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3.1 Time-independent PT (nondegenerate)

3.1.1 Introduction

Two quantum problems can be solved exactly, they are harmonic oscillator and hy-
drogen (or hydrogen-like) atom. Most other quantum problems can not be solved
exactly. One has to develop approximate method to solve such problem.

Consider a Hamiltonian Ĥ, its Schrödinger eq.

ĤΨp = EpΨp, p = quantum no.

is difficult to solve. If Ĥ can be written as

Ĥ = Ĥ0 + V̂

where V̂ is time-independent and ”small”, and the Schrödinger eq. of Ĥ0 has been
solved

Ĥ0Φk = ekΦk → Ĥ0 |Φk〉 = ek |Φk〉
where k is the quantum number labelling the nondegenerate states. We wish to use
the information of Ĥ0 to find the eigenstates and eigenvalues of Ĥ. Ĥ0 is usually
referred to as unperturbed Hamiltonian, V̂ as perturbation potential (operator).

In principle (the completeness principle), any state Ψp can be written as a linear
combination of Φk as

|Ψp〉 =
∑

k

Cpk |Φk〉

where {Cpk} are constants to be determined by eq. of Ĥ, together with eigenvalue
Ep. Since the dimensionality (total number of the possible k) is in general infinite,

the exact solution is not easy. However, since the perturbation V̂ is assumed small,
it is not difficult to get approximate solution for |Ψp〉 and Ep.

3.1.2 Perturbation expansion

Obviously, if V̂ is zero, p = k, |Ψk〉 = |Φk〉, Ek = ek. Hence, for non-zero V̂ , this
solution {p = k, |Ψk〉 = |Φk〉 , Ek = ek} is referred to as zero-order perturbation
results. We need to go beyond this, and find nontrivial correction to this zero-order
results. In order to do it in a systematic way, we introduce a parameter λ in the
Hamiltonian

Ĥ (λ) = Ĥ0 + λV̂ , 0 ≤ λ ≤ 1

so that as λ → 0, solutions for Ĥ (λ) is reduced to that of Ĥ0 and what we want is
the results in the limit λ = 1. In perturbation theory, we assume

p = k
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i.e., the quantum number for the states of Ĥ is same as that of Ĥ0. Therefore, we
can expand each of the eigenvalues and eigenstates of Ĥ (λ) in terms of powers of λ
as

Ek = E
(0)
k + λE

(1)
k + λ2E

(2)
k + λ3E

(3)
k + · · ·

Ψk = Ψ
(0)
k + λΨ

(1)
k + λ2Ψ

(2)
k + λ3Ψ

(3)
k + · · ·

where E
(0)
k = ek is the zero-order approximation to the k-th eigenvalue of Ĥ, and

E
(1)
k , E

(2)
k , E

(3)
k , · · · are the successive correction to this. Similarly, Ψ

(0)
k = Φk is the

zero-order appro. to k-th eigenstate of Ĥ and Ψ
(1)
k , Ψ

(2)
k , Ψ

(3)
k , · · · are the successive

correction to this.
In order to find E

(1)
k , E

(2)
k , E

(3)
k , · · · and Ψ

(1)
k , Ψ

(2)
k , Ψ

(3)
k , · · ·, we substitute the ex-

pansions into the original Schrödinger eq.

ĤΨk = EkΨk

or

(

Ĥ0 + λV̂
) (

Ψ
(0)
k + λΨ

(1)
k + λ2Ψ

(2)
k + · · ·

)

=
(

E
(0)
k + λE

(1)
k + λ2E

(2)
k + · · ·

) (

Ψ
(0)
k + λΨ

(1)
k + λ2Ψ

(2)
k + · · ·

)

or, each side is arranged according to the powers of λ

Ĥ0Ψ
(0)
k + λ

(

V̂ Ψ
(0)
k + Ĥ0Ψ

(1)
k

)

+ λ2
(

V̂ Ψ
(1)
k + Ĥ0Ψ

(2)
k

)

+ · · ·
= E

(0)
k Ψ

(0)
k + λ

(

E
(1)
k Ψ

(0)
k + E

(0)
k Ψ

(1)
k

)

+ λ2
(

E
(2)
k Ψ

(0)
k + E

(1)
k Ψ

(1)
k + E

(0)
k Ψ

(2)
k

)

+ · · ·

Equating the coefficients of λ on both sides of the eq. (consider λ as an arbitrary
number, this must be true), we have

Ĥ0Ψ
(0)
k = E

(0)
k Ψ

(0)
k → Ψ

(0)
k = Φk, E

(0)
k = ek

as zero-order result, and

V̂ Ψ
(0)
k + Ĥ0Ψ

(1)
k = E

(1)
k Ψ

(0)
k + E

(0)
k Ψ

(1)
k

as first-order eq. for E
(1)
k and Ψ

(1)
k and

V̂ Ψ
(1)
k + Ĥ0Ψ

(2)
k = E

(2)
k Ψ

(0)
k + E

(1)
k Ψ

(1)
k + E

(0)
k Ψ

(2)
k

as second-order eq. for E
(2)
k and Ψ

(2)
k etc.



