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21. For C1, y = 0 and dy = 0 while x runs from 1 to 0, then x = 0 and dx = 0 while y runs from 0 to
1. For C2, y = 1− x and dy = −dx. We want the integral

∫
u dx− v dy + i

∫
v dx+ u dy along each

path.
a) u = x and v = 0: ∫

C1

x dx+ i

∫
C1

x dy =

∫ 0

1

x dx+ i

∫ 1

0

0 dy = −1
2∫

C2

x dx+ i

∫
C2

x dy =

∫ 0

1

(x− ix) dx = −1
2
(1− i)

b) u = x and v = y:∫
C1

x dx− y dy + i

∫
C1

x dy + y dx =

∫ 0

1

x dx−
∫ 1

0

y dy = −1

∫
C2

x dx− y dy + i

∫
C2

x dy + y dx =

∫ 0

1

1 + i(1− 2x) dx = −1

We note that (b) is path-independent and agrees with [z2/2]i1. This is as expected because z is an
analytic funtion (unlike Re z).

22. For f(z) = |z|, u =
√
x2 + y2 and v = 0. On C1, y = 0 and dy = 0; thus only

∫
udx is non zero. x

runs from 1 to -1. ∫
C1

√
x2 + y2 dx =

∫ −1
1

|x| dx = −1

On C2, z = eiθ, |z| = 1 and dz = iz dθ:∫
C2

1 dz = i

∫ π

0

eiθ dθ = [eiθ]π0 = −2

Again, we would not have expected these to be the same.

23. Along the unit circle centred on a, z = a+ eiθ and dz = ieiθdθ∮
C

1

z − a
dz = i

∫ 2π

0

1

eiθ
eiθ dθ = i[θ]2π0 = 2πi

∮
C

1

(z − a)n
dz = i

∫ 2π

0

1

einθ
eiθ dθ =

[
ei(1−n)θ

1− n

]2π
0

= 0 for integer n > 1

By Cauchy’s theorem, these results will hold for any contour enclosing the point z = a, not just the
unit circle. For future reference we note also that

∮
(z − a)ndz = 0 for n ≥ 0, since the integrand is

everywhere analytic.



In the following problems, we first use partial fractions to express the integrand as a sum of terms
which resemble those above. Since

∮ (
af(z) + bg(z)

)
dz = a

∮
f(z) dz + b

∮
g(z) dz, we can sum the

weighted contributions from each part. These contributions will then depend solely on whether or
not the pole of the integrand is within the contour.

(a)

f(z) =
1

z − i
The only pole is at z = i.
(i) R = 1/2: the pole is outside the contour, so the function is analytic inside the contour and the
integral is 0.
(ii) R = 2: the pole is inside the contour and the integral is 2πi.

(b)

f(z) =
1

z2 − 3z + 2
=

1

z − 2
− 1

z − 1

(i) R = 1/2: both poles are outside the contour, so the integral is 0.
(ii) R = 3/2: only the pole at z = 1 is inside, so the integral is −2πi.
(iii) R = 5/2: both poles are inside the contour, so the integral is 2πi(−1 + 1) = 0.

(c)

f(z) =
z + 1

z2 − 3z + 2
=

3

z − 2
− 2

z − 1

Here the contributions from the poles at z = 1 and z = 2 are multiplied by −2 and 3 respectively,
so the answers are (i) 0, (ii)−4πi, (iii) (3− 2)× 2πi = 2πi.

(d)

f(z) =
z2 + z + 1

z3 − z2
= −2

z
− 1

z2
+

3

z − 1

Here the second term 1/z2 does not contribute to the integral, where ever the contour lies. So the
answers are (i) −4πi and (ii) 2πi.

