
Factorisation of partition functions

In lectures, we repeatedly use ZN = (Z1)
N for independent distinguishable particles, and we also used Z1 = Ztr

1 Z
rot
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1 for the
independent contributions of vibrational, rotation and translational degrees of freedom to a single-particle’s partition function. In these
notes we prove that where the energy of a system separates into independent contributions like this, the partition function factorises.

Many-particle system with two single-particle energy levels

Let’s start with a system that has two single-particle energy levels, ε1 and ε2. The single-particle partition function is

Z1 = e−ε1β + e−ε2β.

The partition function for two distinguishable particles is

Z2 = e−2ε1β + 2e−(ε1+ε2)β + e−2ε2β = (Z1)
2,

where the second state is multiplied by 2 becase there are two ways that two distingishable particles can be in different levels.

In general, for N particles, the energies are nε1 + (N − n)ε2, for 0 ≤ n ≤ N , and there are N !/n!(N − n)! separate microstate of this
energy. So
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If there are more than two energy levels, Z1 has more terms, but a similar derivation can be done. However we won’t show it because it
is just a special case of the next section.



Many independent subsystems, general case

In full generality, let us suppose that a microstate has N independent contributions to its energy, the allowed values of the first being
ε(1)1 , ε(1)2 , ε(1)3 , . . ., and similarly for the others, with ε

(n)
i being the ith allowed value of the nth contribution. Also, let Z(n) be the partition

function for the nth contribution:
Z(n) =

∑
i

exp
(
−ε(n)i β

)
.

Then the full partition function is
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= Z(1)Z(2)Z(3) . . . Z(N).

It is the step between the second and third lines, in which we interchange the order of addition and multiplication, that is tricky at first!
But it is no harder than the following (in reverse):

(a+ b+ c)(p+ q + r)(x+ y + z) = apx+ apy + apz + aqx+ aqy + aqz + arx+ ary + arz + bpx+ . . .+ crz

More compactly,
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