54 CHAPTER 3. APPROXIMATION METHODS IN QM

3.1.3 Solution for perturbation eq.: 1st-order

Now consider the solution to the above sequence of the perturbation eqs. The 1st-
order eq. is

V̂ Ψ
(0)
k + Ĥ0Ψ

(1)
k = E

(1)
k Ψ

(0)
k + E

(0)
k Ψ

(1)
k

or, using the zero-order results

(

V̂ − E
(1)
k

)

Φk =
(

ek − Ĥ0

)

Ψ
(1)
k

By the completeness principle, we can always express Ψ
(1)
k in terms of a linear com-

bination of Φk as

Ψ
(1)
k =

∑

k′

C
(1)
kk′Φk′

where C
(1)
kk′ are coefficients to be determined and the equation becomes, using Ĥ0Φk′ =

ek′Φk′

(

V̂ − E
(1)
k

)

Φk =
∑

k′

(ek − ek′)C
(1)
kk′Φk′

(

V̂ − E
(1)
k

)

|Φk〉 =
∑

k′

(ek − ek′)C
(1)
kk′ |Φk′〉

this is the eq. for E
(1)
k and Ckk′. The standard technique to solve this kind eq. is to

take inner product with state Φk′′ on both sides of the eq., i.e., multiplying Φ∗k′′ and
integrate

∫

d3rΦ∗k′′

(

V̂ − E
(1)
k

)

Φk =
∑

k′

(ek − ek′)C
(1)
kk′

∫

d3rΦ∗k′′Φk′

using the orthonormal relation

∫

d3rΦ∗kΦk′ = δkk′

we have

Vk′′k − E
(1)
k δkk′′ =

∑

k′

(ek − ek′)C
(1)
kk′δk′′k′ = (ek − ek′′) C

(1)
kk′′

Vk′′k ≡
∫

d3rΦ∗k′′V̂ Φk

Choosing k′′ = k we have

E
(1)
k = Vkk =

∫

d3rΦ∗kV̂ Φk
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Choosing k′′ 6= k we have

C
(1)
kk′′ =

Vk′′k

ek − ek′′

.

Note that Ckk is still undetermined and can be chosen as zero.
The 1st-order results are, letting λ = 1,

Ek ≈ ek + E
(1)
k = Vkk =

∫

d3rΦ∗kV̂ Φk

for the energy and

Ψk ≈ Φk +
∑

k′ 6=k

Vk′k

ek − ek′

Φk′

for the state. Note: if we choose Ckk 6= 0, the coefficient of Φk in the above formula
will not be unity and Ψk is then not properly normalized in the limit Vk′k → 0.

Note that the determine of the 1st-order energy E
(1)
k only depends on the zero-

order state function Ψ
(0)
k = Φk, and the 1st-order statefunction Ψ

(1)
k is not necessary.

However, in order to determine the 2nd -order energy correction E
(2)
k , the 1st-order

statefunction correction Ψ
(1)
k is required. This is generally true: nth-order energy

correction requires the (n− 1)th-order statefunction correction.

3.1.4 Solution for perturbation eq.: 2st-order

The 2nd-order equation is

V̂ Ψ
(1)
k + Ĥ0Ψ

(2)
k = E

(2)
k Ψ

(0)
k + E

(1)
k Ψ

(1)
k + E

(0)
k Ψ

(2)
k

or

E
(2)
k Ψ

(0)
k =

(

V̂ − E
(1)
k

)

Ψ
(1)
k +

(

Ĥ0 − E
(0)
k

)

Ψ
(2)
k

where E
(0)
k , E

(1)
k , Ψ

(0)
k and Ψ

(1)
k are known. We only need to determine E

(2)
k and Ψ

(2)
k .

