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Contours illustrated in figures (A), (B) and (C) are referred to below. In all questions where real
integrals are evaluated using contour integration methods, it is crucial to explain carefully the link
between the two.

36. See figure (A) above. In these examples, we denote the integrand by f(x) and the requested
real integral by I. We consider the contour integral of f(z) along a contour consisting of the
real axis from z = −R to z = R plus the semicircle |z| = R in the upper half plane, and we
denote these two contributions to the contour integral as I1 and I2. We take R sufficiently large
that all poles in the upper half plane are within the contour. As a result the contour integral is
independent of R and is determined by the residues at the poles in the upper half plane. Since
in all cases f(z) falls off faster than 1/R, limR→∞ I2 = 0. Furthermore as f(z) = f(x) on the
real axis, limR→∞ I1 = I. So I = 2πi(sum of residues in the upper half plane).

a) f(z) =
1

1 + z4
. The poles of f(z) are at the fourth roots of −1, with z1 = eiπ/4 and z2 = e3iπ/4

lying in the upper half plane. The residues at zi are

bz=zi1 = lim
z→zi

z − zi
1 + z4

=
1

4z3i

(using l’Hôpital’s rule) so the sum of the two residues in the upper half plane is

1

4

(
1

e3iπ/4
+

1

e9iπ/4

)
=

1

4

(
cos

3π

4
− i sin

3π

4
+ cos

9π

4
− i sin

9π

4

)
= − i

2
√

2
.

Thus I = π/
√

2.

b) f(z) =
z4

1 + z8
. The poles are at the eighth roots of −1, with z1 = eiπ/8, z2 = e3iπ/8,

z3 = e5iπ/8 and z4 = e7iπ/8 lying in the upper half plane.

The residues at zi are

bz=zi1 = lim
z→zi

(z − zi)z4

1 + z8
= lim

z→zi

z4 + 4(z − zi)z3

8z7
=

1

8z3i



and the sum of the residues in the upper half plane is 1
8
(−2i sin 3π/8 − 2i sin 9π/8) =

−(i/2) sin(12π/16) cos(6π/16) = −i sin π
8
/(2
√

2). (The four terms that go into this sum form
two pairs which have cancelling real parts and reinforcing imaginary parts.) Hence I =
π sin(π/8)/

√
2.

c) f(z) =
1

(z2 − 2z + 5)2
=

1

(z − 1− 2i)2(z − 1 + 2i)2
.

There is a double pole at z = 1 + 2i, and the residue is

lim
z→1+2i

d

dz

(
1

(z − 1 + 2i)2

)
= − 2

(z − 1 + 2i)3

∣∣∣∣
z=1+2i

=
1

32i

Hence I = π/16.

37. See figure (A) above. The general method is the same as above, but we need to check the
conditions of Jordan’s lemma in order to say that I2 vanishes.

a) I =

∫ ∞
−∞

x sinx

(1 + x2)2
dx: we will compute the contour integral of eizf(z) with f(z) = z(1+z2)−2

and take the imaginary part. We will complete the contour in the upper half plane as the
constant in the exponent, 1, is greater than zero. In addition f(z) tends to zero as |z| → ∞,
and it has only one (double) pole in the upper half plane, at z = i. So the three conditions of
Jordan’s lemma are satisfied. (The other pole is at −i.) The residue at z = i is

b1 =
d

dz

(
zeiz

(z + i)2

)
z=i

=
ieiz(z2 + 2iz + 1)

(z + i)3

∣∣∣∣
z=i

=
1

4e

and the desired integral is

I = Im(2πib1) =
π

2e
.

[Note also that
∫∞
−∞ x cosx/(1 + x2)2dx = Re(2πib1) = 0, which is obvious from the symmetry

of the integrand.]

b) I =

∫ ∞
−∞

sin πx

1 + x+ x2
dx: we want the imaginary part of the integral of eiπzf(z) with f(z) =

(1 + z + z2)−1. We will complete the contour in the upper half plane as the constant in the
exponent, π, is greater than zero. In addition f(z) tends to zero as |z| → ∞, and it has only
one pole in the upper half plane, at z = z1 = (−1+ i

√
3)/2. So the three conditions of Jordan’s

lemma are satisfied. (The other pole is at z1.) The residue at z1 is

b1 =
eiπz

z − z1

∣∣∣∣
z=z1

=
e−iπ/2e−π

√
3/2

i
√

3

and the desired integral is

I = Im(2πib1) = − 2π√
3
e−π

√
3/2

This also shows that

∫ ∞
−∞

cos πx

1 + x+ x2
dx = Re(2πib1) = 0, which is a consequence of the

symmetry about the point z = −1/2.



