Quantum Mechanics of Atoms and Molecules (PC 3602) Exercise 1

1. (a) Verify in details that

$$
\left[\hat{x}, \hat{p}_{x}\right]=i \hbar .
$$

(b) Determine the transposed operator of \hat{p}_{x} and prove that \hat{p}_{x} is a Hermitian operator.
(c) Exponential operator of \hat{A} is defined as

$$
e^{\hat{A}}=1+\sum_{n=1}^{\infty} \frac{1}{n!}(\hat{A})^{n} .
$$

Prove that if Φ is an eigenstate of \hat{A} with eigenvalue α, Φ is also an eigenstate of $e^{\hat{A}}$. Determine the corresponding eigenvalue.
2. Use Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \Psi(\mathbf{r}, t)
$$

to obtain the equivalent of classical continuity equation

$$
\frac{\partial}{\partial t} \rho(\mathbf{r}, t)+\nabla \cdot \mathbf{j}(\mathbf{r}, t)=0
$$

with the density and current defined as

$$
\rho(\mathbf{r}, t) \equiv|\Psi(\mathbf{r}, t)|^{2}, \quad \mathbf{j}(\mathbf{r}, t)=\frac{i \hbar}{2 m}\left(\Psi \nabla \Psi^{*}-\Psi^{*} \nabla \Psi\right) .
$$

For hints, see Mandl's $Q M$, Hint for Problem 1.6.
3. (a) Given the definition of creation and destruction operators as

$$
\hat{a}^{\dagger} \equiv \sqrt{\frac{m \omega}{2 \hbar}} \hat{x}-\frac{i \hat{p}}{\sqrt{2 m \hbar \omega}}, \quad \hat{a} \equiv \sqrt{\frac{m \omega}{2 \hbar}} \hat{x}+\frac{i \hat{p}}{\sqrt{2 m \hbar \omega}}
$$

Prove their commutation is

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]=1
$$

(b) If state $|n\rangle$ is an eigenstate state of operator $\hat{n} \equiv \hat{a}^{\dagger} \hat{a}$ with eigenvalue n,

$$
\hat{n}|n\rangle=n|n\rangle
$$

prove that the state

$$
|n+1\rangle \equiv \frac{\hat{a}^{\dagger}}{\sqrt{n+1}}|n\rangle
$$

is also an eigenstate of \hat{n} with eigenvalue $(n+1)$.
(c) Prove that state $|n+1\rangle$ is normalized if $|n\rangle$ is normalized.
4. Three-dimensional (3D) harmonic oscillator has the following Hamiltonian

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{1}{2} m \omega^{2} r^{2} .
$$

(a) Show that this Hamiltonian can be separated into three independent parts, each of which is a 1D harmonic oscillator.
(b) Determine its ground state and ground-state energy.
(c) Show that the next two energy levels are degenerate and determine the energies and their degeneracies.
5. (a) Consider a spin- $1 / 2$ system. Use eigenstates of S^{z} as basis, show spin raising and lowering operators S^{+}and S^{-}can be written in matrices as

$$
\hat{S}^{+}=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \hat{S}^{-}=\hbar\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Hint: You may use general angular momentum formula

$$
\hat{L}^{ \pm}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle
$$

(b) Consider an electron in a magnetic field. Suppose the field makes an angle θ with the z axis and is given by $\mathbf{B}=(B \sin \theta, 0, B \cos \theta)$. The magnetic energy potential is, using magnetic moment $\mu_{s}=-e \hat{\mathbf{S}} / m, \hat{H}_{m}=-\mu_{s} \cdot \mathbf{B}=$ $\frac{e}{m} \hat{\mathbf{S}} \cdot \mathbf{B}=\frac{e B}{m}\left(\sin \theta \hat{S}_{x}+\cos \theta \hat{S}_{z}\right)$. Find its eigenvalues and eigenstates.

