
PHYS20672 Complex Variables and Vector Spaces: Examples 6

Lower priority: ‡. Lowest priority: ‡‡.

44. Cn is the set of all n-tuples of complex numbers, (z1, z2, . . . , zn). If addition and multipli-
cation by a scalar are defined in the usual way for a 1 × n matrix (or row vector), show
that Cn is a complex vector space.

45. The set of all real functions f , g, . . . of a real variable x ∈ [0, 1] is a vector space over
R: the sum of two functions, h = f + g, is defined so that h, when applied to x, gives
f(x) + g(x); the zero function, o, can be defined by o(x) = 0; and the additive inverse
of a function f can be defined as the function that returns −f(x) when applied to x.
The product of f with a real scalar, k = λf , is defined so that k(x) = λ

(
f(x)

)
. The

required properties of commutativity, associativity and distributivity all follow from the
corresponding properties for addition and multiplication of real numbers.

If boundary conditions are specified, this can affect whether or not the functions form a
vector space. Which of the following form a real vector space?

(i) the set of real functions f(x), where x ∈ [0, 1] and f(0) = f(1) = 0.

(ii) the set of real functions satisfying the periodic boundary condition f(0) = f(1).

(iii) the set of real functions for which f(0) = 1.

46. Are the following three vectors linearly independent: |a〉 = (2, 3,−1), |b〉 = (0, 1, 2),
|c〉 = (0, 0,−5)? [Write α|a〉 + β|b〉 + γ|c〉 = |0〉 and prove that the only solution is
α = β = γ = 0.] Find the coordinates of (2,−3, 1) relative to the basis {|a〉, |b〉, |c〉}.

47. Prove that the set of all polynomials in X of degree not exceeding 3, with complex
coefficients, is a complex vector space. [You can regard 0 as an honorary polynomial of
degree zero.] Write down the additive inverse of the vector 1 + iX + (2 + 3i)X3. Find a
basis for the space and hence determine its dimension.
What changes if only odd functions of X are considered?
Why is the set of cubic polynomials not a vector space?

48. ‡‡ In this course, the scalars that appear in the definition of a vector space are generally
assumed to be either real or complex numbers, since these are the cases are most often
met in physical applications. But this need not always be the case. For example, consider
the set W of real numbers of the form x = p+ q

√
2, where p and q are rational numbers

(i.e., p and q can be written as ratios of integers). Just as for real and complex numbers,
addition, subtraction, multiplication and division can all be defined for rational numbers,
with the exception (as usual) of division by zero.
Show that W is a two-dimensional vector space, if the scalars are taken to be the set of
rational numbers. In particular, explain why the zero vector |0〉 is unique.



49. For an arbitrary vector space,

(i) show that the zero vector |0〉 is unique. [You need to show that if there is a second
vector |0′〉 satisfying |a〉+ |0′〉 = |a〉, then |0′〉 = |0〉.]

(ii) show that |−a〉, the additive inverse of vector |a〉, is unique.

(iii) show that 0|a〉 = |0〉 for any vector |a〉.

50. Regard the row vectors in Q.46 as ordinary Cartesian 3-vectors, so that for example
|a〉 ≡ a = 2i + 3j − k. Apply the method of Gram–Schmidt orthogonalization to the
vectors {a,b, c} to obtain an orthonormal set. [In this problem the scalar product is the
usual dot product, 〈a|b〉 ≡ a · b.]

51. (i) Prove the Schwarz inequality,
|〈a|b〉| ≤ |a||b|.

[If either vector is zero, there is nothing to prove (why not?), so you can assume that
|b〉 is nonzero. Define |c〉 = |a〉 − λ|b〉 with λ = 〈b|a〉/〈b|b〉. Then use 〈c|c〉 ≥ 0.]

(ii) Use the Schwarz inequality to prove the triangle inequality,

|c| ≤ |a|+ |b| if |c〉 = |a〉+ |b〉.

[Both sides are nonnegative, so you can consider the squares of each side.]
Use the triangle inequality to show that if |c〉 is defined as above, then

||a| − |b|| ≤ |c|.

[Note that “| · · · |” has two different meanings in the line above.]

52. Let |a〉 = 3i|e1〉− 7i|e2〉 and |b〉 = |e1〉+ 2|e2〉, where |e1〉 and |e2〉 are orthonormal. Show
explicitly that |a〉 and |b〉 satisfy the triangle and Schwarz inequalities.

53. Let {|ei〉} be an orthonormal basis of VN , so that we can write |a〉 =
∑

i ai|ei〉 and
|b〉 =

∑
i bi|ei〉. Show that

(i) bi = 〈ei|b〉 and ai = 〈a|ei〉.
(ii) 〈a|b〉 =

∑
i aibi = 〈b|a〉.

54. The scalar product of two real functions u(x) and v(x), where x ∈ [−1, 1], is defined by

〈u|v〉 =

∫ 1

−1
u(x)v(x) dx.

Let pn(x) be polynomials of degree n in x. Given that these polynomials form an or-
thonormal set of functions on the interval [−1, 1], find p0, p1 and p2. [The results are
unique up to the choice of sign.] Where have you seen these polynomials before, perhaps
with a different normalization?

