Quantum Mechanics of Atoms and Molecules (PC3602) Exercise 2

- 1. A particle has spin quantum number s = 1.
 - (a) What are the eigenvalues of \hat{S}_z ?
 - (b) Using the eigenstates of \hat{S}_z as basis, determine in matrix form its operators \hat{S}_z , and \hat{S}^{\pm} .
 - (c) Determine the eigenvalues and eigenstates of \hat{S}_y .
- 2. (a) Prove any one of the following three commutation relationships

$$\begin{bmatrix} \hat{L}_x, \ \hat{L}_y \end{bmatrix} = i\hbar\hat{L}_z, \quad \begin{bmatrix} \hat{L}_y, \ \hat{L}_z \end{bmatrix} = i\hbar\hat{L}_x, \quad \begin{bmatrix} \hat{L}_z, \ \hat{L}_x \end{bmatrix} = i\hbar\hat{L}_y.$$

(b) Use (a) to prove

$$\begin{bmatrix} \hat{L}_z, \ \hat{L}^{\pm} \end{bmatrix} = \pm \hbar \hat{L}^{\pm}, \quad \begin{bmatrix} \hat{L}^+, \ \hat{L}^- \end{bmatrix} = 2\hbar \hat{L}_z$$

where $\hat{L}^{\pm} = \hat{L}_x \pm i\hat{L}_y$ are defined as raising and lowering operators for angular momentum.

(c) Prove

$$\hat{L}^{+}\hat{L}^{-} = \hat{L}^{2} - \hat{L}_{z}^{2} + \hbar\hat{L}_{z}, \quad \hat{L}^{-}\hat{L}^{+} = \hat{L}^{2} - \hat{L}_{z}^{2} - \hbar\hat{L}_{z}$$

where $\hat{L}^2 = \hat{\mathbf{L}}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$.

3. (a) Prove the following commutation relationships

$$\begin{bmatrix} \hat{L}^2, \ \hat{L}_1^2 \end{bmatrix} = \begin{bmatrix} \hat{L}^2, \ \hat{L}_2^2 \end{bmatrix} = \begin{bmatrix} \hat{L}^2, \ \hat{L}_z \end{bmatrix} = 0$$
$$\begin{bmatrix} \hat{L}_z, \ \hat{L}_1^2 \end{bmatrix} = \begin{bmatrix} \hat{L}_z, \ \hat{L}_2^2 \end{bmatrix} = 0$$

where $\hat{\mathbf{L}} = \hat{\mathbf{L}}_1 + \hat{\mathbf{L}}_2$ is the total angular momentum, $\hat{L}_z = \hat{L}_{z1} + \hat{L}_{z2}$ is its zcomponent, and we have assumed $[\hat{L}_1^2, \hat{L}_2^2] = 0$. Hence the good quantum numbers for the eigenstates of \hat{L}^2 are (l_1, l_2, l, m) , i.e., the corresponding quantum numbers of the operators $\hat{L}_1^2, \hat{L}_2^2, \hat{L}^2$ and \hat{L}_z .

(b) Apply angular momentum addition theorem to obtain all eigenvalues of the following Hamiltonian

$$H = \hat{\mathbf{L}}_1 \cdot \hat{\mathbf{L}}_2 + \alpha \hat{L}_z$$

where α is a constant, $\hat{L}_z = \hat{L}_{z1} + \hat{L}_{z2}$ and the angular momentum quantum numbers of $\hat{\mathbf{L}}_1$ and $\hat{\mathbf{L}}_2$ are $l_1 = 1$ and $l_2 = 3/2$ respectively. Hint: use $\hat{\mathbf{L}}^2 = \hat{\mathbf{L}}_1^2 + \hat{\mathbf{L}}_2^2 + 2\hat{\mathbf{L}}_1 \cdot \hat{\mathbf{L}}_2$. 4. Two interacting spins (both with s = 1/2) have the following Hamiltonian

$$\hat{H} = \alpha \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 \; ,$$

where α is the coupling constant.

(a) Show that

$$\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = \frac{1}{2} \left(\hat{S}_1^+ \hat{S}_2^- + \hat{S}_1^- \hat{S}_2^+ \right) + \hat{S}_1^z \hat{S}_2^z \ .$$

(b) Use Angular Momentum Addition Theorem to determine its eigenvalues and their degeneracies.

(c) Determine the corresponding eigenstates in terms of the single-spin states $|\uparrow\rangle$ and $|\downarrow\rangle$. Hint: Use results of Part (b) to construct four different two-spin states in terms of one-spin states $|\uparrow\rangle$ and $|\downarrow\rangle$ and use Part (a) to prove that they are indeed eigenstates of \hat{H} .

- 5. (a) State the complete Hund's rules.(b). Write down electron configuration of boron and derive its atomic terms. Which one corresponds to its ground state?(c) Repeat Part (b) for Carbon.
- 6. Consider a quantum system of two identical particles. In the independent-particle approximation, given n single-particle states $[\phi_i(x), i = 1, 2, \dots, n; n \ge 2]$, prove that there are n(n-1)/2 possible antisymmetric states and n(n+1)/2 symmetric states for the two-particle system. [Note: In proving this theorem, you may as well construct all these states, starting with n = 2, 3, etc., then extending to general n and proving it by induction.]