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PHYS20672 Complex Variables and Vector Spaces:
Solutions 3

For C1, y = 0 and dy = 0 while x runs from 1 to 0, then z = 0 and dz = 0 while y runs from 0 to
1. For Cy, y =1 — z and dy = —dz. We want the integral [uwdxz —vdy+1 [ vdz + udy along each

path.
0 1
/xdx—l—i/ xdy:/:cdx+z'/ Ody:—%
C1 Cq 1 0

a) u = and v = 0:
0
/xdm+i/ xdy:/(x—ix)dx:—%(l—z’)
Co Ca 1
b) u =z and v =1y:

0
/mdx—ydy—iri/ a:dy—kydx-/ xdx—/ ydy = —1
C1 Cq 1 0

0
/:vdx—ydy+i/ xdy+ydx:/ 1+i(l —2z)de = —1
Cg 02

We note that (b) is path-independent and agrees with [22/2]}. This is as expected because z is an
analytic funtion (unlike Re z).

For f(z) = |z], u = \/2> + y?> and v = 0. On C}, y = 0 and dy = 0; thus only [udz is non zero. x

runs from 1 to -1. .
/ \/xz—l—dea::/ |z|dz = —1
Cq 1

On Cy, 2z =€, |2| = 1 and dz = iz db:

/1dz:i/ e df = [e"]7 = -2
Co 0

Again, we would not have expected these to be the same.

Along the unit circle centred on a, z = a + € and dz = ie?dd

1 2m 1 ]
j{ dz = z/ —.eewdﬁ = i[0)2" = 27i
cZ—a o €

1 2m 1 ) i(1—n)0 7 27
j{—dz:i/ ,eewd@:[e ] =0 for integer n > 1
c(z—a) 0 € 1—n |,

By Cauchy’s theorem, these results will hold for any contour enclosing the point z = a, not just the
unit circle. For future reference we note also that §(z —a)"dz = 0 for n > 0, since the integrand is
everywhere analytic.




24.

25.

In the following problems, we first use partial fractions to express the integrand as a sum of terms
which resemble those above. Since §(af(z) +bg(z))dz =a§ f(z)dz + b § g(z) dz, we can sum the
weighted contributions from each part. These contributions will then depend solely on whether or
not the pole of the integrand is within the contour.

(a)
1

Z—1

f(z) =

The only pole is at z = 1.

(i) R = 1/2: the pole is outside the contour, so the function is analytic inside the contour and the
integral is 0.

(ii) R = 2: the pole is inside the contour and the integral is 27i.

(b)

1 1 1
J2) = 223242 2z-2 z-1
(i) R = 1/2: both poles are outside the contour, so the integral is 0.
(ii) R = 3/2: only the pole at z = 1 is inside, so the integral is —27i.
(iii) R = 5/2: both poles are inside the contour, so the integral is 27wi(—1+ 1) = 0.

()

z+1 3 2
J(z) = 2-32+42 2-2 2-1
Here the contributions from the poles at z = 1 and z = 2 are multiplied by —2 and 3 respectively,
so the answers are (i) 0, (ii)—4mi, (iii) (3 —2) x 27 = 2.

(d)

24241 2 1 3
o=ttt 2 1

23 — 22 z 22 z-1

Here the second term 1/2? does not contribute to the integral, where ever the contour lies. So the
answers are (1) —4mi and (ii) 2.

In each case, we compare the integrand to f(z)/(z — a)", and use the Cauchy formula to give the

answer 27i f"V(a)/(n — 1)! — or just 27if(a) for a simple pole (n = 1). It is important to realise
that the analytic part “f(z)” may not all be in the numerator.
a) Here, there is a simple pole at z = 0 and it is inside the contour C;. So “a” = 0, “f(2)” = *

and the integral is just 27i e = 27i.

b) Here there is a double pole inside the contour C; at z = 0 (so “a” = 0). Also “f(z)” = cos® 2z,
with first derivative = —4 cos 2z sin 2z which vanishes at z = 0. So the integral is zero.

c) Again, the integral is zero. (The sum of (b) and (c) is ., (1/2%)dz = 0.)

d) The simple pole at z = 2 is inside the contour Cy. So “a” = 2i, “f(z)” = 2* and the integral is
2mi(2i)? = —8ri.

e) As the denominator can be written (z — 2i)(z + 2i), there are simple poles at z = £2i, but only
the one at z = 2i is inside the contour Cy. So “a” = 2i. We identify “f(z)” with 2%/(z + 2i), which
is analytic within C, giving

22 Z2 22
dz = dz = 2mi
£~222+4 - jiz(z—l—%)(z—?i) RAY

Recalling that |z; + 22| > |21] — |22| (for |z1]| > |22]), we have |22 + 1| > |z|*> — |1] = R?* — 1. Hence
|22 + 1|7 < (R?* — 1)~!. Now by the estimation lemma, for the circular path |z| = R,

1
—d
’]{ZQ—G—I :

2=21

< 27mR

R?2—1



26.

