reaction will proceed in the other direction.
The general forms of these equations for N reactants and N ′ products can be written

gr =
N ′
∑

i=1

νXi
gXi

−
N

∑

j=1

νAj
gAj

and, at equilibrium,

N ′
∏

i=1

(

PXi

P0

)νXi
N
∏

1=1

(

P0

PAj

)νAj

= exp

(

− g0
r

RT0

)

.

As given, gr will depend on whether the reaction is written, e.g., O2 + 2H2 ⇋ 2H2O or 1
2
O2 +

H2 ⇋ H2O, being twice as large in the first case as in the second. You should be able to convince
yourself that the partial pressures at equilibrium do not depend on this. For a reaction with a
single product like this one, though, it is usual to talk about the standard Gibbs free energy of
formation as referring to a single mole of product, i.e. the second case.



Chapter 3

The statistical theory of
thermodynamics

The classical theory of thermodynamics leaves certain questions unanswered:
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��
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��
��
��

What really is entropy?

Why does entropy increase?

Can we deduce equations of state from first principles?

The statistical theory can answer all these.

3.1 Microstates and Macrostates

Take-home message: The properties of a macrostate are averaged over many mi-
crostates.

Classical thermodynamics describes macroscopic systems in terms of a few variables (functions
of state): temperature, pressure, volume. . . But such a system is really made of atoms, so a
much richer description must be possible in principle: we could specify the quantum state of
all the atoms—the microstate. Of course as the atoms interact this state changes very rapidly–
perhaps 1035 times a second. But the observed macrostate doesn’t change. Many different
microstates all correspond to the same macrostate.

This suggests we can calculate the macroscopic behaviour of the system by averaging over
the corresponding microstates. We can derive thermodynamics from the quantum behaviour
of atoms and molecules.

Of course only a few systems are really fully calculable: those in which the interactions
between atoms are particularly simple—or absent. We will be able to tackle the ideal paramag-
net and the ideal gas, including the latter at densities so high that the quantum nature of the
system becomes important. The van der Waals gas and a paramagnet with nearest neighbour
interactions can be worked out, as can crystalline solids with simple defects. Going beyond
that is tough. But the proof-of-principle that these give is compelling.

The crucial link from microscopic to macroscopic properties is as follows. If the value of
some quantity X in the ith microstate is Xi, and the probability that the system is in that
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microstate is pi, then the value of X in the macrostate is the ensemble average (more details
here.)

〈X〉 =
∑

i

piXi

We start by considering an isolated system (constant energy, volume and particle number).
The fundamental principle that allows the averaging over microstate to be done is the postulate
of equal a priori probabilities or, in plain English, the assumption that all allowed microstates
are equally likely. (Allowed or accessible means having the same volume, particle number and
and total energy as the macrostate.) We use Ω for the number of such microstates, so the
probability of the system being in any one microstate is

pi =
1

Ω
and

∑

i

pi = Ω
1

Ω
= 1

The idea of microstates is explored in a simple example here.
References

• Mandl 2.1-2

• Bowley and Sánchez 4.1 (beware–B&S use W for Ω)

• Kittel and Kroemer 1,2

3.1.1 Ensembles

An ensemble is just a collection: we imagine a collection of copies of the system, each in one
of the allowed microstates. If the number of copies ν is much, much larger than Ω, then each
microstate will be represented with a frequency which reflects its probability: if νi is the number
of copies in state i, we have νi = νpi. (We use ν for numbers of copies, and n or N for numbers
of atoms. The former is hugely greater than the latter—it is just as well that it is only a
theoretical concept.)

Then if we use λ = 1 . . . ν to label the copies and i to label the microstates,

〈X〉 =
1

ν

∑

λ

Xλ =
1

ν

∑

i

νiXi =
∑

i

piXi

There are three kinds of ensembles commonly used in statistical physics. Where the real
system is isolated, that is at fixed energy and particle number, the copies in the ensemble are
also isolated from one another; this is called the microcanonical ensemble.

If the real system is in contact with a heat bath, that is at fixed temperature, the copies
are assumed to be in thermal contact, with all the rest of the copies acting as a heat bath of
any individual copy. This is called the canonical ensemble.

Finally, if the real system can exchange both heat and particles with a reservoir, at fixed
temperature and chemical potential, the copies are also assumed to be in diffusive contact.
This is called the grand canonical ensemble.



3.1.2 Microstates

Imagine we have counters, blue on one side and green on the other, and we toss them and place
them on a 6 × 6 checkerboard. Full information involves listing the colour at each site: this is
the equivalent of a microstate.

Many different patterns are possible, such as the following. Every configuration is equally
likely—or unlikely—to occur: There are Ω = 236 = 6.87×1010 patterns and the the probability
of each is (1/2)36 = 1.46×10−11. (This satisfies the “postulate of equal a priori probabilities”.)

Suppose from a distance we only knew how many counters were green and how many blue,
without being able to distinguish different arrangements of the same numbers of counters. Then
a “macrostate” would be characterised simply by the total number of green counters (the rest
being blue).

Clearly, most macrostates correspond to many microstates. If the macroscopic description
is “15 green”, the following are a few of the allowed microstates:

How many are there in total? This is the common problem of splitting a group of N into
two smaller groups, of n and N − n, without caring about the ordering in each group, and the
number of ways of doing it is

N !

n! (N − n)!

Think of counters on squares: there are N ! ways of putting N distinguishable counters on
N squares. However if n of the counters are green, there are n! ways of arranging the green
counters among themselves without changing the pattern, and (N − n)! ways of arranging the
blues.



Here, N = 36 and n = 15, so the total is 5.59 × 109. For n = 10 there are only 2.54 × 108,
whereas for n = 18, there are 9.08 × 109. This is the maximum.

The numbers N !/n! (N − n)! are called the binomial coefficients (since they enter the bino-
mial expansion) and they are written NCn or (N

n
).

3.2 The statistical basis of entropy

Take-home message: The increase of entropy can be understood as an evolution
from less to more probable configurations

Suppose a system has an extra degree of freedom which isn’t specified by fixing the volume
and internal energy. For a mixture of two ideal gases, it could be the degree to which they are
fully mixed–for example ratio of the concentrations of one species on either side of the box.
If the gases started out separated by a partition the concentrations would start at 0:1; the
classical law of increase of entropy tells us they will evolve till the ratio reaches 0.5:0.5, and not
change thereafter. (See here for a calculation of the entropy change). At the classical level, we
don’t understand this yet. It is just a law of nature, deduced ultimately from observation.

Statistical physics can explain the spontaneous increase of entropy. There are many more mi-
crostates corresponding to the equilibrium configuration (fully mixed) than the non-equilibrium
configurations (not fully mixed). The number of microstates as a function of mixing looks
something like this, but really much sharper: If we start at a point of unequal mixing, the

0.5:0.50:1 1:0

Ω

configurations which are rather better mixed are more numerous than those which are rather
less well mixed. So as interactions cause the system to jump from one microstate to another, it
is more likely to end up better mixed. This continues till full mixing is reached, at which point
there is no further direction to the changes.

What has this to do with entropy? Classically, the system is evolving from a macrostate of
lower entropy to one of higher entropy. Statistically, it is evolving from less probable to more
probable macrostates, that is from macrostates corresponding to smaller numbers of microstates
to those corresponding to larger numbers of microstates.

So does the number of microstates, Ω, equal the entropy? No, because if we double the
size of a system, we have Ω2, not 2Ω, microstates (think of the number of ways of choosing the
microstate of each half independently). So Ω isn’t extensive. But ln Ω is. So if we make the
connection



S = kB ln Ω

then we can understand both entropy and its increase.
In principle, if the increase of entropy is just a probabilistic thing, it might sometimes

decrease. However we will see that for macroscopic systems the odds are so overwhelmingly
against an observable decrease that we might as well say it will never happen.

What is kB, Boltzmann’s constant? It must be a constant with dimensions of entropy,
Joules/Kelvin, and it turns out that the correct numerical correspondence is given by the gas
constant R divided by Avogadro’s number:

kB =
R

N A
= 1.381 × 10−23J K−1 = 8.617 × 10−5eV K−1

Find a simple example of these ideas here.
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3.2.1 Equilibrium on the checkerboard

Let’s consider the checkerboard example again. Imagine starting with a perfectly ordered all-
blue board, then choosing a counter at random, tossing it, and replacing it. After repeating
this a few times, there are highly likely to be some green counters on the board—the chance of
the board remaining blue is only about 1 in 2n after n moves. As time goes on, the number of
greens will almost certainly increase—not on every move, but over the course of a few moves.
Here is a snapshot of the board taken once every 10 moves. The number of greens is 0, 3, 5, 9,
12, 15, 15, 17, 18.
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Here is a graph of the number of greens over 100 and 1000 moves.
We see that, after the first 100 moves, the system stayed between 18 ± 6 almost all of the

time. These fluctuations are quite large in percentage terms, ±33%, but then it is a very small
system—not really macroscopic at all.

If we now look at a larger system, 30×30, we see that fluctuations are still visible, but they
are much smaller in percentage terms–the number of greens is mostly 450 ± 30, or ±7%.
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A 25-fold increase in the size of the system has reduced the percentage fluctuations by a
factor of 5. We will see later that an n-fold increase should indeed reduce the fluctuations
by

√
n. We can predict that a system with 1023 counters—truly macroscopic—would have

fluctuations of only about 10−10%, which would be quite unobservable. The entropy of the
system would never appear to decrease.

3.3 The spin-half paramagnet

Take-home message: The paramagnet is the simplest illustration of statistical ideas

What is a spin-1
2

paramagnet? A paramagnet is a substance which can be magnetised by
an external magnetic field, and the magnetisation is aligned with the external field. Unlike a
ferromagnet the response is weak and does not remain if the field is switched off.

A crystal of atoms with non-zero spin will act as a paramagnet, as the spins will tend to line
up in an external field. From quantum mechanics we know the spin-projection along the field
can only take certain discrete values. For simplicity we consider spin-1

2
, so that sz = ±1

2
. In an

ideal paramagnet, the spins do not feel one another, but react independently to an external
field.

Thus the ideal paramagnet is a lattice of N sites at each of which the spin points either
up or down. Each of these has a magnetic moment ±µ. Only the total magnetic moment is
macroscopically measurable, and this is just the sum of the individual moments. If n↑ spins
are pointing up and n↓ = N − n↑ are pointing down, the total magnetic moment is

m = n↑µ + n↓(−µ) = µ(2n↑ − N).