24. In each case, we compare the integrand to f(z)/(z − a)n, and use the Cauchy formula to give the
answer 2πif (n−1)(a)/(n− 1)! — or just 2πif(a) for a simple pole (n = 1). It is important to realise
that the analytic part “f(z)” may not all be in the numerator.
a) Here, there is a simple pole at z = 0 and it is inside the contour C1. So “a” = 0, “f(z)” = e3z

and the integral is just 2πi e0 = 2πi.
b) Here there is a double pole inside the contour C1 at z = 0 (so “a” = 0). Also “f(z)” = cos2 2z,
with first derivative = −4 cos 2z sin 2z which vanishes at z = 0. So the integral is zero.
c) Again, the integral is zero. (The sum of (b) and (c) is

∮
C1

(1/z2)dz = 0.)

d) The simple pole at z = 2i is inside the contour C2. So “a” = 2i, “f(z)” = z2 and the integral is
2πi(2i)2 = −8πi.
e) As the denominator can be written (z − 2i)(z + 2i), there are simple poles at z = ±2i, but only
the one at z = 2i is inside the contour C2. So “a” = 2i. We identify “f(z)” with z2/(z + 2i), which
is analytic within C2, giving∮

C2

z2

z2 + 4
dz =

∮
C2

z2

(z + 2i)(z − 2i)
dz = 2πi

z2

z + 2i

∣∣∣∣
z=2i

= 2πi
(2i)2

4i
= −2π.

25. Recalling that |z1 + z2| ≥ |z1| − |z2| (for |z1| ≥ |z2|), we have |z2 + 1| ≥ |z|2 − |1| = R2 − 1. Hence
|z2 + 1|−1 ≤ (R2 − 1)−1. Now by the estimation lemma, for the circular path |z| = R,∣∣∣∣∮ 1

z2 + 1
dz

∣∣∣∣ ≤ 2πR
1

R2 − 1



Hence the limit as R → ∞ is zero. Furthermore if the magnitude of the integral is bounded from
above by zero, the integral itself must tend to zero.
The integrand is proportional to 1/(z− i)− 1/(z+ i), so by Cauchy’s formula the integral along any
circular path |z| = R, with R > 1, will pick up cancelling contributions from the two poles and will
be zero.

26. In the following, the contour C is the unit circle centred on z = 0. In parts (a)-(c) (and in some
subsequent questions) we will need the binomial theorem: for positive integer n,

(a+ b)n = an + nan−1b+ 1
2
n(n− 1)an−2b2 + . . .+ nabn−1 + bn =

n∑
m=0

(
n

m

)
an−mbm

where

(
n

m

)
=

n!

m! (n−m)!
.

a) ∫ 2π

0

cos4 θ dθ =
1

16i

∮
C

(
z +

1

z

)4
dz

z
=

1

16i

∮
C

(
z3 + 4z +

6

z
+

4

z3
+

1

z5

)
dz = 2πi

6

16i
=

3π

4

Here we have used the fact that
∮
zndz = 0 unless n = −1 (see qu. 22). As a useful check, we see

that a positive definite integral has given a real, positive result!

b) ∫ 2π

0

sin6 θ dθ =
1

−64i

∮
C

(
z − 1

z

)6
dz

z
= − 1

64i

∮
C

(
z5 + . . .− 20

z
+ . . .

)
dz = 2πi

20

64i
=

5π

8

c) ∫ 2π

0

cos2n θ dθ =
1

22ni

∮
C

(
z +

1

z

)2n
dz

z
=

1

22ni

∮
C

(
z2n−1 + . . .+

(
2n

n

)
1

z
+ . . .

)
dz

=
2πi

22ni

(2n)!

n!n!
=

2π

22n

(2n)!!(2n− 1)!!

n!n!
=

2π

2n
(2n− 1)!!

n!
= 2π

(2n− 1)!!

(2n)!!

where we have used (2n)!! = 2nn!. (In (b) and (c) we have exploited the fact that the only contribu-
tion will come from the term proportional to 1/z to avoid to calculating the coefficients of the other
terms.)

d) ∫ 2π

0

cos θ

4 cos θ − 5
dθ =

1

2i

∮
C

z + z−1

2(z + z−1)− 5

dz

z
=

1

2i

∮
C

z2 + 1

z(2z2 − 5z + 2)
dz

=
1

4i

∮
C

z2 + 1

z(z − 1
2
)(z − 2)

dz

Now the integrand has simple poles at z = 0, z = 1/2 and z = 2, but only the first two lie within the
contour. By Cauchy’s theorem, we can replace the integral round the unit circle with two smaller
contours, C1 circling z = 0 and C2 circling z = 1/2.

