The Harmonic Oscillator Without Tears

Summary: Operator methods lead to a new way of viewing the harmonic oscillator in which quanta of energy are primary.

We are concerned with a particle of mass m in a harmonic oscillator potential $\frac{1}{2} k x^{2} \equiv$ $\frac{1}{2} m \omega^{2} x^{2}$ where ω is the classical frequency of oscillation. The Hamiltonian is

$$
\widehat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}
$$

and we are going to forget that we know what the energy levels and wavefunctions are.
If we define

$$
\hat{a}=\frac{1}{\sqrt{2}}\left(\frac{\hat{x}}{x_{0}}+i \frac{x_{0}}{\hbar} \hat{p}\right) \quad \text { and } \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}\left(\frac{\hat{x}}{x_{0}}-i \frac{x_{0}}{\hbar} \hat{p}\right)
$$

where $x_{0}=\sqrt{\hbar / m \omega}$ we can prove the following:

- $\hat{x}=\left(x_{0} / \sqrt{2}\right)\left(\hat{a}^{\dagger}+\hat{a}\right) ; \quad \hat{p}=\left(i \hbar / \sqrt{2} x_{0}\right)\left(\hat{a}^{\dagger}-\hat{a}\right)$
- $[\hat{x}, \hat{p}]=i \hbar \Rightarrow\left[\hat{a}, \hat{a}^{\dagger}\right]=1$
- $\widehat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)$
- $[\hat{a}, H]=\hbar \omega \hat{a}$ and $\left[\hat{a}^{\dagger}, H\right]=-\hbar \omega \hat{a}^{\dagger}$
- Assume we know one eigenstate of $\widehat{H},|n\rangle$, with energy E_{n} (notation to be explained later). Since $\langle n| \hat{a}^{\dagger} \hat{a}|n\rangle=\langle\hat{a} n \mid \hat{a} n\rangle \geq 0, E_{n} \geq \frac{1}{2} \hbar \omega$.
- Using the commutators above, we find that $\hat{a}|n\rangle$ is another eigenstate with energy $E_{n}-\hbar \omega$ and $\hat{a}^{\dagger}|n\rangle$ is another eigenstate with energy $E_{n}+\hbar \omega$.
- We denote the state of lowest energy $|0\rangle$ (not the null state!). Since there is no lower state this must be an exception to the rule that \hat{a} takes us to a state with lower energy, so in this case the equation $[\hat{a}, H]|0\rangle=\hbar \omega \hat{a}|0\rangle$ must be satisfied by $\hat{a}|0\rangle=0$ (where 0 is the null state or vacuum).
- The energy of state $|n\rangle$ is therefore $E_{0}+n \hbar \omega$ and the notation becomes clear: $|n\rangle$ is the nth excited state.
- The commutation relation $\left[\hat{a}, \hat{a}^{\dagger}\right]|n\rangle=|n\rangle$ requires the following normalisations:

$$
\hat{a}|n\rangle=\sqrt{n}|n-1\rangle \quad \text { and } \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

- $\hat{a}^{\dagger} \hat{a}$ is a "number operator", since $\hat{a}^{\dagger} \hat{a}|n\rangle=n|n\rangle$. Thus we have

$$
\widehat{H}|n\rangle=\left(n+\frac{1}{2}\right) \hbar \omega|n\rangle
$$

and the ground state energy E_{0} is $\frac{1}{2} \hbar \omega$.

- Writing $\phi_{0}(x) \equiv\langle x \mid 0\rangle$, from $\langle x| \hat{a}|0\rangle=0$ we obtain $\mathrm{d} \phi_{0} / \mathrm{d} x=-\left(x / x_{0}^{2}\right) \phi_{0}$ and hence

$$
\phi_{0}=\left(\pi x_{0}^{2}\right)^{-1 / 4} \mathrm{e}^{-x^{2} / 2 x_{0}^{2}}
$$

(where the normalisation has to be verified separately). This is a much easier differential equation to solve than the one which comes direct from the Schrödinger equation!

- The wave function for the n -th state is

$$
\phi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{x}{x_{0}}-x_{0} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} \phi_{0}(x)=\frac{1}{\sqrt{2^{n} n!}} H_{n}\left(\frac{x}{x_{0}}\right) \phi_{0}(x)
$$

- The Hermite polynomials are $H_{0}(z)=1 ; H_{1}(z)=2 z ; H_{2}(z)=4 z^{2}-2 ; H_{3}(z)=$ $8 z^{3}-12 z ; H_{4}(z)=16 z^{4}-48 x^{2}+12$

This formalism has remarkably little reference to the actual system in question - all the parameters are buried in x_{0}. What is highlighted instead is the number of quanta of energy in the system, with \hat{a} and \hat{a}^{\dagger} annihilating or creating quanta. Exactly the same formalism can be used in a quantum theory of photons, where the oscillator in question is just a mode of the EM field.

- Shankar ch 7.4-5

- Mandl ch 12.5

- Gasiorowicz ch 6.2-3

Judith McGovern September 2009

