Lower priority: 1. Lowest priority: 1i. Harder problem, but still good practice:
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Evaluate the following integrals using contour integration:
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37. Evaluate the following integrals using contour integration; in each case check that the
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conditions for Jordan’s lemma to hold are satisfied:
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What would we get in each case if we replaced sin by cos?

Let a be a real number, and C be the (open) contour round a semicircle of radius e,
centred on the point z = a, starting and ending on the real axis and taken anticlockwise.
Consider the integral around C of (z — a)" where n is an integer which can be positive,

zero or negative. Show that the integral vanishes for odd n, except for n = —1, and is 7
for n = —1. Show also that for even n, the limit as € — 0 is zero if n > —1 and undefined
ifn < —1.

Hence show that if f(z) has a simple pole at z = a, the integral around C' is
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is the residue of f at z = a. Evaluate the following, where in each case C' is the small
semicircle around the pole described above:
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The following integrals involve poles on the real axis. Find the Cauchy principal value
using contour integration. Where appropriate, check that the conditions for Jordan’s
lemma to hold are satisfied.
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For (c), the pole appears if you replace sin®z by %(1 —cos2r) = %Re(l — ™), so it is
like the example in Lecture 15 where the principal value integral arose as an intermediate
step in calculating a well-defined integral.

It The integrand in (c) is analytic for all finite z, so the integral will be independent
of the path taken between —oo and oco. Use that property [and the residue theorem] to
evaluate the integral without introducing a principal-value integral.
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(a) Evaluate
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where o > 0 but ¢ can be positive or negative. [Consider the cases of positive and
negative ¢ separately.|

(b) Evaluate
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for a >0 and k£ < 0.

*1 If you like a real challenge, try the case k > 0. For the square root function, use the
branch for which Re[v/z — ia] > 0. Your final result should be I = (1+i)e /27 /k.

Choose a suitable contour to evaluate

/j%dx.

Use an appropriate contour integral of the functions suggested to obtain the following
sums of series:
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I By considering a change of variable w = 1/z, and defining g(w) = f(1/w), show that

frera= ¢ 2

where C" is the curve on the w plane corresponding to the curve C' in the z plane, but
traversed in the conventional (anticlockwise) direction. For instance if C' is the circle
|z| = R, C" is the circle |[w| = 1/R. (Pay attention to the sign!)

Hence show that the sum of the residues of f(z) within C' must equal the sum of the
residues of g(w)/w? within C’. Verify this explicitly for f(z) = 1/(2* — 32 + 2) and C

being the circle |z| = R for R=1, 2 and 2.



