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29. The first figure below shows the set-up: the central (red) point is the expansion point z = 1,
and the shaded (green) area is the region in which the expansion is to be valid. (The outer
radius is infinite.) C is a contour lying within the shaded region. The second figure defines the
contours C1 and C2; their radii are unimportant so long as they are less than 3.
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According to Laurent’s theorem we can write f(z) as follows:
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∑
n=1

bn
(z − a)n

+
∑
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First we calculate an:
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In the last line we use the following result: for f(z) =
1

z − z0
, f (n)(z) =

(−1)nn!

(z − z0)n+1
.

So all the an vanish—there are no positive powers of (z − 1) in the series.

Next we calculate bn

bn =
1

2πi

∮
C

(z − 1)n−1

z + 2
= (z − 1)n−1|z=−2 = (−3)n−1

So finally

1

z + 2
=
∑
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(z − 1)n
=

1

z − 1
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(z − 1)2
+

9

(z − 1)3
− . . . for |z − 1| > 3.

Note that we can get the same result from geometric series with much less effort, as we will see
in the next-but-one question.



30. The nearest singularity is at z = π
2
, so the radius of convergence is z = π

4
.

Using f(z) = tan z = sin z/ cos z we have f ′(z) = 1 + tan2 z, f ′′(z) = 2 tan z + 2 tan3 z,
f (3)(z) = 2 + 8 tan2 z + 6 tan4 z; so f(π

4
) = 1, f ′(π

4
) = 2, f ′′(π

4
) = 4 and f (3)(π

4
) = 16 giving

tan z = 1 + 2(z − π
4
) + 2(z − π

4
)2 + 8

3
(z − π

4
)3 + . . .

31. From the result given in the last question but one, we have f (n)(0) = − n!

zn+1
0

, and so the Taylor

series of 1/(z − z0) is

f(z) =
∞∑
n=0

f (n)(z0)

n!
zn = −

∞∑
n=0

zn

zn+1
0

= − 1

z0
− z

z20
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z30
− . . .

Note that we could obtain the same result by writing f(z) = −(1/z0)(1 − z/z0)−1 and using
the result for a geometric series. The second form makes it clear that the radius of convergence
is |z0|.
For |z| > |z0|, to obtain the Laurent series we write instead

f(z) =
1

z

(
1− z0

z

)−1
=
∞∑
n=0

zn0
zn+1

=
1

z
+
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+
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+ . . .

32.

p2

p1

a

In the general case of two poles, for a given expansion point
there will be three regions with a different series in each, as
shown in the figure (where a is the expansion point and pi
are the positions of the poles). The expansions in parts (a),
(b) and (c) below are to hold in the light, medium and dark
shaded regions respectively; the same is true of parts (e), (f)
and (g) but with a different expansion point. The exception
is where the expansion point is one of the poles: in that case
there is no purely Taylor expansion and so there are only two
series (another way of putting it is that radius of the inner
region is zero). Part (d) below is an example of expansion
about a pole.

We use partial fractions to write

z + 1

(z − 2)(z − 3)
=

4

(z − 3)
− 3

(z − 2)
.

Then we choose either the Laurent or Taylor series for each term independently, depending on
whether or not its pole lies between the expansion point and the region we want the expansion
to hold in.
a) about z = 0, for the region |z| < 2: Both poles lie beyond this region, so we use the Taylor
series in each case:

f(z) = −4
∞∑
n=0
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+ 3

∞∑
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=
∞∑
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)
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b) about z = 0, for the region 2 < |z| < 3: Taylor series for the first term again, but Laurent
series for the second because the pole at z = 2 lies between the expansion point and the region
of validity of the expansion:

f(z) = −4
∞∑
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c) about z = 0, for the region 3 < |z|: Laurent series for both:

f(z) = 4
∞∑
n=0

3n

zn+1
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∞∑
n=0

2n
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=
∞∑
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z−(n+1) (4× 3n − 3× 2n) =
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z
+
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+ . . .

d) about z = 2, for the region 1 < |z − 2|: write w = z − 2, so f(w) = 4/(w − 1) − 3/w. For
|w| > 1 we need a Laurent series for 4/(w − 1), giving

f(z) = 4
∞∑
n=0

1

wn+1
− 3

w
=

1

z − 2
+

4

(z − 2)2
+

4

(z − 2)3
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e) about z = 1: write w = z− 1, so f(w) = 4/(w− 2)− 3/(w− 1). For the region |z− 1| < 1 :
Taylor series in each case,

f(z) = −4
∞∑
n=0

wn

2n+1
+ 3

∞∑
n=0

wn = 1 + 2(z − 1) +
5

2
(z − 1)2 + . . .

f) about z = 1, for the region 1 < |z − 1| < 2: Taylor series for the first term, but Laurent
series for the second:

f(z) = −4
∞∑
n=0
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2n+1
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g) about z = 1, for the region 2 < |z − 1|: Laurent series for both:

f(z) = 4
∞∑
n=0

2n
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1
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=
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z − 1
+