Again, Ψ
(2)
k can be written as a linear combination of Φk

Ψ
(2)
k =

∑

k′

C
(2)
kk′Φk′

substituting this into the eq., using the zero- and 1st-order results, we have

E
(2)
k Φk =

∑

k′

C
(1)
kk′

(

V̂ − E
(1)
k

)

Φk′ +
∑

k′

C
(2)
kk′

(

Ĥ0 − ek

)

Φk′

=
∑

k′

C
(1)
kk′

(

V̂ − E
(1)
k

)

Φk′ +
∑

k′

C
(2)
kk′ (ek′ − ek) Φk′
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as before, taking inner product with state Φk′′ on both sides of the eq. and using the
orthonormality of Φk we have

E
(2)
k δk′′k =

∑

k′

C
(1)
kk′

(

V̂k′′k′ − E
(1)
k δk′′k′

)

+ C
(2)
kk′′ (ek′′ − ek) .

Choosing k′′ = k, we obtain E
(2)
k

E
(2)
k =

∑

k′

C
(1)
kk′

(

Vkk′ − E
(1)
k δkk′

)

=
∑

k′

C
(1)
kk′Vkk′, ← C

(1)
kk = 0

=
∑

k′ 6=k

Vkk′Vk′k

ek − ek′

=
∑

k′ 6=k

|Vkk′|2
ek − ek′

where we have assume V̂ is a Hermitian operator. The coefficient C
(2)
kk′′ can be deter-

mined by choosing k′′ 6= k, as before. Again, to determine E
(2)
k we only need to know

C
(1)
kk′ and C

(2)
kk′′ is not necessary.

The 2nd-order result for the energy is then given by

Ek ≈ E
(0)
k + E

(1)
k + E

(2)
k = ek + Vkk +

∑

k′ 6=k

|Vkk′|2
ek − ek′

Ψk ≈ Ψ
(0)
k + Ψ

(1)
k = Φk +

∑

k′ 6=k

Vk′k

ek − ek′

Φk′

with
Vk′k ≡ 〈k′| V̂ |k〉 =

∫

d3r Φ∗k′V̂ Φk .

3.1.5 Example

Consider an anharmonic oscillator with Hamiltonian

Ĥ = Ĥ0 + V̂

Ĥ0 = − h̄2

2m

∂2

∂x2
+

1

2
mωx2, V̂ = αx3

where α is a small number (α� h̄ω/x3
0 = h̄ω

(

mω
2h̄

)3/2
). The eigenequation of Ĥ0 has

been solved,

Ĥ0 |n〉 = h̄ω
(

n +
1

2

)

|n〉 , n = 0, 1, 2, · · ·,∞

Ĥ0 = h̄ω
(

â†â +
1

2

)
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and we know the effect of â† and â on the normalized state |n〉

â† |n〉 =
√

n + 1 |n + 1〉 , â |n〉 =
√

n |n− 1〉 for n > 0 .

we hence need to express V̂ in terms of â and â†. Using the definition

â ≡
√

mω

2h̄
x̂ +

ip̂√
2mh̄ω

, â† ≡
√

mω

2h̄
x̂− ip̂√

2mh̄ω

we have

x̂ =

√

h̄

2mω

(

â + â†
)

, p̂ =
1

i

√

mωh̄

2

(

â− â†
)

hence

V̂ = α

(

h̄

2mω

)3/2
(

â + â†
)3

= α

(

h̄

2mω

)3/2
(

â + â†
) (

â2 + ââ† + â†â + â†2
)

= α

(

h̄

2mω

)3/2
(

â + â†
) (

â2 + 2â†â + 1 + â†2
)

.

Up to 2nd-order approximation, we have

En ≈ en + Vnn +
∑

n′ 6=n

Vnn′Vn′n

en − en′

where

en = h̄ω
(

n +
1

2

)

and

Vnn = 〈n| V̂ |n〉

= α

(

h̄

2mω

)3/2

〈n|
(

â + â†
) (

â2 + 2â†â + 1 + â†2
)

|n〉

= α

(

h̄

2mω

)3/2

〈n|
(

â + â†
) (

â2 + 2n + 1 + â†2
)

|n〉

= 0

i.e., the first-order energy correction is zero.
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To determine the 2nd-order energy correction, we need to evaluate Vn′n. Consider
(

â + â†
) (

â2 + 2â†â + 1 + â†2
)

|n〉
=

(

â + â†
) (

â2 + 2n + 1 + â†2
)

|n〉

=
(

â + â†
)

(

√

n (n− 1) |n− 2〉+ (2n + 1) |n〉 +
√

(n + 1) (n + 2) |n + 2〉
)

