PHYS30201 Advanced Quantum Mechanics: Particle Data Group Clebsch-Gordan coefficients

In a system with two contributions to angular momentum j_{1} and j_{2}, Clebsch-Gordan coefficients are used to write states good of total angular momemtum J and z-component M, $\left|j_{1}, j_{2} ; J M\right\rangle$, in terms of the basis $\left\{m_{1}, m_{2}\right\},\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle$:

$$
\begin{aligned}
& \left|j_{1}, j_{2} ; J M\right\rangle=\sum_{m_{1} m_{2}}\left\langle j_{1} m_{1} ; j_{2} m_{2} \mid J M\right\rangle\left(\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle\right) \quad \text { and } \\
& \left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle=\sum_{J M}\left\langle j_{1} m_{1} ; j_{2} m_{2} \mid J M\right\rangle\left|j_{1}, j_{2} ; J M\right\rangle
\end{aligned}
$$

where the numbers denoted by $\left\langle j_{1} m_{1} ; j_{2} m_{2} \mid J M\right\rangle$ are the Clebsch-Gordan coefficients; they vanish unless $j_{1}+j_{2} \geq J \geq\left|j_{1}-j_{2}\right|$, and $m_{1}+m_{2}=M$. There is a conventional tabulation which can be found in various places including the Particle Data Group site, but the notation takes some explanation.

There is one table for each j_{1}, j_{2} pair. Along the top are possible values of ${ }_{J M}$ and at the left are possible values of $m_{1} m_{2}$. For compactness the numbers in the blocks are the coefficients squared times their sign; thus $-\frac{1}{2}$ stands for $-\sqrt{\frac{1}{2}}$.

As an example consider the table for coupling $j_{1}=1$ and $j_{2}=\frac{1}{2}$ to get $J=\frac{3}{2}$ or $\frac{1}{2}$. In red the coefficients of $|11\rangle \otimes\left|\frac{1}{2}-\frac{1}{2}\right\rangle$ and $|10\rangle \otimes\left|\frac{1}{2} \frac{1}{2}\right\rangle$ in $\left|1 \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle$ are highlighted

$$
\left|1, \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}|11\rangle \otimes\left|\frac{1}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}|10\rangle \otimes\left|\frac{1}{2} \frac{1}{2}\right\rangle .
$$

in green are the components for the decomposition

$$
|1-1\rangle \otimes\left|\frac{1}{2} \frac{1}{2}\right\rangle=\sqrt{\frac{1}{3}}\left|1, \frac{1}{2} ; \frac{3}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|1 \frac{1}{2} ; \frac{1}{2}-\frac{1}{2}\right\rangle
$$

Or for coupling $j_{1}=\frac{3}{2}$ and $j_{2}=1$:

giving for example

$$
\left|1, \frac{3}{2} ; \frac{1}{2}-\frac{1}{2}\right\rangle=\sqrt{\frac{1}{6}}\left|\frac{3}{2} \frac{1}{2}\right\rangle \otimes|1-1\rangle-\sqrt{\frac{1}{3}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle \otimes|10\rangle+\sqrt{\frac{1}{2}}\left|\frac{3}{2}-\frac{3}{2}\right\rangle \otimes|11\rangle
$$

If instead one wants $j_{1}=1$ and $j_{2}=\frac{3}{2}$, we use the relation

$$
\left\langle j_{2} m_{2} ; j_{1} m_{1} \mid J M\right\rangle=(-1)^{J-j_{1}-j_{2}}\left\langle j_{1} m_{1} ; j_{2} m_{2} \mid J M\right\rangle
$$

Note that table of Clebsch-Gordan coefficients are given for states of j_{1} and j_{2} coupling up to total J. But as j is a generic angular momentum, that covers s and l coupling to j, or s_{1} and s_{2} coupling to S etc.