Hence the limit as R — oo is zero. Furthermore if the magnitude of the integral is bounded from
above by zero, the integral itself must tend to zero.

The integrand is proportional to 1/(z —i) —1/(z 4 1), so by Cauchy’s formula the integral along any
circular path |z| = R, with R > 1, will pick up cancelling contributions from the two poles and will
be zero.

In the following, the contour C' is the unit circle centred on z = 0. In parts (a)-(c) (and in some
subsequent questions) we will need the binomial theorem: for positive integer n,

(a+b)"=a"+na" b+ in(n—1)a" b + ...+ nab" ' + V" = Z <:TLL) a” "™
m=0

n n!
where = —
(m) m!(n —m)!

a)
2 1 N\*dz 1 6 4 1 6 3
1940 = — o) B Sidrt o4 = ) de=2mi = 28
/OCOS G LG TZ) T T LT E ST T

Here we have used the fact that § 2”dz = 0 unless n = —1 (see qu. 22). As a useful check, we see
that a positive definite integral has given a real, positive result!

b)
/ sin® 0.9 = ]f B O = - P ML Ll
0 —647 Jo z z 647 Jo z 6417 8

2m 1 1\*"d 1 on\ 1
/ cos?" 6 df = 2_}1{(z+—) @ _ ,j{(zzn_1+...+(n)——|—...)dz
0 220 Jo z z 227 Jo nj)z

_2mi (2n)! 2w (2n)!(2n — DI :2_7r(2n—1)!! o, (@2n—=1)N

T 2miplnl 2 qlnl ol (2n)l

where we have used (2n)!! = 2"n!. (In (b) and (c) we have exploited the fact that the only contribu-
tion will come from the term proportional to 1/z to avoid to calculating the coefficients of the other
terms.)

d)

/2” cos a0 1 % 24271 dz 1 7{ 2241 d
_— _ — _— = — A
o 4cosf—5 2 Jo2(z4+ 21 =5 2z 20 Jo2(222-52+2)

1}{ 2241 d
= — 2
4i Jo 2(z — 3)(z — 2)

Now the integrand has simple poles at z = 0, z = 1/2 and z = 2, but only the first two lie within the
contour. By Cauchy’s theorem, we can replace the integral round the unit circle with two smaller
contours, C circling z = 0 and C; circling z = 1/2.

To evaluate each of these we use Cauchy’s integral formula for ¢ f(z)/(z —a)dz, all the terms except
the relevant pole being part of “f(2)” (as in question (23 e) above). This gives

1]{ 2241 d 271 22+1 . 22 +1 s
N 2 = — - —_
4i Jo 2(z = 3)(z —2) 4i \(z—5)(z—-2)|_, 2(2-2) 1 3
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e) Here, we use cos 20 = 1(e?? + e72%) = (2% + 27%). We end up with a double pole at z = 0 and a
simple pole at z = —1/3 Wlthln the unit mrcle, and evaluate the contribution to each separately as
in the previous part:

/2” cos 20 40 1 7{ 22+ 272 dz 1 % 2441 d
_ = -~ = z
o 3cosf+5 20 Jod(z+21)+5 2z 3iJo 2222+ 102/3+1)

__1)
F=—3

1% 2t +1 2w [ d 2t 41 L +1
= — z = — B ——— S —— _—
3i Jo 22(2 4 3)(2 + 3) 3i \dz(z+3)(z+3)|_, 22(2+3)
2m 10 41 m
= — _— —l—— —_ —
3 3 12 18

Again, in all the above a real integral has given a real result—a useful check.

- 1)!
We assume that f"~(a) = (n2 : ) 7{ ( /) dz. Then, using the definition of the derivative,
m "

I1l
g

F(a)

- “;;,i“ (= ea)

n—l j{f z—a)”—(z—a—h)”)

(z—a—h)"(z—a)" dz.

By using the binomial theorem for (z — a)® = ([z — a — h] + h)™, this becomes (after a little
rearrangement)

) = Jim 0 > (Z) n f{ G—a _ffﬁ(z —ap

k=1

The terms with £ > 1 all vanish as h — 0: each one contains a positive power of A multiplied by an
integral whose limit for h — 0 is finite. The only surviving term, with & = 1, then gives us

(n—1)! xn / OIS (O

2mi (z—a)"t " 21 [ (2 —a)nt?

f%(a) =

So we’ve shown that if the Cauchy integral formula is true for n — 1, then it is also true for n, and
hence for n+ 1, n + 2, .... But we have shown in lectures that it is true for n = 0 (and 1), so we
can conclude that it holds for all positive n.

The generalized argument theorem states that §[f'(z)/f(z)]dz = 2mi(N — P) where N and P are

the number of zeros and poles of f respectively within the contour C.

2 1
For f(z) = 22X g have

(z4+3)(z —2)

fz) 111
f(z)_z—i—% z—2 z+4+3

and so the integral round the contour |z| = 5/2is 2mi(1—1) = 0. But that agrees with the predictions
of the argument theorem, given that f(z) has one pole (at z = 2) and one zero (at z = —%) within
the contour.