In an external field, the spin-up atoms will have lower energy, −µB, and the spin-down atoms
have higher energy, µB, so the the total energy is just

E = n↑(−µB) + n↓(µB) = −Bm

However we are going to start with zero external magnetic field so that all states have
the same energy. The magnetisation is then an example of an extra degree of freedom not
specified by the energy, as discussed in the previous section.

If you haven’t already looked at the chequerboard examples, here and here, do so now. All
the pictures carry over if for “blue” you read spin-up. (The chequerboard is 2-D and a crystal
is 3-D, but in the absence of interaction the geometry is irrelevant; all that counts is the total
number N of atoms.)

So macrostates are characterised by their magnetic moment (or magnetisation, M = m/V ),
but microstates by the list of spins at each site. For N = 3 there are four macrostates and
nine microstates. In general the number of microstates for a given macrostate, with n↑ =

m=3µ

µm=−3

µm=−

m=µ
Ν=3

1
2
(N + m/µ), is

Ω(n↑) =
N !

n↑! (N − n↑)!

You should be able to prove that the sum of the Ω(N,n↑) over all n↑ is 2N . (Write 2 =
(1 + 1) . . . ...)

Below we plot Ω(n), normalised to 1 at the peak, as a function of n/N , for different values
of N .
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As N gets larger, the function is more and more sharply peaked, and it is more and more
likely that in the absence of an external magnetic field there will be equal numbers of up and
down spins, giving zero magnetisation.

For large N , the curve is very well approximated by a Gaussian,

Ω(n) ∝ e−
(n−N/2)2

N/2



with a mean of N/2 and a standard deviation σ =
√

N/2. Thus the fractional size of fluctuations
goes as 1/

√
N .

Since the probabilities of various sizes of fluctuations from the mean in a Gaussian are
known, we can show that in a macroscopic system, 100σ deviations are vanishingly unlikely.
Even they would be undetectable, so the macroscopic magnetisation is very well defined indeed.
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3.4 From entropy to temperature

Take-home message: From the entropy, we can calculate all the usual functions of
state of a system

1

1
Ε2

N
V V

N
2

2

Ε

1

In the last section we deduced the existence of entropy, and the fact that at equilibrium the
entropy is a maximum, from statistical arguments. Now we would like to know if we could go
further and, even if we knew no classical thermodynamics, deduce the existence of temperature,
pressure and chemical potential.

By considering two systems in contact with one another we can indeed deduce the existence
of properties which determine whether they are in thermal, mechanical and diffusive equilibrium
even if we knew no classical thermodynamics: these are the three partial derivatives of the
entropy with respect to energy, volume and particle number.

Clearly these are related to the usual concepts of temperature, pressure and chemical po-
tential. The correct relations are the ones which reproduce the fundamental thermodynamic
relation

dS =
1

T
dE +

P

T
dV − µ

T
dN,

namely

(

∂S

∂E

)

V,N

=
1

T

(

∂S

∂V

)

E,N

=
P

T

(

∂S

∂N

)

E,V

= −µ

T



Details of the derivation are given here.
As an example, these ideas are applied to the paramagnet here. We can have our first go at

the ideal gas now, too; see here.
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3.4.1 Deriving temperature etc

We can derive the ideas of temperature, pressure and chemical potential from the entropy.
Consider a system divided in two by a wall which can move, and through which energy and
particles can pass. The equilibrium division of the space into two volumes V1 and V2, with energy
and particle number similarly divided, will be the one which corresponds to the maximum
number of microstates, and hence to the maximum entropy. If we consider heat flow only,

dS =

(

∂S

∂E1

)

V,N

dE1 + chemical

(

∂S

∂E2

)

V,N

dE2

.
But the microstates of each half can be counted independently, so the entropies add:

S(E1, E2, V1, V2, N1, N2) = S1(E1, V1, N1) + S2(E2, V2, N2)

and also, since the total energy is conserved, dE1 = −dE2. So

dS =

[

(

∂S1

∂E1

)

V1,N1

−
(

∂S2

∂E2

)

V2,N2

]

dE1

and the entropy will be maximised when a small energy flow no longer changes the entropy:

(

∂S1

∂E1

)

V1,N1

=

(

∂S2

∂E2

)

V2,N2

So we deduce there is some property of bodies which governs heat flow; this is clearly
related to temperature. By considering volume changes and particle flow we discover two
more properties which are clearly related to pressure and chemical potential. To discover the
relation we would have to calculate them for some system and see how they compared with
the temperature, pressure etc of classical thermodynamics. However the following assignments
clearly work:

(

∂S

∂E

)

V,N

=
1

T

(

∂S

∂V

)

E,N

=
P

T

(

∂S

∂N

)

E,V

= −µ

T

since they give

dS =
1

T
dE +

P

T
dV − µ

T
dN

which is the fundamental thermodynamic relation rearranged.



3.4.2 The isolated spin-half paramagnet in a magnetic field

We can apply these to the spin-1
2

paramagnet in a magnetic field. There is just one difference:
we can’t derive pressure in this case, because the work is magnetic and not mechanical. Instead
of −PdV we have −mdB in the fundamental thermodynamic relation, so we have an expression
for m instead of P :

m

T
=

(

∂S

∂B

)

E,N

Now for an isolated system the energy is fixed, and therefore so is the number of up spins:

E = −µB(n↑ − n↓) = µB(N − 2n↑) (note µ is now the magnetic moment!) Then we have

S = kB ln Ω(E,B) = kB ln

(

N !

n↑! (N − n↑)!

)

with n↑ ≈ 1
2
(N − E/µB).

For large numbers of spins, we can use Stirling’s approximation:

ln n! = n ln n − n

giving
S = kB (N ln N − n↑ ln n↑ − (N − n↑) ln(N − n↑)) .

(Note that S is maximum, S = NkB ln 2, when n↑ = n↓ = N/2, the point of maximum disorder.
This is the expected value, as at this point Ω = 2N)

So

1

T
=

(

∂S

∂E

)

B,N

=

(

∂S

∂n↑

)

N

(

∂n↑

∂E

)

B,N

=
kB

2µB
ln

(

n↑

n↓

)

There will always be more spins aligned with the field than against it, so T is positive.
Differentiating the entropy with respect to B instead, and using the above result for T , we

get an expression for m:

m

T
= − kB

2µE
ln

(

n↑

n↓

)

⇒ m = −E

B

We knew that of course, but it’s good that it works.

3.4.3 The ideal gas, first attempt

To do the ideal gas properly we need to know the quantum states of particles in a box. We
learned this in PC210 last semester, so we will be able to tackle it properly later. However with
much less work we can at least discover how the entropy depends on volume at fixed particle
number and energy.

Consider an isolated system of N atoms in a box of volume V . Imagine the box subdivided
into many tiny cells of volume ∆V , so that there are V/∆V cells in all (this number should be



much greater than N). Now each atom can be in any cell, so there are V/∆V microstates for
each atom, and (V/∆V )N microstates for the gas as a whole. Thus

S = NkB ln

(

V

∆V

)

and

P

T
=

(

∂S

∂V

)

E,N

⇒ P =
NkBT

V
⇒ PV = NkBT

So we have derived the ideal gas equation!
A problem with this expression for the entropy is that it depends on the size ∆V of the

imaginary cells into which we subdivided our box. This is clearly unsatisfactory (though at
least entropy changes are independent of it), but classical physics can’t do any better. Quantum
physics can though! If you want to jump ahead to see the full expression (called the Sackur-
Tetrode equation) see here.



Chapter 4

Statistical Physics of Non-isolated
Systems

In principle, with the tools of the last section we could tackle all the problems we want now.
But it turns out to be hard to calculate the entropy of any isolated system more complicated
than an ideal paramagnet. This is because in an isolated system the energy is fixed, and it
becomes complicated to work out all the possible ways the total energy can be split between
all the atoms of the system: we can’t treat each atom as independent of all the others, even if
they are non-interacting.

We don’t have to consider isolated systems though. In this section we will consider systems
in contact with a heat bath, so that their temperature, rather than their energy, is constant.
This has the advantage that if the atoms of a system don’t interact with one another, they can

be treated independently.
For a macroscopic system, there is very little difference in the results from the two ap-

proaches. If the temperature is held constant the energy will fluctuate, but the fractional size
of the fluctuations decreases as 1/

√
N and so, from a macroscopic point of view, the energy

does not appear to vary and it makes little difference whether the heat bath is there or not. So
lots of results we obtain in this section are also applicable to isolated, macroscopic systems.

We will introduce something call the partition function from which we can calculate the
energy, pressure etc. The heart of the partition function is the Boltzmann distribution,
already met last year, which gives the probability that a particle in contact with a heat bath
will have a given energy.

4.1 The Boltzmann Distribution

Take-home message: The form of the Boltzmann distribution!
If a system is in contact with a heat bath at temperature T , the probability that it is in the

ith microstate, with energy εi, is given by the Boltzmann distribution:

pi =
e−εi/kBT

Z
The normalisation constant Z is found by saying that the probability that the system is in

65



some microstate is one:
∑

j pj = 1, so

Z =
∑

j

e−εj/kBT

The details of the derivation are here. In outline, we consider the system S and heat
reservoir R together as a larger, isolated system with a total energy which is fixed but which
can be differently distributed between its two parts. If we specify the microstate (and energy)
of S, the probability of this depends of the number of microstates of the reservoir with the
remaining energy. This decreases with decreasing reservoir energy in just the way given by the
Boltzmann distribution.

For an ideal gas or paramagnet, where interactions between atoms can be ignored, any
particle can be considered as the system S and all the others form the reservoir R. In that case
the Boltzmann distribution holds for the state of an individual atom (hence typical first-year
applications like the variation of pressure with height in the atmosphere, and the distribution
of velocities of atoms in a gas).

For the spin-1
2

paramagnet in a magnetic field B there only are two energy states; ε↑ = −µB
and ε↓ = µB. So

p↑ =
eµB/kBT

Z1

p↓ =
e−µB/kBT

Z1

and Z1 = eµB/kBT + e−µB/kBT

(The label on Z1 refers to the fact that we are talking about the state of a single particle.)
In the whole system of N atoms, the number of up-spins on average will be 〈n〉↑ = Np↑, so

we have
〈

n↓

n↑

〉

= e−2µB/kBT

This is exactly consistent with the expression we found for the temperature of the isolated
system with a fixed number of up-spins (and hence energy).

