Quantum Mechanics of Atoms and Molecules (PC 3602)
 Exercise 4

1. (a) The time-dependent Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{V}(t)$ with

$$
\hat{H}_{0}=\frac{e B_{0}}{m} \hat{S}_{z}, \quad \hat{V}(t)=\frac{e B_{1}}{m}\left(\hat{S}_{x} \cos \omega t+\hat{S}_{y} \sin \omega t\right)
$$

describes a spin $S=1 / 2$ system which is subject to the static magnetic field $\left(0,0, B_{0}\right)$ and the rotating magnetic field $\left(B_{1} \cos \omega t, B_{1} \sin \omega t, 0\right)$. B_{0} and B_{1} are uniform throughout space. Initially, at time $t=0$, the spin of the system is pointing in the direction of the negative z-axis. Assuming B_{1} is weak and taking $\hat{V}(t)$ as perturbation, calculate the probability that at time $t>0$ the spin points in the positive z-axis.
(b) Discuss at what value of ω, the perturbation theory breaks down for sufficiently large t, however weak B_{1}. Suggest a criterion in t for the perturbation theory to hold.
2. The spin interaction energy of positronium in a magnetic field can be written as a (4×4) matrix Hamiltonian

$$
\hat{H}=\left(\begin{array}{llll}
\varepsilon_{1} & v & 0 & 0 \\
v & \varepsilon_{2} & 0 & 0 \\
0 & 0 & \varepsilon_{3} & 0 \\
0 & 0 & 0 & \varepsilon_{4}
\end{array}\right)
$$

Calculate all eigenvalues of \hat{H} exactly. Compare the perturbation results of Exercise 3.2 for the energies with the corresponding exact energies under the conditions that $\varepsilon_{1}<\varepsilon_{2}$ and $v \ll \varepsilon_{2}-\varepsilon_{1}$.
3. In H_{2}^{+}problem, using molecular orbitals as linear combination of two hydrogen atomic ground-state orbitals ϕ_{a} and ϕ_{b}, i.e., $\psi=c_{a} \phi_{a}+c_{b} \phi_{b}$, we derive the matrix equation

$$
\left(\begin{array}{ll}
\alpha-E & \beta-E S \\
\beta-E S & \alpha-E
\end{array}\right)\binom{c_{a}}{c_{b}}=0
$$

where three integrals are defined as $\alpha=\left\langle\phi_{a}\right| \hat{H}\left|\phi_{a}\right\rangle, \beta=\left\langle\phi_{a}\right| \hat{H}\left|\phi_{b}\right\rangle$ and $S=\left\langle\phi_{a} \mid \phi_{b}\right\rangle$. (a) Determine energy E and molecular wavefunction coefficients c_{a} and c_{b} in terms of α, β and S.
(b) The above matrix equation holds for a homonuclear diatomic molecule. Write down similar equation for a heteronuclear molecule. Explain any integral you may use. Determine the energy E in terms of these integrals.
4. (a) Write down the ground-state electron term of H_{2} molecule.
(b) Write down the corresponding ground-state wavefunction and explain each notation you use.
5. (a) Write down the ground-state electron configuration of $\mathrm{Li}_{2}, \mathrm{Be}_{2}$ and N_{2}, using molecule orbitals discussed in class.
(b) By counting the bond order of these configurations, determine which molecules is unstable and which molecule is stable. Derive the ground-state molecular term of the stable molecules.

