PHYS20672 Complex Variables and Vector Spaces: Examples 1

These are mostly problems for basic practice, so there is no prioritization.

1. Write the following expressions in the form x+iy and sketch their locations on the complex plane:

(a)
$$\frac{1}{10}(3+4i)^2$$
 (b) $\frac{4+5i}{3-4i}$ (c) $3e^{5i\pi/3}$ (d) $e^{1+i\pi/3}$ (e) $1+ie^{7i\pi/6}$

For each case find |z| and the value of the argument θ (for $0 \le \theta < 2\pi$).

2. Sketch the curves

(a)
$$|z - 1| = 2$$
 (b) $\arg(z - i) = \pi/4$
(c) $\operatorname{Re}(z^2) = 3$ for $y > 0$ (d) $\operatorname{Re}(e^z) = 1$ for $-\pi/2 < y < \pi/2$.

3. The inequalities given below specify sets of points in the complex plane. Make sketches to illustrate these sets and indicate which boundaries (if any) form part of each set.

(a)
$$\operatorname{Re} z > -3$$
 (b) $1 < |z - 1 - i| \le 2$ (c) $|\arg(z - 1 - i)| \le \pi/4$ (d) $|z - 1| < |z + 1|$.

4. Give a geometric argument to show that for any two complex numbers z_1 and z_2 ,

$$|(|z_1| - |z_2|)| \le |z_1 \pm z_2| \le |z_1| + |z_2|.$$

[Hint: draw a triangle with sides z_1 , z_2 and $z_1 \pm z_2$. Make use of the inequality $a + b \ge c$ for the three sides of a triangle.]

Hence show that on the circle |z| = R, with R > 1,

(a)
$$R^2 - 1 \le |z^2 \pm 1| \le R^2 + 1$$
 (b) $\left| \frac{z^2 + 1}{z^2 - 1} \right| \le \frac{R^2 + 1}{R^2 - 1}$.

5. Calculate the following:

(a)
$$\sqrt{1+i}$$
 (b) $\text{Ln}(1+i)$ (c) $\cos(\pi/4+i)$ (d) $\arcsin i$

6. Verify the following identities:

(a)
$$\sinh(iz) = i \sin z$$
 (b) $\sin(iz) = i \sinh z$ (c) $\arcsin(iz) = i \operatorname{arcsinh} z$
(d) $\operatorname{arcsinh} z = \ln(z + \sqrt{1+z^2})$ (e) $\operatorname{arctanh} z = \frac{1}{2} \ln\left(\frac{1+z}{1-z}\right)$

Show that $\cos^2 z + \sin^2 z = 1$ even for complex z.

7. For each of the following functions, specify the domain, i.e. the set of complex numbers for which the function can be defined and is finite:

(a)
$$f(z) = \frac{1}{z^2 + 1}$$
 (b) $f(z) = \frac{z}{z + \overline{z}}$ (c) $\frac{1}{|z|^2 - 1}$ (d) $\operatorname{Ln} z$

For which is the domain an open, connected set of points of the complex plane?

- 8. Consider the function $f(z) = z^3 + 5z^2 + 2$. Calculate (numerically, e.g. using Mathematica) f(z) for $z = \exp(in\pi/4)$ for n = 0 to 8. Hence sketch the path traced in the *w*-plane for w = f(z) as *z* follows the unit circle, with $0 \le \theta < 2\pi$. Also, sketch a plot of arg *w* as a function of θ . Repeat for the function $z^3 + 5z^2 + 8$. Relate your results for the increase in arg *w* to the number of zeros of each function with a modulus less than one.
- 9. For the functions $w = z^2$ and $w = \operatorname{Ln} z$, plot lines of constant u and v in the complex plane z = x + iy. If you want to compare with Handout 1, note that in the handout lines of constant x and y were plotted in the w plane; thus, you should compare with the plots of the inverse functions.