ΜB�kB
T

0.5

1

n¯�n­

Note that in thermal equilibrium, the average number of particles in the higher energy state
is always less than the number in the lower energy state. As the temperature tends to infinity
the ratio approaches, but never exceeds, one.
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4.1.1 Derivation of the Boltzmann distribution

We consider a system S in contact with a heat reservoir R, the whole forming an isolated
system with energy E0.

R

S

E E ε

Ε ε

0R − =

=S

Heat can be exchanged between the system and reservoir, and the likelihood of a particular
partition depends on the number of microstates of the whole system S + R corresponding to
that partition. (The equilibrium partition will be the one which maximises the number of
microstates, but that is not what we are interested in here.) Since the system and reservoir are
independent, the total number of microstates factorises: Ω = ΩSΩR

Now suppose we specify the microstate of S that we are interested in, say the ith (with
energy εi) and ask what the probability pi of finding the system in that microstate is. It will
be proportional to the number of microstates Ω(E0, εi) of the whole system S + R. However
ΩS = 1 as we’ve specified the state of S, so Ω(E0, εi) = ΩR(E0 − εi)

Using the relation between Ω and entropy, we can write

pi ∝ ΩR(E0 − εi) = exp{SR(E0 − εi)/kB}

If R is to be a good reservoir, it must be much bigger than S, so εi ≪ E0. Thus we can expand
SR about SR(E0) and keep only the lowest terms:

SR(E0 − εi) = SR(E0) − εi

(

∂SR

∂E

)

V,N

+ . . .

But the derivative of S with respect to E is just the inverse of the temperature, so we have

pi ∝ exp{SR(E0)/kB − εi/(kBT )} ∝ exp{−εi/(kBT )}

(since SR(E0) is a constant, independent of the microstate we are interested in). Calling the
constant of proportionality 1/Z, this is our result:

pi =
e−εi/kBT

Z

The normalisation constant Z is found by saying that the probability that the system is in
some microstate is one:

∑

j pj = 1, so

Z =
∑

j

e−εj/kBT



4.2 The Partition Function

Take-home message: Far from being an uninteresting normalisation constant, Z is
the key to calculating all macroscopic properties of the system!

The normalisation constant in the Boltzmann distribution is also called the partition func-
tion:

Z =
∑

j

e−εj/kBT

where the sum is over all the microstates of the system.
How can a constant be a function? Well for a given system and reservoir, that is fixed

temperature, particle number, volume or magnetic field (as appropriate), Z is a constant. But
if the temperature etc are allowed to vary, then Z is a function of them: Z = Z(T,N, V ) or
Z = Z(T,N,B). (The dependence on V or B comes through the energies of the microstates
εi)

Why are we emphasising this? Because if we know Z, we can calculate all macroscopic
properties of the system – energy, pressure, magnetisation, entropy. . .

For instance the average energy 〈E〉 (actually an ensemble average) is

〈E〉 =
∑

i

εi pi =

∑

i εie
−εi/kBT

∑

j e−εj/kBT

The top line is like the bottom line (the partition function) except that each term is multiplied
by εi. We can get the top line from the bottom by differentiating by “1/(kBT )”. This is a bit
awkward, so we introduce a new symbol

β ≡ 1

kBT

giving

〈E〉 = − 1

Z

∂Z

∂β N,V

or

〈E〉 = −∂ ln Z

∂β

(where—contrary to the strict instructions given earlier—we will take it for granted that it is
particle number and volume or magnetic field constant that we are holding constant.)

From the energy we can find the heat capacity:

CV =

(

∂ 〈E〉
∂T

)

V,N

.

We have found the average energy, but there will be fluctuations as heat is randomly ex-
changed between the system and the heat bath. These are given by

(∆E)2 =
〈

E2
〉

− 〈E〉2



It can be shown that (∆E)2 is related to the heat capacity,

(∆E)2 = (kBT )2CV

kB

For a normal macroscopic system the average energy is of the order of NkBT and the heat
capacity is of the order of NkB. Thus

∆E

E
≈ 1√

N

For a system of 1024 atoms, ∆E/E ≈ 10−12 and so fluctuations are unobservable. There is no
practical difference between and isolated system of energy E and one in contact with a heat
bath at the same temperature.
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4.2.1 Fluctuations

To derive (∆E)2 = (kBT )2CV /kB the following intermediate steps are useful:

〈

E2
〉

=
1

Z

(

∂2Z

∂β2

)

N,V

(should be obvious by analogy with the corresponding expression for 〈E〉) and hence

(∆E)2 =
∂2 ln Z

∂β2
= −∂T

∂β

∂ 〈E〉
∂T

= kBT 2CV .

In the main text we said that for “normal” macroscopic systems the fluctuations were
unobservable. There are exceptions. Near a critical point—where the distinction between two
phases disappears—the heat capacity becomes very large and the fluctuations do too. This can
be observed as “critical opalescence” where the meniscus between the liquid and gas phases
disappears and the substance becomes milky and opaque and scatters light. Nice pictures can
be found here courtesy of M. de Podesta of UCL, together with further explanation here.

4.3 Entropy, Helmholtz Free Energy and the Partition

Function

Take-home message: Once we have the Helmholtz free energy F we can calculate
everything else we want.

Here is the crucial equation which links the Helmholtz free energy and the partition function:

F = −kBT ln Z

http://www.physicsofmatter.com/NotTheBook/CriticalOpal/OpalFrame.html
http://www.physicsofmatter.com/NotTheBook/CriticalOpal/Explanation.html


The details of the derivation can be found here.
Since F = E−TS, from the fundamental thermodynamic relation we obtain dF = −SdT −

PdV + µdN . Thus

S = −
(

∂F

∂T

)

V,N

P = −
(

∂F

∂V

)

T,N

µ =

(

∂F

∂N

)

T,V

(We first met these in the derivation of Maxwell’s relations.) For a magnetic system, we
have m = − (∂F/∂B)

T,N
instead of the equation for P.

Remember, Z and hence F depend on V (or B) through the energies of the microstates. For
instance the energy levels of a particle in a box of side L are proportional to ~

2/(mL2) ∝ V −2/3.
These relations are reminiscent of those we met in the case of an isolated system, but there

the entropy was the key; here it is the Helmholtz free energy. We can make the following
comparison:

no. of microstates  Ω

Bk log ΩS= BkF=− T log Z

system

fixed

key microscopic function

key macroscopic function

Isolated 

E,N,V or B

in contact with heat bath

partition function Z

T,N,Vor B

It should not surprise us to find that the Helmholtz free energy is the key to a system at
fixed temperature (in contrast to the entropy for an isolated system) as that is what we found
classically (see here.)
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4.3.1 Entropy in a non-isolated system

We can’t use an ensemble average directly for the entropy, because it doesn’t make sense to
talk about the entropy of a microstate. But we can talk about the entropy of the ensemble

since the many copies can be in many different microstates. So we define the entropy of the
system as the entropy of the ensemble divided by the number of copies, ν, in the ensemble:
〈S〉 = Sν/ν.

The ensemble has νi copies in the ith microstate, so the number of ways of arranging these
is

Ων =
ν!

ν1! ν2! ν3! . . .

(compare the ways of arranging counters on the in the chequerboard).



So, using Stirling’s approximation,

ln Ων = ν ln ν − ν −
∑

i

(νi ln νi − νi)

=
∑

i

νi(ln ν − ln νi) (using ν =
∑

i νi in two places)

= −
∑

i

νi(ln νi/ν)

= −ν
∑

i

pi ln pi

So the ensemble entropy is Sν = kB ln Ων and the system entropy is

〈S〉 = −kB

∑

i

pi ln pi

Note that we have not said anything about what distribution the probabilities pi follow. For an
isolated system, pi = 1/Ω for each of the Ω allowed microstates, giving S = kB ln Ω as before.

For a system in contact with a heat bath, pi is given by the Boltzmann distribution, so

〈S〉 = −kB

∑

i

pi ln pi

= −kB

∑

i

pi(−εiβ − ln Z)

= kB(〈E〉 β + ln Z)

=
〈E〉
T

+ kB ln Z

Rearranging we get kBT ln Z = −〈E〉 + T 〈S〉 = −〈F 〉 where F is the Helmholtz free energy,
or

F = −kBT ln Z.

4.4 The paramagnet at fixed temperature

Take-home message: Understand the paramagnet and you are close to mastering
the subject!

First, recap previous sections on the isolated spin-1
2

paramagnet at zero and non-zero mag-
netic field.

The ideal paramagnet is a lattice of N sites at each of which the spin points either up or
down. Each of these has a magnetic moment ±µ. In an external field, these two states will
have different energy; spin-up has energy −µB, and spin-down, µB. As we saw previously the
partition function for a single atom is therefore

Z1 = eµB/kBT + e−µB/kBT = 2 cosh

(

µB

kBT

)

= 2cosh (µBβ)

(Remember β = 1/kBT .)



Since the atoms are non-interacting, the total energy and magnetisation of the system are
just N times the average energy and magnetisation of a single spin. The energy is

〈E〉 = −N
∂ ln Z1

∂β
= −NµB tanh(µBβ)

(For a refresher on hyperbolic trig functions, see here.)

1�ΜB Β

-NΜB

E

ΜB�kB
T

-NΜB

E

At low T , all the spins are aligned with the field and the energy per spin is close to −µB.
However as T increases, thermal fluctuations start to flip some of the spins; this is noticeable
when kBT is of the order of µB. As T gets very large, the energy tends to zero as the number
of up and down spins become more nearly equal. Remember, 〈n↓/n↑〉 = exp(−2µB/kBT ), so
it never exceeds one.

We can also calculate the heat capacity :

CV =
∂E

∂T
= NkB (µBβ)2 sech 2(µBβ)

ΜB�kB
T

-NkB �2
CV

We see that the heat capacity tends to zero both at high and low T . At low T the heat
capacity is small because kBT is much smaller than the energy gap 2µB, so thermal fluctuations
which flip spins are rare and it is hard for the system to absorb heat. This behaviour is universal;
quantisation means that there is always a minimum excitation energy of a system and if the
temperature is low enough, the system can no longer absorb heat.