38. We use the substitution z = a + εeiθ; the contour is like I3 in (B) above, but traversed anti-
clockwise.

lim
ε→0

∫
C

(z − a)ndz = lim
ε→0

iεn+1

∫ π

0

ei(n+1)θdθ = lim
ε→0

εn+1

n+ 1

(
(−1)n+1 − 1

)
for n 6= −1

If n is odd (and not −1) this vanishes. Furthermore if n > −1 the limit as ε→ 0 is 0, but if n
is even and < −1 it blows up and hence is undefined.

If n = −1 we have

lim
ε→0

∫
C

1

z − a
dz = lim

ε→0
i

∫ π

0

dθ = πi

If f(z) has a pole at z = a, we can write f(z) = g(z)/(z − a) where g(z) is analytic in the
vicinity of z = a. Then, by an argument just like the one used to prove Cauchy’s integral
formula, we have

lim
ε→0

∫
C

g(z)

z − a
dz = ig(a)

∫ π

0

dθ = πig(a) where g(a) = lim
z→a

(z − a)f(z) = bz=a1

a)

lim
ε→0

∫
C

ez

z
dz = πie0 = πi

b)

lim
ε→0

∫
C

z2 − 2z + 1

z + 1
dz = πi(z2 − 2z + 1)z=−1 = 4πi

c) In this case, although the denominator is z2 we have a simple pole because 1 − ez has a
simple zero at z = 0:

lim
ε→0

∫
C

1− ez

z2
dz = πi lim

z→0

1− ez

z
= πi

d(1− ez)
dz

∣∣∣∣
z=0

= −iπ.

39. See figure (B) above. In these problems, there is one or more poles on the real axis and the
contour detours into the upper half plane on small semicircles of radius ε to avoid them. For
a single pole we will call the integral around this semicircle I3, with I1 being used for the sum
of the two integrals along the real axis on either side of the pole. Then I is the limit of I1 as
both R → ∞ and ε → 0. If there is more than one pole on the real axis, we need more than
one small semicircle, with the contributions being I4, etc. We calculate the integrals around
these semicircles using the results of the previous question, but remembering that we traverse
the semicircle in a clockwise direction.

a) I =

∫ ∞
−∞

1

(x− 2)(x2 + 1)
dx: we take the contour integral of f(z) = 1/((z − 2)(z2 + 1))

around the contour described above, with I3 being the integral around the small semicircle
centred on z = 2. There is one pole inside the contour, at z = i, and the residue there is

bz=i1 =
1

(z − 2)(z + i)

∣∣∣∣
z=i

=
1

2i(i− 2)

As f(z) falls off faster than 1/R as R → ∞, I2 will tend to zero. There is a simple pole at
z = 2 with residue 1/(z2 + 1)|z=2 = 1/5, so the limit as ε→ 0 of I3 is −πi/5. Hence

I = lim
R→∞,ε→0

I1 = 2πibz=i1 − lim
R→∞,ε→0

(I2 + I3) =
π

(i− 2)
+
πi

5
= −2π

5



b) I =

∫ ∞
−∞

eix

x2 − 4
dx: we take the contour integral of f(z) =

eiz

z2 − 4
around the contour as

described above, except that now there are two poles on the real axis with I3 being the integral
around the small semicircle centred on z = −2, and I4 that centred on z = 2. There are no
poles within the contour, so I1 + I2 + I3 + I4 = 0. The integrand satisfies the conditions of
Jordan’s Lemma for the upper half plane, so I2 will not contribute as R → 0. The residue at

z = 2 is
eiz

z + 2

∣∣∣∣
z=2

= e2i/4 and that at z = −2 is
eiz

z − 2

∣∣∣∣
z=−2

= −e−2i/4. Hence

I = lim
R→∞,ε→0

I1 = − lim
R→∞,ε→0

(I2 + I3 + I4) = iπ
e2i − e−2i

4
= −1

2
π sin 2.