55. Show that if |a〉 is a nonzero vector in VN , the set W of vectors orthogonal to |a〉 is a
vector space of dimension N − 1. [Since every vector in W is also a vector in VN , we say
that W is a subspace of VN .]



56. ‡ Let {|ai〉} be a set of N vectors spanning VN . This basis is not necessarily orthogonal.

(i) Prove that for each |ai〉, a so-called reciprocal vector |ăi〉 can be constructed such
that 〈ăi|aj〉 = δij. [You could use the Gram–Schmidt procedure to construct an
orthonormal basis for the subspace spanned by {|aj〉, j 6= i}, then construct |ăi〉
from these unit vectors and |ai〉. Other methods are possible.]

(ii) Show that the formula ∑
i

|ai〉〈ăi| = 1̂

generalizes the completeness relation
∑

i |ei〉〈ei| = 1̂ to a non-orthonormal basis.

(iii) Use the result of (ii) to show that if Â|ai〉 = |bi〉, then

Â =
∑
i

|bi〉〈ăi| =
∑
i,j

|ai〉〈ăi|Â|aj〉〈ăj|.

(iv) Show that if the vectors {|bi〉} are linearly independent, then the inverse operator
can be constructed as

Â−1 =
∑
i

|ai〉〈b̆i|.

What goes wrong if they are not linearly independent?

[Reciprocal vectors are used frequently in solid state physics, because crystal axes are
typically not orthogonal (most crystals are not cubic). But simply knowing that they can
be constructed is sometimes useful elsewhere – Q.61 gives an example.]

57. Show that the set of linear operators on a vector space V is itself a vector space.

58. ‡ Let Û be a unitary operator on VN . If its eigenvalues ωi are all different from one
another, show that the eigenvectors of Û are orthogonal. Also show that the eigenvalues
have unit modulus, |ωi| = 1.

59. For each of the following matrices, state whether it is Hermitian, unitary, both, or neither:

(i)

(
0 −i
i 0

)
; (ii)

(
0 i
1 0

)
; (iii)

(
2 1 + i

1− i 3

)
; (iv)

(
a b
0 a

)
, b 6= 0.

Calculate the eigenvalues and eigenvectors in each case, verifying orthogonality of the
eigenvectors where appropriate. Comment on your results for (iv).

60. An example of a 3D rotation matrix iscos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Find its eigenvalues and normalized eigenvectors and verify that they have the properties
expected for a unitary matrix. [These properties are stated in Q.58.]



61. ‡ This question should be of interest if you tried Q.56 on reciprocal vectors.

Consider the eigenvalue problem

Â|ui〉 = λi|ui〉,

where Â is an operator on VN and the set of eigenvectors {|ui〉} spans VN . Such an
operator is said to be diagonalizable; see part (c). In general, the eigenvectors of a
diagonalizable operator need not be orthogonal.

(a) Use the eigenvalue equation to show that

Â =
∑
i

λi |ui〉〈ŭi|,

where |ŭi〉 is the vector reciprocal to |ui〉; see Q.56. This generalizes the spectral
representation to operators that are neither Hermitian nor unitary.

(b) Use the spectral representation of Â to show that the bra vectors {〈ŭi|} satisfy the
equation

〈ŭi|Â = λi〈ŭi| ;

we say that 〈ŭi| is a left eigenvector of Â and that |ui〉 is a right eigenvector.

(c) ‡‡ Show that the matrix A with elements Aij = 〈ei|Â|ej〉, where {|ei〉} is a complete,
orthonormal set of vectors, can be diagonalized by the transformation

Adiag = S−1AS,

where S is a matrix whose columns are the right eigenvectors of A. What can you
say about the rows of S−1? [A transformation of this kind is called a similarity
transformation; a unitary transformation is a particular kind of similarity trans-
formation.]

62. Show that for any unitary matrix U, |detU| = 1.

[Note that for any square matrix A, det(Aᵀ) = detA. Use this to show that det(U†) =
detU. Then use UU† = I to prove that |detU|2 = 1.]

63. ‡ For a matrix M that is either Hermitian or unitary, use the fact that M can be diag-
onalized by a unitary transformation to show that the trace of M equals the sum of its
eigenvalues and its determinant equals the product of its eigenvalues.
Use these results to show that

det[exp(M)] = exp[Tr(M)]

for the cases where M is Hermitian or unitary.

‡‡ If you have tried Q.61(c), generalize to the case of a diagonalizable matrix. [The result
also applies to square matrices that are not diagonalizable.]



64. ‡ The characteristic equation satisfied by the eigenvalues of an N × N matrix M is the
polynomial equation

det(λI−M) =
N∑
r=0

crλ
r = 0.

The Cayley–Hamilton theorem states that M satisfies an equation of the same form, i.e.

N∑
r=0

crM
r = 0,

in which M0 is interpreted as the unit matrix I.

Prove the Cayley–Hamilton theorem for the cases where M is Hermitian or unitary (or,
more generally, diagonalizable ‡‡). It is a potentially useful result, because it means
that MN (and any higher power of M) can be expressed as a linear combination of the
matrices M0 to MN−1. The theorem also applies to square matrices M that cannot be
diagonalized, but this further generalization is not very easy to prove.