The high-T behaviour arises because the number of down-spins never exceeds the number of
up-spins, and the energy has a maximum of zero. As the temperature gets very high, that limit
is close to being reached, and raising the temperature still further makes very little difference.
This behaviour is not universal, but only occurs where there is a finite number of energy levels
(here, there are only two). Most systems have an infinite tower of energy levels, there is no
maximum energy and the heat capacity does not fall off.

Up to now we’ve cheated a bit, (though the results are correct,) in that we didn’t calculate
the partition function for the whole system, only for a single spin. It is easy to show however
that the partition function for N non-interacting spins on a lattice is



kBT

>> >> kBT >> µBµB n n

High TemperatureLow Temperature

n n

ZN = (Z1)
N

(Details and a caveat here.) Since 〈EN〉 is derived from ln ZN , we see immediately that the
results for N particles will just be N times the single particle values. We can also calculate
the Helmholtz free energy, F = −kBT ln ZN , and the entropy, from S = −(∂F/∂T )B,N or from
S = (E − F )/T . We can also calculate the magnetisation, m = −(∂F/∂B)T,N and find that
m = −E/B as expected.

Below we plot S and m against temperature for several different external fields. (For details
of the algebra behind the plots see here.) At zero temperature, the magnetisation goes to Nµ:

T

0.5

NkB log2

S

B0

B0 � 2

2B0

T

N Μ

m

B0

B0 � 2

2B0

all the spins are up. There is no disorder, and so the entropy is zero.
The stronger the field, the higher the temperature has to be before the spins start to be

appreciably disordered.
At high temperatures the spins are nearly as likely to be up as down; the magnetisation

falls to zero and the entropy reaches a maximum. The entropy of this state is NkB ln 2, as we
have already seen.
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4.4.1 The N-particle partition function for distinguishable particles

Let’s start with two spins. There are four states of the whole system, ↑↑ with energy −2µB,
↑↓ and ↓↑, both with energy zero, and ↓↓ with energy 2µB. Thus the two-particle partition



function is

Z2 = e 2µBβ + e0 + e0 + e−2µBβ = e 2µBβ + 2 + e−2µBβ

= (eµBβ + e−µBβ)2 = (Z1)
2

In general, for N particles, the energies range through −NµB,−(N−2)µB, . . .−(N−2n↓)µB, . . . , NµB
with there being N !/n↓!(N − n↓)! separate states with n↓ down-spins. So

ZN = e−NµBβ + . . . +
N !

n↓!(N − n↓)!
e−(N−2n↓)µBβ + · · · + eNµBβ

= (e−µBβ + eµBβ)N = (Z1)
N

There is a caveat, which can be ignored on first reading. The argument says that there are a
number of different states with the same number of down spins. Since the spins are arranged on
a lattice, this is correct; every spin can be distinguished from every other spin by its position.
When we go on to consider a gas, however, this is no longer so, and the relation between Z1

and ZN changes. The treatment for indistinguishable particles is here.

4.4.2 Details of the paramagnet calculation

The starting point is the Boltzmann probabilities for the two energy states of a single spin,
ε↑ = −µB and ε↓ = µB:

p↑ =
eµB/kBT

Z1

p↓ =
e−µB/kBT

Z1

and Z1 = eµB/kBT + e−µB/kBT = 2cosh (µBβ)

In this simple case both the average energy and magnetisation of a single spin can be found
directly from the probabilities:

〈E1〉 = ε↑p↑ + ε↓p↓

= −µB
eµB/kBT

Z1

+ µB
e−µB/kBT

Z1

= −µB
eµB/kBT − e−µB/kBT

eµB/kBT + e−µB/kBT

= −µB tanh(µB/kBT ) = −µB tanh(µBβ) (using β = 1/kBT )

and similarly

〈m1〉 = (+µ)p↑ + (−µ)p↓

= µ tanh(µBβ)

But for things like the entropy which only makes sense for the whole system, and as a
warm-up for more complicated cases, we can use the partition function method instead; the
results for the energy and magnetisation are the same.



We also have

〈F 〉 = −kBT ln
[

(2 cosh(µBβ))N
]

= −NkBT ln (2 cosh(µBβ))

and

〈S〉 = −
(

∂ 〈F 〉
∂T

)

B,N

= NkB ln (2 cosh(µBβ)) + NkBT
dβ

dT

(

∂ ln (2 cosh(µBβ))

∂β

)

B,N

= NkB ln (2 cosh(µBβ)) − NkBT
1

kBT 2
µB tanh(µBβ)

= NkB {ln (2 cosh(µBβ)) − µBβ tanh(µBβ)}

which does indeed equal (E − F )/T .

4.4.3 Hyperbolic Trigonometry

Remember that ordinary trig functions are defined as follows:

cos θ =
1

2
(eiθ + e−iθ) sin θ =

1

2i
(eiθ − e−iθ)

and it is useful sometimes to use the extra functions

sec θ ≡ 1

cos θ
cosec θ ≡ 1

sin θ
cot θ ≡ 1

tan θ

Hyperbolic trig functions are defined similarly:

cosh x = 1
2
(ex + e−x) sinh x =

1

2
(ex − e−x)

sech x ≡ 1

cosh x
cosech x ≡ 1

sinh x
coth x ≡ 1

tanh x

From the definitions above it is easy to show that

d cosh x

dx
= sinh x

d sinh x

dx
= cosh x

d tanh x

dx
= sech2x.

Often we are interested in the small- or large-x limits of these functions. What we want is
to find a simple function which approximates to a more complicated one in these limits. So
while it is true that as x → 0, sinh x → 0, that is not usually what we want; what we want is
how it tends to zero.

From the small-x expansion of the exponential ex = 1 + x + 1
2
x2 + . . . we get

sinh x
x→0−→ x tanh x

x→0−→ x cosh x
x→0−→ 1 + 1

2
x2

The limit of cosh x often causes problems; whether we keep the x2 term depends on the context,
given that we want to be able to say more than “tends to 0” or “tends to ∞”. It may be useful
to remember instead

cosh x
x→0−→ 1 but cosh x − 1

x→0−→ 1
2
x2



The same is true of the exponential:

ex x→0−→ 1 but ex − 1
x→0−→ x.

In a particular problem we find that the energy of a system is

〈E〉 =
~ω

e~ωβ − 1

Naively we would say that at high temperatures, as β → 0, the denominator vanishes and the
energy tends to infinity. That is true but not very helpful. If we are more sophisticated we
see that the denominator actually tends to ~ωβ and 〈E〉 → 1/β = kBT . That is a much more
useful prediction, since it can be verified experimentally.

The high-x limits are easier; e−x → 0 and so

sinh x
x→∞−→ 1

2
ex cosh x

x→∞−→ 1
2
ex tanh x

x→∞−→ 1

4.5 Adiabatic demagnetisation and the third law of ther-

modynamics

Take-home message: The properties of a paramagnet can be put to practical use
to achieve low temperatures, but we can never get to absolute zero.

By magnetising and demagnetising a paramagnetic sample while controlling the heat flow,
we can lower its temperature.

T

S

B2>B1

B1a

bc

We start with the sample in a magnetic field B1 at an (already fairly low) temperature T1.
a→ b: With the sample in contact with a heat bath at T1, we increase the magnetic field

to B2.
b→ c: With the sample now isolated, we slowly decrease the field to B1 again. This is
the adiabatic demagnetisation step; because the process is slow and adiabatic, the entropy is
unchanged.

By following these steps on a T − S plot, we see that the second, constant entropy, step,
reduces the temperature. The entropy is a function of B/T only, not B or T separately (see
here) so if we reduce B at constant S, we reduce T also.

The following figure shows what is happening to the spins. In the first step we increase the
level spacing while keeping the temperature constant, so the population of the upper level falls.
In the second step we reduce the level spacing again, but as the spins are isolated there is no
change in level occupation. The new, lower level occupation is now characteristic of a lower
temperature than the original one.



kBT1
µB12

a

demagnetisation
adiabatic

Isothermal 
magnetisation

kBT2
µB12

c

kBT1

µB2

b

2

If we start with a large sample, we could repeat the process with a small sub-sample, the
remaining material acting as a heat bath during the next magnetisation. By this method
temperatures of a fraction of a Kelvin can be reached. However after a few steps less and
less is gained each time, as the curves come together as T → 0. (Once the electron spins are
all ordered, one can start to order the nuclear spins, and reach even lower temperatures—the
magnetic moment of the nucleus is around a two-thousandth of that of the atom), but even that
has its limits. (Wondering why we can’t just take B1 to zero? See here for the real paramagnet.)

This is an important and general result. There is always a minimum excitation energy ε
of the system, and once kBT ≪ ε there is no further way of lowering the temperature. The
unattainability of absolute zero is the third law of thermodynamics.

1: You can’t win, you can only break even.

2: You can only break even at T=0.

3: You can’t reach T=0....

The laws of Thermodynamics
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4.5.1 The real paramagnet

In the process above, the lowest temperature attainable is obviously proportional to µB1/kB.
In the ideal paramagnet, as B is reduced the graph of S against T rises more and more steeply,
going to a step function at B = 0. But in any real paramagnet, there is a weak coupling
between the spins which means that they prefer to be aligned with one another. If we remove
the external field, this coupling acts like a weak internal field, and at low enough temperatures
the spins will still be ordered. The strength of this coupling is then what governs the lowest
attainable temperature.
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Ideal paramagnet
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NkB log2

S

Real paramagnet

4.6 Vibrational and rotational energy of a diatomic molecule

So far we have only looked at two-level systems such as the paramagnet. More usually there
are many or even infinitely many levels, and hence terms in the partition function. In some
special cases the partition function can still be expressed in closed form.

Vibrational energy of a diatomic molecule
The energy levels of a quantum simple harmonic oscillator of frequency ω are

εn = (n + 1
2
)~ω n = 0, 1, 2 . . .

so

Z1 =
∞

∑

n=0

= e−εnβ = e−
1
2

~ωβ
(

e0 + e−~ωβ + e−2~ωβ . . .
)

=
e−

1
2

~ωβ

1 − e−~ωβ

=
(

2 sinh(1
2
~ωβ)

)−1

where we have used the expression for the sum of a geometric series,
∑

n xn = (1 − x)−1, with
x = e−~ωβ.

From this we obtain

〈E1〉 = −∂ ln Z1

∂β
= 1

2
~ω coth (1

2
~ωβ).