To evaluate each of these we use Cauchy’s integral formula for
∮
f(z)/(z−a)dz, all the terms except

the relevant pole being part of “f(z)” (as in question (23 e) above). This gives

1

4i

∮
C

z2 + 1

z(z − 1
2
)(z − 2)

dz =
2πi

4i

(
z2 + 1

(z − 1
2
)(z − 2)

∣∣∣∣
z=0

+
z2 + 1

z(z − 2)

∣∣∣∣
z= 1

2

)
= −π

3



e) Here, we use cos 2θ = 1
2
(e2iθ + e−2iθ) = 1

2
(z2 + z−2). We end up with a double pole at z = 0 and a

simple pole at z = −1/3 within the unit circle, and evaluate the contribution to each separately as
in the previous part:∫ 2π

0

cos 2θ

3 cos θ + 5
dθ =

1

2i

∮
C

z2 + z−2

3
2
(z + z−1) + 5

dz

z
=

1

3i

∮
C

z4 + 1

z2(z2 + 10z/3 + 1)
dz

=
1

3i

∮
C

z4 + 1

z2(z + 1
3
)(z + 3)

dz =
2πi

3i

(
d

dz

z4 + 1

(z + 1
3
)(z + 3)

∣∣∣∣
z=0

+
z4 + 1

z2(z + 3)

∣∣∣∣
z=− 1

3

)

=
2π

3

(
−10

3
+

41

12

)
=

π

18

Again, in all the above a real integral has given a real result—a useful check.

27. We assume that f (n−1)(a) =
(n− 1)!

2πi

∮
f(z)

(z − a)n
dz. Then, using the definition of the derivative,

f (n)(a) ≡ lim
h→0

f (n−1)(a+ h)− f (n−1)(a)

h

= lim
h→0

(n− 1)!

2πih

(∮
f(z)

(z − a− h)n
dz −

∮
f(z)

(z − a)n
dz

)
= lim

h→0

(n− 1)!

2πih

∮
f(z)

(
(z − a)n − (z − a− h)n

)
(z − a− h)n(z − a)n

dz.

By using the binomial theorem for (z − a)n = ([z − a − h] + h)n, this becomes (after a little
rearrangement)

f (n)(a) = lim
h→0

(n− 1)!

2πi

n∑
k=1

(
n

k

)
hk−1

∮
f(z)

(z − a− h)k(z − a)n
dz.

The terms with k > 1 all vanish as h→ 0: each one contains a positive power of h multiplied by an
integral whose limit for h→ 0 is finite. The only surviving term, with k = 1, then gives us

f (n)(a) =
(n− 1)!× n

2πi

∮
f(z)

(z − a)n+1
dz =

n!

2πi

∮
f(z)

(z − a)n+1
dz.

So we’ve shown that if the Cauchy integral formula is true for n − 1, then it is also true for n, and
hence for n + 1, n + 2, . . . . But we have shown in lectures that it is true for n = 0 (and 1), so we
can conclude that it holds for all positive n.

28. The generalized argument theorem states that
∮

[f ′(z)/f(z)]dz = 2πi(N − P ) where N and P are
the number of zeros and poles of f respectively within the contour C.

For f(z) =
2z + 1

(z + 3)(z − 2)
we have

f ′(z)

f(z)
=

1

z + 1
2

− 1

z − 2
− 1

z + 3

and so the integral round the contour |z| = 5/2 is 2πi(1−1) = 0. But that agrees with the predictions
of the argument theorem, given that f(z) has one pole (at z = 2) and one zero (at z = −1

2
) within

the contour.