c) I =

∫ ∞
−∞

sin2 x

x2
dx =

∫ ∞
−∞

1− cos(2x)

2x2
dx: we take the contour integral of

1− e2iz

2z2
around

the contour described above, with I3 being the integral around the small semicircle centred on
z = 0. There are no poles within the contour, so I1 + I2 + I3 = 0. For I2 we look at the two
terms separately; since the conditions for Jordan’s lemma hold for e2iz/z2, and as 1/z2 falls off
as 1/R2, we see that as R → ∞, I2 will tend to zero. There is a simple pole at z = 0 with

residue
d(1− e2iz)/2

dz

∣∣∣∣
z=0

= −i, so the limit as ε→ 0 of I3 is −π. Hence

I = Re( lim
R→∞,ε→0

I1) = −Re
(

lim
R→∞,ε→0

(I2 + I3)
)

= π

‡‡ What if we don’t want to do a principal-value integral? As the integrand is analytic for
all finite z, the result won’t be changed by diverting the integration contour to avoid z = 0.
Suppose that our new contour (call it D) runs from −∞ to ∞, passing below z = 0. Because
sin2 z = 1

2
(1− 1

2
[e2iz + e−2iz]) we can write

I =
1

2

∫
D

1

z2
dz − 1

4

∫
D

e2iz

z2
dz − 1

4

∫
D

e−2iz

z2
dz;

the point of diverting the contour is that each of the integrals along D is now well defined
and can be calculated independently of the other two. The first integral gives

[
−1/z

]∞
−∞ = 0.

The third also gives zero: the contour D can be closed by a semicircle of large radius in the
LHP, but no poles are enclosed. The second integral must give us the result. In this case
D can be completed by a large semicircle in the UHP [Jordan’s lemma], so that it encloses
the pole of order 2 at z = 0. The first few terms of the Laurent expansion of e2iz/z2 are
(z−2 + 2i/z + 1

2
(2i)2 + O(z)), from which we can read off the residue b1 = 2i. Thus,

I = −1

4

∫
D

e2iz

z2
= −1

4
× 2πi× 2i = π.

40. (a) I =

∫ ∞
−∞

eiωt

ω − iα
dω. Replacing ω with z, and considering first t > 0, we can use the

contour of figure (A); Jordan’s lemma gives limR→∞ I2 = 0 and there is one pole in the
upper half plane with residue e−αt. Hence I = 2πie−αt.
However if t < 0, we need to close the contour in the lower half plane in order that the
integral around the semicircle at |z| = R vanishes as R → ∞. There are no poles in the
lower half plane, so in this case I = 0.
Hence we can write

I ≡ f(t) = 2πi θ(t)e−αt where θ(t) =

{
1 if t > 0,

0 if t < 0.



We might recognize this as the inverse Fourier transform of 1/(ω − iα). Check that the
Fourier transform of f(t) above does indeed have this form – but don’t fuss over factors
of 2π.

(b) I =

∫ ∞
−∞

eikx√
x− ia

dx. The integrand has a branch point in the UHP. For k < 0, the

analysis is very similar to that done in part (a): the contour can be completed by a large
semicircle of radius R in the LHP; the square-root factor tends to zero for z → ∞; the
integrand is meromorphic in the LHP [actually, it is analytic there]; thus, Jordan’s lemma
applies to this case and the integral around the semicircle will tend to zero for R → ∞.
Applying the residue theorem gives the result I = 0, as no poles are enclosed.