The low temperature limit of this (kBT ≪ ~ω; ~ωβ → ∞) is 1
2
~ω, which is what we expect

if only the ground state is populated. The high temperature limit (kBT ≫ ~ω ; ~ωβ → 0) is
kBT , which should ring bells! (See here for more on limits.)

Typically the high temperature limit is only reached around 1000 K

Rotational energy of a diatomic molecule
The energy levels of a rigid rotor of moment of inertia I are

εl =
l(l + 1)~2

2I l = 0, 1, 2 . . .

but there is a complication; as well as the quantum number L there is ml, −l ≤ ml ≤ l, and
the energy doesn’t depend on ml. Thus the lth energy level occurs 2l +1 times in the partition
function, giving

Z1 =
∞

∑

l=0

l
∑

ml=−l

e−l(l+1)~2β/2I =
∞

∑

l=0

(2l + 1) e−l(l+1)~2β/2I .



The term 2l + 1 is called a degeneracy factor since “degenerate” levels are levels with the
same energy. (I can’t explain this bizarre usage, but it is standard.) For general β this cannot
be further simplified. At low temperatures successive term in Z1 will fall off quickly; only the
lowest levels will have any significant occupation probability and the average energy will tend
to zero.

At high temperatures, (kBT ≫ ~
2/2I) there are many accessible levels and the fact that

they are discrete rather than continuous is unimportant; we can replace the sum over l with an
integral dl; changing variables to x = l(l + 1) gives

Z1 =
I

~2β

〈E1〉 = kBT

Typically ~
2/2I is around 10−3 eV, so the high-temperature limit is reached well below room

temperature.

It is not an accident that the high-temperature limit of the energy was kBT in both cases!
These are examples of equipartition which is the subject of a future section.
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4.7 Translational energy of a molecule in an ideal gas

This example is rather more complicated than the preceding ones, but the result is simple and
powerful.

The non-interacting atoms of the gas are in a cuboidal box of side lengths Lx, Ly and Lz,
and volume V ≡ LxLyLz. The sides of the box are impenetrable, so the wavefunction ψ must
vanish there, but inside the box the atom is free and so ψ satisfies the free Schrödinger equation

− ~
2

2m
∇2ψ(x, y, z) = Eψ(x, y, z).

The equation, and the boundary conditions, are satisfied by

ψ(x, y, z) = A sin

(

nxπx

Lx

)

sin

(

nyπy

Ly

)

sin

(

nzπz

Lz

)

with nx, ny and nz integers greater than zero. The corresponding energy is

ε(nx, ny, nz) =

(

(

nxπ

Lx

)2

+

(

nyπ

Ly

)2

+

(

nzπ

Lz

)2
)

~
2

2m
≡ k2

~
2

2m

where k2 = k2
x + k2

y + k2
z and kx = πnx/Lx etc. So the one-particle partition function is

Z1 =
∑

{nx,ny ,nz}

e−ε(nx,ny ,nz)β.

In general this cannot be further simplified. However there can be simplifications if kBT is
much greater than the spacing between the energy levels, as we saw in the rotional case. For
a volume of 1 litre, that spacing is of order ~

2π2/2mL2 ≈ 10−20 eV—truly tiny. Even at the



lowest temperatures ever reached, we are in the high-temperature regime! Thus we can replace
the sum over levels by an integral. We choose kx, ky and kz as the variables, and replace

∑

nx

with (Lx/π)
∫

dkx, giving

Z1 =
LxLyLz

π3

∫ ∞

0

∫ ∞

0

∫ ∞

0

dkxdkydkz e−ε(k)β

=
V

π3

∫ ∞

0

∫ π/2

0

∫ π/2

0

k2 sin θkdk dθkdφk e−ε(k)β converting to spherical polar coordinates

=
1

8
4π

V

π3

∫ ∞

0

k2dk e−ε(k)β

≡
∫ ∞

0

D(k)e−ε(k)βdk where D(k) ≡ V k2/2π2

The factor of 1/8 in the penultimate line comes from the fact that we only integrated over
positive values of kx etc, that is over the positive octant of k-space. D(k) is called the “density
of states” in k-space; D(k)dk is the number of states within range of k → k + dk. See here for
more on this concept.

This section only depended on the fact that the energy is independent of the direction of k.
Now we use the actual form of ε(k) to complete the calculation:

Z1 =
V

2π2

∫ ∞

0

k2dk e−~
2k2β/2m

= V

(

m

2π~2β

)3/2

≡ V nQ.

Z1 is a pure number, so “nQ” must have dimensions of 1/V like a number density; it is called the
quantum concentration and is temperature-dependent. From Z1 we can obtain the average
single particle energy:

〈E1〉 = −∂ ln Z1

∂β
=

3

2
kBT

as we should have expected.
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4.7.1 The Density of States

Going through the algebra to calculate the translational partition function we turned a sum
over the integers nx, ny and nz which count the number of half wavelengths along the three
sides, to an integral over k. Since the energy depends only on k = |k|, we could do the integral
over the direction of k leaving only the integral over k; in this process we collected a number
of factors and called them the density of state: D(k) = V k2/2π2, so that

Z1 =

∫ ∞

0

D(k) e−ε(k)βdk



We see that D(k) is acting as a “degeneracy factor”, which we first met in the context of the
rotor. If there is more than one energy level with the same energy, and we replace the sum over
individual states with a sum over allowed energies, we need to include a factor in front of the
Boltzmann factor for degenerate levels so that they are counted often enough.
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The picture above shows a graphical representation of the allowed states in k-space. Since

k =

(

πnx

Lx

,
πny

Ly

,
πnz

Lz

)

,

with nx etc positive, the allowed values of k form a three-dimensional lattice. The density of
states is the number of states within an infinitesimal range of k, and hence of energy. This is
just the volume of an octant of a spherical shell, (1/8) × 4πk2 × dk, divided by the volume of
k-space per state, π3/V , giving

D(k)dk =
V k2

2π2
dk.

4.8 The Equipartition Theorem

Take-home message: The classical theory of equipartition holds in the high-temperature
limit

The results for vibrational, rotational and translational energies demonstrate that, at high
enough temperatures, the law of equipartition of energy holds: each quadratic term in the
classical expression for the energy contributes 1

2
kBT to the average energy and 1

2
kB to the heat

capacity. The oscillator has quadratic kinetic and potential terms:

Evib = 1
2
mẋ2 + 1

2
mω2x2 2 d.o.f, E → kBT .

The rotor has two perpendicular axes about which it can rotate; each with a quadratic kinetic
energy (rotations about the axis have no effect in quantum mechanics; classically the moment
of inertia is tiny):

Erot = 1
2
Iω2

1 + 1
2
Iω2

2 2 d.o.f, E → kBT .



The translational kinetic energy has three terms for the three dimensions of space:

Etr = 1
2
mẋ2 + 1

2
mẏ2 + 1

2
mż2 3 d.o.f, E → 3

2
kBT .

Now we understand what governs “high enough”: kBT has to be much greater than the spacing
between the quantum energy levels. If this is not satisfied, the heat capacity will be reduced,
dropping to zero at low temperatures. The corresponding degree of freedom is said to be frozen
out; this is the situation for the vibrational degrees of freedom at room temperature.

Here is an idealised graph of the heat capacity of hydrogen with temperature, ( c©P. Eyland,
University of New South Wales)

As the moment of inertia for H2 is small, the temperature by which equipartition holds for
rotational modes is actually quite high. Bowley and Sánchez have a graph taken from data
(Fig. 5.8).

We can predict the specific heat of other substances based on equipartition, simply by
counting the degrees of freedom. For a solid, we expect the molar heat capacity to be 3RT
since each atom is free to vibrate in three directions. This is the law of Dulong and Petit, and
it works well for a variety of solids at room temperature. (More details here.)

Equipartition does not hold, even at high temperatures, if the energy is not quadratic. For
instance the gravitational potential energy is linear in height, and the average potential energy
of a molecule in an isothermal atmosphere is kBT , not 1

2
kBT .

Similarly the kinetic energy of a highly relativistic particle is given by the non-quadratic
c
√

p2
x + p2

y + p2
z (= ~ck), not by the quadratic (p2

x +p2
y +p2

z)/2m, and the average kinetic energy
is 3kBT , not 3

2
kBT .
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4.8.1 The heat capacity of a crystal

Based on equipartition, we expect the molar heat capacity for a solid to be 3RT since each
atom is free to vibrate in three directions. This is the law of Dulong and Petit, and it works
well for a variety of solids at room temperature. It is reproduced, as might be expected, by the



Einstein model for a crystal which considers each atom linked to its neighbours by six springs
(3N in total)—the algebra is just like that of the vibrations of a diatomic molecule giving

〈E〉 = 3
2
N~ω coth (1

2
~ωβ)

CV = 3
4
NkB(~ωβ)2 (sinh ~ωβ)−2

At low temperature (β → ∞) the energy tends to 3NkB(~ωβ)2e−~ωβ. Although this tends to
zero, it does not agree with the observed low temperature behaviour, which is proportional to
T 3. More sophisticated models, such as that of Debye, allow for collective vibrations of many
atoms which have much lower frequency, and hence contribute to the internal energy and heat
capacity at much lower temperatures.

4.9 The ideal gas

Take-home message: We can now derive the equation of state and other properties
of the ideal gas.

We are now reaching the most important test of statistical physics: the ideal gas. For the
moment we assume it is monatomic; the extra work for a diatomic gas is minimal.

Remember the one-particle translational partition function, at any attainable temperature,
is

Z1 = V

(

mkBT

2π~2

)3/2

≡ V nQ.

From this we can obtain the average energy per particle, 3
2
kBT , and since the particles are

non-interacting, the energy of N particles in a box is just 3
2
NkBT . This could be obtained from

the expression we previously used for the N -particle partition function, ZN = ZN
1 , which is

justified more generally here.
But if we follow this through and calculate the Helmholtz free energy and the entropy, we

find that the results do not make sense: specifically, if one has double the number of particles,
in double the volume, the entropy and the Helmholtz free energy, like the energy, should double.
These are extensive variables. But if we go ahead and calculate based on ZN = ZN

1 , we do not
get extensive results, but terms like V ln N .

However we shouldn’t have expected ZN = ZN
1 to work, because the derivation was based on

the idea that every one of the N particles was distinguishable. But at a completely fundamental
level, every molecule is exactly the same as every other molecule of the same substance.