5
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In the following, when we say we work to nth order we include terms up to zn and z−n. The
exact results are f(1) = 1, f(2.5) = −14 and f(6) = 7/12 = 0.5833. To get 1% accuracy we
need to work to 8th order in series (a) for z = 1 (result 0.994). If you were to use series (b) or
(c) at z = 1 the corresponding results would be would be −767 and 12355, respectively. For
z = 2.5, the 8th order result in series (b) is −11.44 and we need to go to 25th order to get
−13.91. (The 8th order results in (a) and (c), in contrast, are 32.25 and 21.4, while the 25th
order results are 1971 and 749.) Finally, for z = 6, the 8th order result in series (c) is 0.578.
(For (a) and (b) we get 14080 and −682). This should illustrate the fact that the correct series
is convergent—albeit slowly for (b)—but the wrong series is not!

33. a) Let w = 1/z. Since the Taylor series for sinw converges for all finite w, it will also converge
for all z 6= 0. So

sinw = w − w3

3!
+
w5

5!
− . . . ⇒ sin

(
1

z

)
=

1

z
− 1

3!z3
+

1

5!z5
− . . .

b) Using sin2 z = 1
2
(1− cos 2z) and cosw = 1− w2/2! + w4/4!− . . . gives

z−3 sin2 z =
1

2z3

(
(2z)2

2!
− (2z)4

4!
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(2z)6

6!
− . . .

)
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1

z
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3
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2
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c) As in (a), we can use the Taylor series for ew, with w = 1/z, to get

z3e1/z = z3 + z2 +
z

2!
+

1

3!
+

1

4!z
+

1

5!z2
. . .



d)
cos z − 1

z2
= − 1

2!
+
z2

4!
− z4

6!

Singularities and residues: (a) essential singularity, b1 = 1; (b) simple pole, b1 = 1; (c) essential
singularity, b1 = 1/24. In case (d), we say that the function f(z) has a ‘removable’ singularity:
although the ratio 0/0 doesn’t exist, we can define f(0) to be the limit limz→0 f(z); our series
expansion shows that the resulting function is analytic at z = 0, with b1 = 0.

34. By inspection, f(z) has two singularities: a simple pole at z = 0 and a pole of order 3 at z = 1.
We can use Cauchy’s integral formulae directly to find the residues; equivalently we write as
follows:

At z = 0 the residue is lim
z→0

(zf(z)) =
z2 + 1

(z − 1)3

∣∣∣∣
z=0

= −1

At z = 1 the residue is lim
z→1

1

2!

d2

dz2
(
(z − 1)3f(z)

)
=

1

2

(
2

z3

)
z=1

= 1

35. a) At first glance
z2 + z − 2

(z − 1)2
appears to have a double pole at z = 1. We can use

b1 = lim
z→1

d

dz
(z2 + z − 2) = 2z + 1|z=1 = 3

Had we spotted that the numerator factorises: z2 + z − 2 = (z + 2)(z − 1), we would have
seen that it is actually a single pole and the value of the residue would have been obvious by
inspection. This demonstrates that we won’t go wrong if we overestimate the order of the pole.

b) The poles of 1/ cos z are at the zeros of cos z, namely z = (n+ 1
2
)π for integer n. Making the

substitution z = w+ (n+ 1
2
)π we have cos z = cos(w+ (n+ 1

2
)π) = (−1)n+1 sinw. The residue

at w = 0 of 1/ sinw is limw→0(w/ sinw) = 1. Hence the residues of 1/ cos z at z = (n+ 1
2
)π are

(−1)n+1.

c) The poles of z/ sin2 z are at the zeros of sin z. A sketch of sin2 z/z shows that it has
a simple zero at z = 0 and double zeros at z = nπ for n 6= 0. The residue at z = 0 is
limz→0

(
zf(z)

)
= limz→0(z

2/ sin2 z) = 1.
At z = nπ, we write z = w + nπ and sin2 z = sin2w. Hence we have

z

sin2 z
=

w

sin2w
+

nπ

sin2w

The second term contains only even powers of w and so has no residue, but the first term has
the form we’ve already considered and so has residue 1 at w = 0. Hence the residues of z/ sin2 z
at z = nπ are all 1.

d) (sin z− cos z)−1 has poles at z = (n+ 1
4
)π. Setting z = w+ (n+ 1

4
)π we write sin z− cos z =√

2 sin(z − π/4) =
√

2 sin(w + nπ) = (−1)n
√

2 sinw. (Direct substitution without the trick in
the first step gives the same result after more algebra.) Hence the residues of are (−1)n/

√
2.

e) The zeros of sinh z are on the imaginary axis, since sinh iy = i sin y. So 1/ sinh z has simple
poles at z = inπ. Since sinh(w + inπ) = (−1)n sinhw and limw→0(w/ sinhw) = 1, the residues
of 1/ sinh z at z = inπ are (−1)n. Note all of these functions also have essential singularities

at z = ∞. The sign of this is that limz→∞ f(z) does not exist; in fact its behaviour for large
|z| depends on direction, i.e. arg z.