*‡ For k > 0, we must do quite a bit more work than in part (a), because the singularity at
z = ia is a branch point, rather than a pole. Consistent with the condition Re[

√
x− ia] > 0

for real x, we can take the branch cut of the square-root function to run along the imaginary
axis from ia to +i∞. We deform the path of integration as shown below:

Iϵ

IR1 IR2IB1 IB2

R-R

The red line shows the path of integration after it has been pushed up from the real axis
into the upper half plane, without crossing the branch cut (shown dashed). The same
argument that was used in lectures to prove Jordan’s lemma can be used to show that
the integrals IR1 and IR2 along the quarter-circles of radius R in the UHP give zero for
R → ∞. The integral Iε around the small circle of radius ε, centered on ia, is of order
2πε e−ka/

√
ε, and this tends to zero for ε→ 0.

We note that IB1 = IB2: the integrand has opposite signs for IB1 and IB2, but the two
straight-line paths are followed in opposite directions, which reverses the sign a second
time.

Thus, in the limit R→∞ and ε→ 0, we have I = IB1 + IB2 = 2IB2.

So far, all we have done is to replace an integral along the real axis by an integral along
a portion of the imaginary axis. Fortunately, the latter integral is tractable. We can
parametrize the path by z(t) = i(a+ t), where t runs from 0 to ∞:

I = 2

∫ i∞

ia

eikz√
z − ia

dz = 2

∫ ∞
0

e−k(a+t)√
(it)

idt = 2× 1 + i√
2
× e−ka

∫ ∞
0

e−kt√
t

dt.

The substitution u2 = kt turns the real integral at the end of the line into a standard
Gaussian integral,

∫∞
0
e−u

2
du = 1

2

√
π. The final result for I is therefore (1+i)e−ka

√
2π/k .

41. I =

∫ ∞
0

√
x

(x+ 1)2
dx: See figure (C) on the first page of these solutions. We note that the

integrand has a branch point at z = 0. We take the branch cut along the positive real axis, and
the contour cannot cross it. Thus at all points 0 < θ < 2π. For this integral, we use the contour
illustrated in figure (C). I1 and I3 are infinitesimally displaced from the real axis, above and



below. However as the integrand has no actual discontinuities there (the choice of the branch
cut position is arbitrary) the integrals will be as close as we like to the integral along the real
axis, and hence can be used to find I as detailed below.

There is one pole within the contour, a double one at z = −1, and the residue there is

bz=−11 =
d
√
z

dz

∣∣∣∣
z=−1

=
1

2
√
z

∣∣∣∣
z=−1

= − i
2
.

(There is no sign ambiguity here: because of the branch cut, the position of the pole is −1 = eiπ,
not eg e3iπ.)

As the integrand falls off as 1/R3/2, the integral I2 tends to zero as R→∞. Also on the small
circle in the vicinity of the origin, if we write z = εeiθ, we have

lim
ε→0

I4 = lim
ε→0

∫ 2π

0

ε3/2e3iθ/2

(1 + εeiθ)2
dθ = 0

The integral I3 differs from −I1 because on I1, z = x, but on I3, z = xe2iπ. Thus
√
z will differ

on the two. Hence I3 = −eiπI1 = I1. Then

I1 + I3 = 2I1 = 2πibz=−1i − I2 − I4 and I = lim
R→∞,ε→0

I1 = πibz=−1i =
π

2

42. Note: In this question on summation of series via a contour integral, a circular contour has
been used in the solutions, rather than the square contour that was used in lectures: this makes
the argument very slightly more complicated than in the lectures. The results, of course, do
not depend on the shape of the contour.

a) f(z) =
cot z

z4
=

cos z

z4 sin z
has poles at z = nπ. In lectures we saw that the poles of 1/ sin z

are simple poles with residues (−1)n; here the residues (for n 6= 0) are (−1)n(cos z/z4)z=nπ =
1/(πn)4.

The pole at z = 0 is 5th order. The easiest way to find the residue is by using the expansions
of cos z and sin z about zero to obtain

cos z

z4 sin z
=

1

z5
1− z2/2! + z4/4!− . . .
1− z2/3! + z4/5!− . . .

=
1

z5

(
1− z2

2!
+
z4

4!
− . . .

)(
1 +

z2

3!
− z4

5!
+

(
z2

3!

)2

+ . . .

)

=
1

z5

(
1− z2

3
− z4

45
+ . . .

)
so the residue at z = 0 is −1/45.