The exact form of ZN in this case has no compact form. But there is an approximation
which becomes exact in the limit of low number densities n ≡ N/V : specifically n ≪ nQ

where nQ ≡ (mkBT/2π~
2)3/2 is the “quantum concentration” and is a measure of the number

of energy levels available. It is also proportial to the inverse of cube of the thermal de Broglie
wavelength (the wavelength of a particle of energy of order kBT ). The significance of this limit
is that it is very unlikely that any two atoms are in the same energy level. This is called the
classical limit.

ZN =
(Z1)

N

N !
More details of how this works here.



Now, using Stirling’s approximation ln(N !) ≈ N ln N − N , we find

〈F 〉 = −kBT ln ZN = −NkBT (ln Z1 − ln N + 1)

= −NkBT

[

ln

(

V

N

)

+ ln

(

mkBT

2π~2

)3/2

+ 1

]

= NkBT

[

ln

(

n

nQ

)

− 1

]

.

Also

P = −
(

∂F

∂V

)

T,N

=
NkBT

V

and

S = −
(

∂F

∂T

)

V,N

= −NkB

[

ln

(

n

nQ

)

− 1

]

+ NkBT
dnQ

dT

= NkB

[

ln
(nQ

n

)

+
5

2

]

The Sackur-Tetrode Equation

Since nQ is composed only of constants and T , it is intensive; the number density n ≡ V/N
is the ratio of extensive quantities and so is also intensive. Hence F and S are clearly simply
proportional to N , and so extensive as required, and P is intensive. Since nQ ≫ n if the result
is to be valid, S is also positive, as it should be!

The expression for P is clearly experimentally verifiable: it is the ideal gas law. That’s
good, but we expected to get that. More interestingly the Sackur-Tetrode equation for S can
also be checked. First, if we unpick the dependence on V and T , we get

S = NkB(ln V +
3

2
ln T + const.)

which is in accord with the form derived from classical thermodynamics (see here). But more
importantly it predicts the absolute entropy of a gas at a certain temperature, and this can
be checked experimentally too. If we start with the solid at some very low temperature T0, at
which the entropy can be assumed to be very small, and we know the experimental specific
heat capacity as a function of temperature and the latent heats of melting and vaporisation,
we can numerically calculate the integral

∫ T

T0

ÃdQ

T
= S(T ) − S(T0) ≈ S(T )

Good agreement is found. An example with numerical details can be found on pages 5&6 here,
from Edward J. Groth of Princeton University.

Finally, we include vibrations and rotations as well as translations: since the one-particle
energies are independent and add, ε = εtr + εrot + εvib, the partition functions multiply: Z1 =

http://pupgg.princeton.edu/~groth/phys301f99/lect11.pdf


Ztr
1 Zrot

1 Zvib
1 (the argument is like that for the N -particle partition function for distinguishable

particles and is given here ) and so

ZN =
(Ztr

1 )N(Zrot
1 )N(Zvib

1 )N

N !
= Ztr

N(Zrot
1 )N(Zvib

1 )N

F = Ftr + Frot + Fvib

and the energy and entropy also add.
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4.9.1 Factorisation of partition functions

In lectures, we repeatedly use ZN = (Z1)
N for independent distinguishable particles, and we

also used Z1 = Ztr
1 Zrot

1 Zvib
1 for the independent contributions of vibrational, rotation and trans-

lational degrees of freedom to a single-particle’s partition function. In these notes we prove that
where the energy of a system separates into independent contributions like this, the partition
function factorises.

Many-particle system with two single-particle energy levels

Let’s start with a system that has two single-particle energy levels, ε1 and ε2. The single-particle
partition function is

Z1 = e−ε1β + e−ε2β.

The partition function for two distinguishable particles is

Z2 = e−2ε1β + 2e−(ε1+ε2)β + e−2ε2β = (Z1)
2,

where the second state is multiplied by 2 becase there are two ways that two distingishable

particles can be in different levels.
In general, for N particles, the energies are nε1 + (N − n)ε2, for 0 ≤ n ≤ N , and there are

N !/n!(N − n)! separate microstate of this energy. So

ZN =
N

∑

n=0

N !

n!(N − n)!
e−(nε1+(N−n)ε2)β

=
N

∑

n=0

N !

n!(N − n)!
e−nε1βe−(N−n)ε2β

=
N

∑

n=0

N !

n!(N − n)!

(

e−ε1β
)n (

e−ε2β
)N−n

= (Z1)
N

If there are more than two energy levels, Z1 has more terms, but a similar derivation can
be done. However we won’t show it because it is just a special case of the next section.



Many independent subsystems, general case

In full generality, let us suppose that a microstate has N independent contributions to its
energy, the allowed values of the first being ε(1)

1 , ε(1)

2 , ε(1)

3 , . . ., and similarly for the others, with

ε
(n)
i being the ith allowed value of the nth contribution. Also, let Z(n) be the partition function

for the nth contribution:
Z(n) =

∑

i

exp
(

−ε
(n)
i β

)

.

Then the full partition function is

Z =
∑

i,j,k,...p

exp
(

−(ε(1)

i + ε(2)

j + ε
(3)
k + . . . + ε(N)

p )β
)

=
∑

i,j,k,...p

exp
(

−ε(1)

i β
)

exp
(

−ε(2)

j β
)

exp
(

−ε
(3)
k β

)

. . . exp
(

−ε(N)
p β

)

=

(

∑

i

exp
(

−ε(1)

i β
)

) (

∑

j

exp
(

−ε(2)

j β
)

) (

∑

k

exp
(

−ε
(3)
k β

)

)

. . .

(

∑

p

exp
(

−ε(N)
p β

)

)

= Z(1)Z(2)Z(3) . . . Z(N).

It is the step between the second and third lines, in which we interchange the order of addition
and multiplication, that is tricky at first! But it is no harder than the following (in reverse):

(a+b+c)(p+q+r)(x+y+z) = apx+apy+apz+aqx+aqy+aqz+arx+ary+arz+bpx+. . .+crz

More compactly,

Z =
∑

i1,i2,...iN

exp

(

−
N

∑

n=1

ε
(n)
in

β

)

=
∑

i1,i2,...iN

N
∏

n=1

exp
(

−ε
(n)
in

β
)

=
N
∏

n=1

∑

in

exp
(

−ε
(n)
in

β
)

=
N
∏

n=1

Z(n).

4.9.2 The N particle partition function for indistinguishable parti-
cles.

Before reading this section, you should read over the derivation of ZN = (Z1)
N which held for

the paramagnet, where all N particles were distinguishable (by their position in the lattice).
Consider first the simplest case, of two particles and two energy levels. If the particles are

distinguishable, as in the upper picture below, there are four states, two of which have energy
ε, and the two-particle partition function is

Z2 = e0 + 2e−εβ + e−2εβ = (Z1)
2

If the particles are indistinguishable, however, there are only three states, as in the lower
picture, and the partition function is

Z2 = e0 + e−εβ + e−2εβ 6= (Z1)
2



Distinguishable particles

Indistinguishable particles

ε

0

ε

0

If we use (Z1)
2, we over-count the state in which the particles are in different energy levels. In

general there is no simple expression for the N -particle partition function for indistinguishable
particles.

However we note that (Z1)
N over-counts the states in which all N particles are in different

energy levels by exactly N !. So if we are in a position where there are many more accessible
energy levels (that is, levels with energy less than a few kBT ) than there are particles, the
probability of any two particles being in the same energy level is small, and almost all states
will have all the particles in different levels. Hence a good approximation is

ZN =
(Z1)

N

N !
.

In the ideal gas, we can calculate the number of levels below, say, 2kBT , from
∫ kmax

0
D(k)dk

with ~
2k2

max/2m = 2kBT , giving 2.1nQV . So we see that nQ is a measure of the number of
states available, and we can use the approximation ZN = (Z1)

N /N ! provided nQV ≫ N (or
nQ ≫ n). This is the classical limit.

It is worth noting that, assuming a truly ideal gas which never condenses or solidifies, the
Sackur-Tetrode equation is not valid for indefinitely low temperatures. It must be wrong,
because as T → 0, nQ → 0 and S → −∞. But we know that S → 0 as T → 0, because all
the particles occupy the lowest energy level. But of course that is exactly the regime in which
ZN = (Z1)

N/N ! is no longer valid.
For a gas with the density of air at STP, n ≈ 3×1025 m−3. We have nQ ≈ n for T ≈ 10−2 K,

so real gases are essentially always classical.
Note too that nQ ≈ 1/λ3, where λ is the wavelength of a particle with energy 3

2
kBT . This

implies that the classical limit holds if the particle separation is large compared with their
wavelength—a reasonable-sounding statement! (See the first tutorial sheet of last semester,
PC210 qu. 1(b-d) ).

An example of a non-classical gas is the conduction electrons in a metal; they are free
to move within the metal and can be treated as a dense gas (n ≈ 1029 m−3), but at room
temperature nQ ≈ 1027 m−3. So the quantum nature of the electron (specifically the fact that
it is a fermion) becomes all important.

4.10 The Maxwell-Boltzmann Distribution

Take-home message: The density of states can be used to derive the Maxwell-
Boltzmann distribution of molecular speeds in a gas.



The speed v of a particle is related to the wavenumber k by mv = ~k. We already know the
probability of a particle having k in the range k → k + dk, and so we can immediately write
down the corresponding probability of the speed being in the range v → dv:

P (k → k + dk) =
D(k) e−ε(k)β

Z1

dk where ε(k) = ~
2k2/2m

P (v → v + dv) =
V

2π2

e−ε(v)β

Z1

(m

~

)3

v2dv where ε(v) = mv2/2

⇒ P (v) =

√

2

π

(

m

kBT

)3/2

v2e−mv2/2kBT

This is called the Maxwell-Boltzmann distribution, and it is plotted below.
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We can find the most probable speed (from dP (v)/dv = 0), as well as the mean speed and
the rms speed:

vp =

√

2kBT

m
≈ 1.41

√

kBT

m

〈v〉 =

√

8kBT

π m
≈ 1.60

√

kBT

m

vrms =
√

〈v2〉 =

√

3kBT

m
≈ 1.73

√

kBT

m

These are marked on the graph above.
Note that ~ has disappeared from P (v), which can be derived from the Boltzmann distri-

bution in a purely classical theory provided the normalisation is obtained from requiring the
integral of P (v) to be one.
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Chapter 5

Systems with variable particle number

First we tackled isolated systems, then we considered systems in contact with a heat bath at
temperature T . Now we consider systems which are also in diffusive contact with a particle
reservoir at chemical potential µ. In this case the Boltzmann distribution is modified and is
called the Gibbs distribution.

