Quantum Mechanics of Atoms and Molecules (PC 3602) Exercise 3

1. Let $\{|n\rangle, n=0,1,2, \cdots\}$ be the eigenstates of an harmonic oscillator of mass m and frequency ω and let a perturbation potential be given by

$$
\hat{V}=A x^{3}
$$

where A is a small constant.
(a) Prove

$$
\hat{V}|n\rangle=\alpha_{1}|n-3\rangle+\alpha_{2}|n-1\rangle+\alpha_{3}|n+1\rangle+\alpha_{4}|n+3\rangle
$$

and determine the constants $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}.
(b) Calculate the 2nd-order energy correction

$$
E_{n}^{(2)}=\sum_{n^{\prime} \neq n} \frac{V_{n n^{\prime}} V_{n^{\prime} n}}{e_{n}-e_{n^{\prime}}}
$$

where $V_{n^{\prime} n}=\left\langle n^{\prime}\right| \hat{V}|n\rangle$ and $e_{n}=\hbar \omega(n+1 / 2)$.
2. The spin interaction energy of positronium in a magnetic field can be written as a (4×4) matrix Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{V}$ with

$$
\hat{H}_{0}=\left(\begin{array}{llll}
\varepsilon_{1} & 0 & 0 & 0 \\
0 & \varepsilon_{2} & 0 & 0 \\
0 & 0 & \varepsilon_{3} & 0 \\
0 & 0 & 0 & \varepsilon_{4}
\end{array}\right), \quad \hat{V}=\left(\begin{array}{llll}
0 & v & 0 & 0 \\
v & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Apply perturbation theory to obtain corrections to the first and second energies ε_{1} and ε_{2} up to second order and the corresponding states up to first order, treating \hat{V} as perturbation.
3. Consider the $L S$-coupling for the electron in a hydrogen atom. The perturbation potential is given by

$$
\hat{V}_{L S}=A(r) \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}, \quad A(r)=\frac{1}{2 m^{2} c^{2}} \frac{e^{2}}{4 \pi \epsilon_{0} r^{3}}
$$

Prove the 1st-order energy correction is given by

$$
E_{n l s j}^{(1)}=\frac{\left|e_{n}\right|}{n} \alpha^{2}\left(\frac{1}{l+1 / 2}-\frac{1}{j+1 / 2}\right), \quad j=l \pm \frac{1}{2}, \quad l \neq 0
$$

where

$$
e_{n}=-\frac{e^{2}}{8 \pi \epsilon_{0} a_{0}} \frac{1}{n^{2}}
$$

is the energy values of hydrogen (without the perturbation) and $\alpha=\hbar / m c a_{0}$ is a constant. Hint: for hydrogen orbital $R_{n l}(r)$, we have the following integral

$$
\left\langle\frac{1}{r^{3}}\right\rangle_{n l}=\int_{0}^{\infty} r^{2} d r R_{n l}^{2} \frac{1}{r^{3}}=\frac{2}{a_{0}^{3} n^{3} l(l+1)(2 l+1)}, \quad l \neq 0 .
$$

4. As we have discussed in class, the one-dimensional harmonic oscillator

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} m \omega^{2} x^{2}
$$

has the ground-state energy $E_{0}=\hbar \omega / 2$ and the ground-state wavefunction

$$
\phi_{0}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right) .
$$

If we choose a trial wavefunction in the form

$$
\phi_{t}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \exp \left(-\alpha x^{2} / 2\right)
$$

proof that the variational method with α as the variational parameter will give the exact result of $\alpha=m \omega / \hbar$ and $E_{0}=\hbar \omega / 2$.
5. Use a Gaussian function to estimate the ground-state energy of hydrogen atom. Compare your result with the exact one.
6. A one-dimensional harmonic oscillator of mass m and angular frequency ω in its ground state is subject to a small constant force F acting for a time interval τ. What value of τ gives the greatest chance that the oscillator will be found in its first excited state thereafter?