Our contour is a large circle of radius R = (N + 1
2
)π, so that it crosses the x-axis half way

between the poles. We need to show that cot z doesn’t increase with R on this contour; if it does
not, the factor of 1/z4 will ensure that the integrand falls off fast enough for the integral to tend
to zero as R → ∞. Now, we can show that tanh |y| ≤ |cot z| ≤ coth |y|, so |cot z| will quickly
approach 1 as |y| increases; e.g. for |y| = 3, the two bounds on |cot z| are already 0.995 and
1.005. On the other hand, close to where the circle crosses the real axis, x = (N+ 1

2
)π+O(y2/R),

so that cot z = −i tanh y + O(y2/R), whose modulus is certainly bounded. So everywhere on
the circle, |cot z| remains bounded, as required. Thus, as N → ∞, the whole contour integral
tends to zero, which gives us

lim
N→∞

{
−1∑

n=−N

1

(πn)4
+

N∑
n=1

1

(πn)4
− 1

45

}
= 0 ⇒

∞∑
n=1

1

n4
=
π4

90
.



b) f(z) =
1

z5 cos z
has poles at z = 0 and z = (n + 1

2
)π. From (31 b) the residues of 1/ cos z

are (−1)n+1 so here the residues are (−1)n+1/
(
(n+ 1

2
)π
)5

.

The pole at z = 0 is 5th order. The easiest way to find the residue is by using the expansions
of cos z about zero to obtain

1

z5 cos z
=

1

z5
1

1− z2/2! + z4/4!− . . .

=
1

z5

(
1 +

z2

2!
+

z4

(2!)2
− z4

4!
+ . . .

)
=

1

z5

(
1 + . . .+

5z4

24
+ . . .

)
so the residue at z = 0 is 5/24.

Our contour is a large circle of radius R = Nπ, so that it crosses the x-axis half way between
the poles. We need to show that |1/ cos z| doesn’t increase with R on this contour; if it does
not, the factor of 1/z5 will ensure that the integrand falls off fast enough for the integral to
tend to zero as R → ∞. Now we can show that 1/ cosh |y| ≤ |1/ cos z| ≤ 1/ sinh |y|, so |sec z|
decreases rapidly with increasing |y|. On the other hand, close to where the circle crosses the
real axis, x = Nπ + O(y2/R) and 1/ cos z = (−1)N/ cosh y + O(y2/R), whose modulus tends
to 1 as y → 0. So everywhere on the circle |1/ cos z| remains bounded, as required. Thus, as
N →∞, the whole contour integral tends to zero, giving us

lim
N→∞

{
N∑

n=−N

(−1)n+125

([2n+ 1]π)5
+

5

24

}
= 0 ⇒

∞∑
n=0

(−1)n

(2n+ 1)5
=

5π5

1536
.

43. We have w = 1/z and g(w) = g(1/z) ≡ f(z). Also, dz = −dw/w2 and C ′ is the curve
on the w plane corresponding to the curve C in the z plane. Note that if we traverse C
in the conventional, anticlockwise direction, we traverse C ′ in the opposite direction (as θ
increases, Arg(w) = −θ becomes more negative.) Hence if we write

∮
C′ indicating anticlockwise

integration, we need an extra minus sign, so∮
C

f(z)dz =

∮
C′

g(w)

w2
dw.

The required result that the sum of the residues of f(z) within C must equal the sum of the
residues of g(w)/w2 within C ′ follows immediately from the residue theorem.

f(z) =
1

z2 − 3z + 2
=

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
,

so
∮
C
f(z)dz is 0, −2πi or 0, for R = 1/2, 3/2 and 5/2.

g(w) =
w2

2w2 − 3w + 1
⇒ g(w)

w2
=

2

w − 1
− 2

w − 1
2

,

so
∮
C
f(z)dz is 0, −2πi or 0, for R′ = 2, 2/3 and 2/5.

Recalling that the singularities of g(w) at w = 0 can be interpreted as those of f(z) at z =∞,
we see that the residue of f(z) at infinity is just that of −g(w)/w2 at 0. Including poles at
infinity allows us to evaluate a contour integral via the residues of all the poles outside the
contour, rather than those inside; this can be useful in cases where it reduces the amount of
work to be done in evaluating residues.