This is useful in itself. However just as using the Boltzmann distribution freed us from
the constraint that the total energy of all the particles had to add up to a given total energy,
and allowed us to consider each particle independently, so using the Gibbs distribution frees us
from the constraint that the total numbers of particles in each energy level has to add up to a
fixed total, and allows us to treat each energy level independently. Once again we will use the
fact that fluctuations in a macroscopic system are negligible to draw conclusions for isolated
systems as well.

5.1 The Gibbs Distribution

Take-home message: The Boltzmann distribution is modified if the particle number
can change

Now we consider systems which are in contact with a heat bath at temperature T and
also in with a particle reservoir at chemical potential µ. The temperature is a measure of the
decrease in entropy of the reservoir from giving up heat to the system (see here); the chemical
potential is a measure of the energy decrease (and entropy increase) of the reservoir from giving
up particles to the system

We want to find the probability that our system will be in a certain microstate i with an
energy εi and particle number Ni.

The derivation follows that of the Boltzmann distribution closely. Again the probability
of the system being in the given microstate depends on the number of microstates available
to the reservoir with energy E0 − εi and particle number N0 − Ni. Expressing the number of
microstates as the exponential of the entropy, making a Taylor expansion of the entropy about
SR(E0, N0), and expressing the derivatives of the entropy in terms of T and µ thus,

(

∂SR

∂E

)

V,N

=
1

T

(

∂SR

∂N

)

E,V

= −µ

T
,

gives

89



pi =
e (µNi−εi)/kBT

Z
with

Z =
∑

j

e (µNj−εj)/kBT

The new normalisation constant Z is called the grand partition function. Macroscopic
functions of state are calculated via ensemble averages as usual; the relevant ensemble in this
case is called the grand canonical ensemble.

The following properties are easily proved by analogy with the corresponding ones for the
Boltzmann distribution (see here and here):

〈N〉 = kBT

(

∂ lnZ
∂µ

)

β

〈E〉 = −
(

∂ lnZ
∂β

)

µ

+ µ 〈N〉

〈S〉 = −kB

∑

i

pi ln pi =
1

T
(〈E − µN〉 + kBT lnZ)

⇒ ΦG ≡ −kBT lnZ = 〈E − TS − µN〉
The quantity −kBT lnZ is a new thermodynamic potential called the grand potential: Mandl
gives it the unfortunate symbol Ω but we will use ΦG like Bowley and Sánchez. (They use Ξ–
“Xi”–for Z.) From the fundamental thermodynamic relation we get

dΦG = −SdT − PdV − Ndµ

and hence

S = −
(

∂ΦG

∂T

)

V,µ

P = −
(

∂ΦG

∂V

)

T,µ

N = −
(

∂ΦG

∂µ

)

T,V

So whereas in an isolated system the entropy is the key (compare here) and in a system at
constant temperature it is the Helmholtz free energy (compare here), here the grand potential
is the key to the other functions of state.

no. of microstates  Ω

Bk log ΩS= BkF=− T log Z Bk=− T log 

system

fixed

key microscopic function

key macroscopic function

Isolated 

E,N,V or B

in contact with heat bath

partition function Z

T,N,Vor B

heat and particle bath

T, µ, Vor B

grand partition function 

ΦG

See here for more details about ΦG.
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5.1.1 The grand potential

The grand potential is

ΦG ≡ E − TS − µN so dΦG = −SdT − PdV − Ndµ

So ΦG = ΦG(T, V, µ). Note that two of the variables T and µ are intensive, so ΦG, being
extensive, must be simply proportional to V , the only extensive one: ΦG = V φG(T, µ). But

φG(T, µ) =

(

∂ΦG

∂V

)

T,µ

= −P

⇒ ΦG = −PV.

This also follows from the fact that µ is just the Gibbs free energy per particle (see here),
so µN = G = E − TS + PV and hence PV = −(E − TS − µN) = −ΦG.

The fact that ΦG is so simple doesn’t lessen its formal utility in statistical mechanics.

5.2 Two examples of the Gibbs Distribution

Take-home message: There is an important distinction between systems in which
energy levels can only have one particle in them, and those where they can have
many.

Example 1: Sites which bind a single molecule
We first consider sites on a surface which can bind a single molecule only; the energy of the

empty site is 0 and that of the occupied site is ε0 (which can have either sign, but is negative
for binding). This example is common in biology, where receptor molecules can be occupied or
unoccupied.

The surface is in contact with a gas or a solution with chemical potential µ (the energy
drop of the solution when it loses a molecule). What is the grand partition function, and the
average occupancy of a site?

There are only two microstates here: unoccupied, with N = 0 and ε = 0, and occupied,
with N = 1 and ε = ε0, so there are only two terms in the grand partition function:

Z = e0 + e(µ−ε0)β = 1 + e(µ−ε0)β

Then

〈N〉 = −
(

∂(−kBT lnZ)

∂µ

)

β

=
1

e(ε0−µ)β + 1

Below we plot the average occupancy as a function of ε0, the energy of the level in question.
We see that 〈N〉 is always less than 1, as it must be. If a level lies above the chemical potential,
ε0 > µ then it is less likely to be occupied, since it is energetically more favourable for the
molecule to remain in solution. Conversely if ε0 < µ then it is more likely to be occupied,
since that is the energetically favourable configuration. As always, it is the temperature which
determines the likelihood of the less favourable configuration obtaining. At zero temperature,
the distribution becomes a step function, with 〈N〉 = 1 if ε0 < µ and 〈N〉 = 0 if ε0 > µ.

Example 2: sites which bind many molecules



Μ
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<N>

low T
high T

This is less realistic, but we imagine a site which can have any number of molecules occupying
it, with energy ε0 per molecule. There are then infinitely many terms in the grand partition
function which form a geometric series:

Z = e0 + e(µ−ε0)β + e2(µ−ε0)β + . . . =
1

1 − e(µ−ε0)β

〈N〉 =
1

e(ε0−µ)β − 1

Below we plot the average occupancy as a function of ε0, the energy of the level in question.
Unlike the first example, there is no limit to 〈N〉. Thus it doesn’t make sense to consider states

Μ
¶0

2

4

<N>

high Tlow T

with ε0 < µ, as their occupancy will be infinite. (The formula above for 〈N〉 is no longer valid
in that case.) For ε0 close to µ the occupancy will be high, and it falls off as ε0 increases. The
rapidity of the drop depends on temperature; for T = 0 only a level with ε0 = µ would have
non-zero occupancy.

5.3 Bosons and Fermions

Take-home message: All particles in nature are either bosons or fermions. Their
statistical properties are very different: no two fermions can be in the same state,
but there is no such restriction on bosons.

Bosons are particles with integer spin:
spin 0: 1H and 4He in ground state, pion, Higgs boson

spin 1: 1H and 4He in first excited state, ρ meson, photon, W and Z bosons, gluons
spin 2: 16O in ground state, graviton.

Fermions are particles with half-integer spin:
spin 1

2
: 3He in ground state, proton, neutron, quark, electron, neutrino

spin 3
2
: 5He in ground state, ∆ baryons (excitations of the proton and neutron)



Note that a particle is either a fermion or boson. Excitations will change the spin only by
an integer amount. The basic building blocks of atoms are all fermions; composite particles
(nuclei, atoms, molecules) made of an odd number of protons, neutrons and electrons are also
fermions, whereas those made of an even number are bosons.

Fermions obey the Pauli exclusion principle: no more than one fermion can occupy a
single quantum state. (The value of the spin quantum number ms is part of the description of
the state; if that is ignored then two spin-1

2
or four spin-3

2
particles can occupy the same spatial

state.) This is the basis of atomic structure and the periodic table, it explains the properties
of metals and of white dwarves and neutron stars.

There is no exclusion property for bosons, which are free to (indeed, other things being
equal, “prefer” to) crowd into the same quantum state. This explains the spectrum of black-
body radiation and the operation of lasers, the properties of liquid 4He and superconductors.
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5.4 The ideal gas of bosons or fermions: beyond the

classical approximation

Take-home message: Where the number of available states approaches the number
of particles in the system, the properties of the gas will depend on whether multiple
occupancy is allowed (bosons) or not (fermions).

Bose and Fermi gases are the subject of an entire third year course PC3151. This is just a
very brief taster.

When we derived the properties of the ideal gas previously, our results were only valid if
the number of available single-particle levels greatly exceeded the number of particles in the
gas (nQ ≫ n). This was because we knew that we were not treating states with more than one
particle in them correctly. Now we know that if the gas particles are fermions, that isn’t even
possible, so we need a new approach. What we do is lift the restriction that the number of
particles in the gas is fixed, and use the Gibbs distribution instead of Boltzmann. We then find
that rather than focus on a single particle in the gas, it is easier to focus on what is happening
in a single energy level. Then we can write

Z = Z1Z2Z3 . . . =
∏

r

Zr

where r labels the energy level, not the particle. Since the log of a product is the sum of logs of
the individual terms, the grand potential ΦG, the energy, the particle number and the entropy
all consist of sums of the contributions from each level: 〈N〉 =

∑

r 〈Nr〉, 〈E〉 =
∑

r 〈Nr〉 εr etc.
Furthermore we have already found the single-level grand partition functions Zr and the

average occupancies 〈Nr〉: for fermions, which obey the Pauli exclusion principle:

Zr = 1 + e(µ−εr)β 〈Nr〉 =
1

e(εr−µ)β + 1

and for bosons, which don’t:

Zr =
1

1 − e(µ−εr)β
〈Nr〉 =

1

e(εr−µ)β − 1
.



(see here.)
For a gas the sum over discrete energy levels is replaced by an integral over the wavenumber

k, weighted by the density of states:

〈N〉 =

∫ ∞

0

D(k)N(k)dk 〈E〉 =

∫ ∞

0

D(k)ε(k)N(k)dk

where ε(k) = ~
2k2/2m and

N(k) =
1

e(ε(k)−µ)β ± 1
for

{

fermions
bosons

}

Note that for bosons, µ must be less than the energy of the lowest level (zero for most purposes)
but for fermions µ can be (and usually will be) greater than 0.
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5.5 The classical approximation again

Take-home message: The Gibbs distribution gives an alternative way of treating
the ideal gas in the classical limit.

