PHYS30201 Advanced Quantum Mechanics: Particle Data Group Clebsch-Gordan coefficients

In a system with two contributions to angular momentum j_1 and j_2 , Clebsch-Gordan coefficients are used to write states good of total angular momentum J and z-component M, $|j_1, j_2; J M\rangle$, in terms of the basis $\{m_1, m_2\}, |j_1 m_1\rangle \otimes |j_2 m_2\rangle$:

$$|j_1, j_2; J M\rangle = \sum_{m_1 m_2} \langle j_1 m_1; j_2 m_2 | J M\rangle \left(|j_1 m_1\rangle \otimes |j_2 m_2\rangle \right) \quad \text{and} \\ |j_1 m_1\rangle \otimes |j_2 m_2\rangle = \sum_{JM} \langle j_1 m_1; j_2 m_2 | J M\rangle |j_1, j_2; J M\rangle$$

where the numbers denoted by $\langle j_1 \ m_1; j_2 \ m_2 | J \ M \rangle$ are the Clebsch-Gordan coefficients; they vanish unless $j_1 + j_2 \ge J \ge |j_1 - j_2|$, and $m_1 + m_2 = M$. There is a conventional tabulation which can be found in various places including the Particle Data Group site, but the notation takes some explanation.

There is one table for each j_1, j_2 pair. Along the top are possible values of $_{JM}$ and at the left are possible values of $m_1 m_2$. For compactness the numbers in the blocks are the coefficients squared times their sign; thus $-\frac{1}{2}$ stands for $-\sqrt{\frac{1}{2}}$.

As an example consider the table for coupling $j_1 = 1$ and $j_2 = \frac{1}{2}$ to get $J = \frac{3}{2}$ or $\frac{1}{2}$. In red the coefficients of $|1 1\rangle \otimes |\frac{1}{2} - \frac{1}{2}\rangle$ and $|1 0\rangle \otimes |\frac{1}{2} \frac{1}{2}\rangle$ in $|1 \frac{1}{2}; \frac{1}{2} \frac{1}{2}\rangle$ are highlighted

$$|1, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}\rangle = \sqrt{\frac{2}{3}}|1, 1\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle - \sqrt{\frac{1}{3}}|1, 0\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle.$$

in green are the components for the decomposition

$$|1 - 1\rangle \otimes |\frac{1}{2} \frac{1}{2}\rangle = \sqrt{\frac{1}{3}}|1, \frac{1}{2}; \frac{3}{2} - \frac{1}{2}\rangle - \sqrt{\frac{2}{3}}|1 \frac{1}{2}; \frac{1}{2} - \frac{1}{2}\rangle.$$

Or for coupling $j_1 = \frac{3}{2}$ and $j_2 = 1$:

giving for example

$$|1, \frac{3}{2}; \frac{1}{2} - \frac{1}{2}\rangle = \sqrt{\frac{1}{6}} |\frac{3}{2} \frac{1}{2}\rangle \otimes |1 - 1\rangle - \sqrt{\frac{1}{3}} |\frac{3}{2} - \frac{1}{2}\rangle \otimes |1 0\rangle + \sqrt{\frac{1}{2}} |\frac{3}{2} - \frac{3}{2}\rangle \otimes |1 1\rangle$$

If instead one wants $j_1 = 1$ and $j_2 = \frac{3}{2}$, we use the relation

$$\langle j_2 \ m_2; j_1 \ m_1 | J \ M \rangle = (-1)^{J - j_1 - j_2} \langle j_1 \ m_1; j_2 \ m_2 | J \ M \rangle$$

Note that table of Clebsch-Gordan coefficients are given for states of j_1 and j_2 coupling up to total J. But as j is a generic angular momentum, that covers s and l coupling to j, or s_1 and s_2 coupling to S etc.