The last time we calculated the properties of an ideal gas, we regarded the particle number
as fixed, but the energy as variable (the temperature being fixed.) However we knew that for
a large system, fluctuations are small, and the results will be essentially the same as the more
difficult problem of an isolated gas with fixed energy.

This raises the question of whether we couldn’t obtain the same results regarding the particle
number as variable also, fixing instead the chemical potential. The answer is that we can of
course, as the following shows.

From the previous sections on the Gibbs distribution and the ideal gas of bosons or fermions,
we have

ΦG ≡ −kBT lnZ
= −kBT

∑

r

lnZr using Z =
∏

r Zr

= ∓kBT
∑

r

ln
(

1 ± e(µ−εr)β
)

where r labels the single particle energy levels, and the signs are for fermions and bosons
respectively.

Now imagine that eµβ ≪ 1, which requires µ to be large and negative. Never mind for a
moment what that means physically. Then, using ln(1 + x) ≈ x for small x, we get

ΦG = −kBT
∑

r

eµβe−εrβ

= −kBTeµβZ1(T )

where Z1 is the one-particle translational partition function (not grand p.f.) for an atom in an
ideal gas. As we calculated previously, Z1(T ) = V nQ(T )



From ΦG we can find the average particle number:

N = −
(

∂ΦG

∂µ

)

T,V

= eµβZ1

and solving for µ we get

µ = −kBT ln(Z1/N) = −kBT ln
(nQ

n

)

So now we see that µ large and negative requires n ≪ nQ or far fewer particles than states -
exactly the classical limit as defined before.

Finally, since ΦG = E − TS − µN = F − µN , we have

F = ΦG + µN

= −NkBT − NkBT ln(Z1/N)

= −NkBT (ln(Z1/N) + 1)

However this is exactly what we get from F = −kBT ln Z with Z = (Z1)
N/N !. Thus we

recover all our previous results.
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5.6 Electrons in a metal

Take-home message: The properties of Fermi gases such as electrons in metals and
neutron stars are dramatically different from ideal classical gases.

We have already seen that for electrons in metal, the number of states with energies of
order kBT is much less that the number of electrons to be accommodated. Because electrons
are fermions, they can’t occupy the same levels, so levels up to an energy far above kBT will
need to be filled. The occupancy is given by N(ε) = 1/(e(ε−µ)β + 1) which is plotted below:

Μ
¶

0.5

1
<N>

kBT

Only levels within a few kBT of µ have occupancies which are different from 0 or 1. But
what is µ? Normal metals exist in isolated chunks, and are not in contact with “electron
reservoirs”. The answer is that we choose it so that the metal contains the right number of
electrons: 〈N〉 =

∫ ∞

0
D(k)N(k)dk ≡ N . For copper at room temperature, µ ≈ 7 eV, whereas

kBT ≈ 1/40 eV



The fact that thermal fluctuations affect only a small fraction of all the electrons has a
number of consequences. for instance the electronic heat capacity is much less than the 3

2
kBT

predicted by equipartition. Most of the resistance to compression of metals is due to the fact
that, if the volume is reduced, the energy of all the single-electron states increases, increasing
the electronic internal energy.
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5.7 Black-body radiation

Take-home message: Black-body radiation is an example of a Bose gas
There are interesting properties of gases of bosonic atoms, but they are beyond the scope

of this course. However black-body of cavity radiation can be considered as a gas of photons.
The walls of the cavity act as a heat bath; however as photons don’t exist in the walls (only
energy does) the chemical potential is zero: µ = (∂Swalls/∂N)E = 0. The density of states for
the photon gas is just twice the usual density of states (to allow for the two polarisation states)
and the energy of a photon with wavenumber k is ε(k) = ~ω = ~ck. The total energy in the
cavity is

〈E〉 =

∫ ∞

0

2D(k)ε(k)dk

e ε(k)β − 1

=
V ~

π2c3

∫ ∞

0

ω3dω

e~ωβ − 1

=
π2k4

B

15~3c3
V T 4 =

4σ

c
V T 4.

This gives the Planck distribution of energy over the frequency range as well as the derivation
of the Stefan-Boltzmann constant σ in terms of fundamental constants.

(The factor of 4/c comes from the connection between the cavity energy and the emissivity
of a perfect black body, which is given by the formula for effusion from a small hole dN/dt =
−(v/4)An.)

Below is a plot of the cosmic microwave background at a range of frequencies, obtained from
a variety of experiments, compared with the Planck distribution for T = 2.7 K ( c©Douglas Scott
of the University of British Columbia). The agreement is excellent.
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Glossary

• Adiabatic Of processes: occurring without heat transfer. Of walls: insulating. Re-
versible adiabatic processes are isentropic.

• Equation of State A relationship between the state variables of the system. Simple
systems in equilibrium are fully specified by two properties such as temperature and
volume; all the other functions of state are functions of these. For an ideal gas, the
equation of state is PV = nRT ; for an ideal paramagnet it is m = cB/µ0T where c is a
constant.

• Equilibrium A system is in equilibrium when its macroscopic properties (temperature,
pressure) are uniform and not changing with time.

• Extensive Some thermodynamic functions of state are extensive: if the intensive vari-
ables (T , P , B) are kept constant, the extensive variables are proportional to the amount
of substance present. Energy, volume, entropy, total magnetisation, enthalpy, Gibbs and
Helmholtz free energies and heat capacities are all extensive. Extensive properties ex-
pressed per unit mass or per mole are then intensive, and are called specific: eg. specific
heat capacity. All functions of state are either extensive or intensive.

• Function of state A property of a system which only depends of the current state of
the system and not on its history. Examples are temperature, pressure, volume, internal
energy, entropy, magnetisation for a paramagnet (but not for a ferromagnet). Also called
a state variable or a macroscopic variable.

• Heat Reservoir Surroundings at a certain temperature which are large enough to absorb
heat from, or donate heat to, the system without appreciable change of temperature. Also
heat bath

• Intensive An intensive functions of state does not vary with the amount of the substance
present. Examples are temperature, pressure, tension and external magnetic field. All
functions of state are either extensive or intensive.

• Isentropic At constant entropy.

• Isobaric At constant pressure.

• Isochoric At constant volume.

• Isothermal At constant temperature.

• Macroscopic Pertaining to aspects of a system which can be measured classically, such
as temperature, pressure etc; containing very large numbers of atoms.
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• Macrostate The current disposition of the system defined in terms of macroscopic vari-
ables. Also (in classical thermal physics) state.

• Microscopic Pertaining to the underlying quantum state of a system

• Microstate The state of the system defined in terms of the current behaviour of all the
constituent atoms. NOT “the state of a very small system”! Also quantum state.

• Reversible A reversible process is one which would change direction with an infinitesimal
change in external conditions. For a process to be reversible it must be frictionless and
quasistatic so that no energy is dissipated and the system is always only infinitesimally
removed from equilibrium. Because a reversible process passes through a series of quasi-
equilibrium states it can be represented as a solid line on a plot of one state variable
against another. More details here.

• Surroundings That part of an experimental set up, including the ambient air, which
exchanges heat with, or does work on, the system.

• System That part of an experimental system in which we are primarily interested.

• Universe A deliberately grandiose term for the entire experimental set-up, comprising
the system and the surroundings. Usually encountered in the phrase “the entropy change
of the universe” which of course cannot be negative, though that of the system or sur-
roundings alone may be. It should not be confused with the cosmological universe.



Ideal Gas: Recap

Just as important as knowing these equations is knowing that they only apply to ideal gases!
An “ideal” gas is one with point-like, non-interacting molecules. However the molecules are

allowed to be poly-atomic, and so have internal degrees of freedom (rotational, vibrational).
The behaviour of all gases tends to that of an ideal gas at low enough pressures; at STP noble
gases such as argon are very close to ideal, and even air is reasonably approximated as ideal.

Ideal gases obey the ideal gas law

PV = nRT or PV = NkBT

where N is the number of molecules, n = N/NA is the number of moles (not to be confused
with the number density, N/V , also denoted by n), R = 8.314 JK−1 and kB = R/NA =
1.381 × 10−23 JK−1 is Boltzmann’s constant. The ideal gas law encompasses Boyle’s Law and
Charles’ Law. It requires the temperature to be measured on an absolute scale like Kelvin’s.

Ideal gases have internal energies which depend only on temperature: if CV is the heat
capacity at constant volume,

E = E(T ) and dE = CV dT

⇒ E = CV T if CV is constant.

In general the heat capacity may change with temperature; however at STP it is usually
adequate to consider it as constant and equal to 1

2
nfR per mole, where nf is the number

of active degrees of freedom. For monatomic gases nf = 3 (translational) and for diatomic
gases nf = 5 (translational and rotational; vibrational modes are “frozen out”.)

The heat capacities at constant pressure and at constant volume differ by a constant for
ideal gases:

CP − CV = nR.

During reversible adiabatic compression or expansion of an ideal gas the pressure and volume
change together in such a way that

PV γ = constant where γ ≡ CP

CV
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For a monatomic gas at STP, γ = 5/3 = 1.67; for a diatomic gas, γ = 7/5 = 1.4 . Using the
ideal gas law, we also have

TV γ−1 = constant and TP
1
γ
−1 = constant.

Note that γ − 1 = nR/CV .
There are two “less ideal” gases sometimes considered. One is a gas of hard spheres, where

we no longer neglect the size of the molecules, but still neglect other interactions. Most of the
ideal gas results still hold, but with V replaced by V − nb, where b is the “excluded volume”,
the minimum volume taken up by a mole of the molecules. For instance, the equation of state
is P (V − nb) = nRT .

The other is the van der Waals gas, which also allows for the “van der Waals” interaction
between neutral molecules which arise when a fluctuating dipole moment in one molecule in-
duces a dipole in another molecule, and the two attract with a force with falls off as 1/r6, with
r the separation. This attraction reduces the pressure at a given temperature and volume, by
an amount which is proportional to 1/V 2 (or 1/d6, where d is the average separation). The
equation of state for a van der Waals gas is

(

P +
an2

V 2

)

(V − nb) = nRT.
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