=
√

n (n− 1) (n− 2) |n− 3〉+ (2n + 1)
√

n |n− 1〉+
√

(n + 1) (n + 2)2 |n + 1〉

+
√

n (n− 1)2 |n− 1〉+ (2n + 1)
√

n + 1 |n + 1〉+
√

(n + 1) (n + 2) (n + 3) |n + 3〉

=
√

n (n− 1) (n− 2) |n− 3〉+
[

(2n + 1)
√

n +
√

n (n− 1)2
]

|n− 1〉+

+
[
√

(n + 1) (n + 2)2 + (2n + 1)
√

n + 1
]

|n + 1〉+
√

(n + 1) (n + 2) (n + 3) |n + 3〉

=
√

n (n− 1) (n− 2) |n− 3〉+ 3n3/2 |n− 1〉+ 3 (n + 1)3/2 |n + 1〉
+
√

(n + 1) (n + 2) (n + 3) |n + 3〉

therefore, there are only four nonzero contribution to Vn′n

Vn−3,n = 〈n− 3| V̂ |n〉 = α

(

h̄

2mω

)3/2
√

n (n− 1) (n− 2)

Vn−1,n = 〈n− 1| V̂ |n〉 = α

(

h̄

2mω

)3/2

3n3/2

Vn+1,n = 〈n + 1| V̂ |n〉 = α

(

h̄

2mω

)3/2

3 (n + 1)3/2

Vn+3,n = 〈n + 3| V̂ |n〉 = α

(

h̄

2mω

)3/2
√

(n + 1) (n + 2) (n + 3)

therefore

∑

n′ 6=n

Vnn′Vn′n

en − en′

=
V 2

n−3,n

en − en−3
+

V 2
n−1,n

en − en−1
+

V 2
n+1,n

en − en+1
+

V 2
n+3,n

en − en+3

=
1

3h̄ω
α2

(

h̄

2mω

)3

n (n− 1) (n− 2)

+
1

h̄ω
α2

(

h̄

2mω

)3

9n3

− 1

h̄ω
α2

(

h̄

2mω

)3

9 (n + 1)3
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− 1

3h̄ω
α2

(

h̄

2mω

)3

(n + 1) (n + 2) (n + 3)

=
1

3h̄ω
α2

(

h̄

2mω

)3

×
[

n (n− 1) (n− 2) + 27n3 − 27 (n + 1)3 − (n + 1) (n + 2) (n + 3)
]

= − 1

h̄ω
α2

(

h̄

2mω

)3
(

30n2 + 30n + 11
)

Hence, up to 2nd-order, the energy value is

En = h̄ω
(

n +
1

2

)

− 1

h̄ω
α2

(

h̄

2mω

)3
(

30n2 + 30n + 11
)

and the energy interval between adjacent energy levels

∆ = En − En−1 = h̄ω − 60

h̄ω
α2

(

h̄

2mω

)3

n

See figure

3.2 Degenerate PT

In the above perturbation theory, the unperturbed states Φk are nondegenerate, ek′ 6=
ek for all k′ 6= k. Now we extend the theory to the degenerate case. Our Hamiltonian
is still given by

Ĥ = Ĥ0 + V̂

where the perturbed term V̂ is assumed small and the unperturbed Hamiltonian Ĥ0

has been solved

Ĥ0Φnd = enΦnd

with quantum number d = 1, 2, · · ·, M , labelling the degeneracy. In the case of
Hydrogen, we know for each n, we have degenerate qn d = (l, m),

∑

d =
∑

l,m and
M2. For convenience we only need one letter for the notation. We expect that the
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introduction of perturbed term will lift the degeneracy in l, so the eigen equation for
Ĥ is

ĤΨnd = EndΨnd .

But if we still carry out the similar analysis as before, we expect to encounter a factor
such as Ĥ → Ĥ (λ) = Ĥ0 + λV̂ , and the expansion series

End = E
(0)
nd + λE

(1)
nd + · · ·

Ψnd = Ψ
(0)
nd + λΨ

(1)
nd + · · ·

substituting these into the original Schrödinger eq. and equating the coefficients of λ
on both sides of the eq. (consider λ as an arbitrary number, this must be true), we
have

Ĥ0Ψ
(0)
nd = E

(0)
nd Ψ

(0)
n,d → Ψ

(0)
nd = Φnd, E

(0)
nd = en

as zero-order result, and

V̂ Ψ
(0)
nd + Ĥ0Ψ

(1)
nd = E

(1)
nd Ψ

(0)
nd + E

(0)
nd Ψ

(1)
nd

as first-order eq. etc. All those formulae remain the same, only replacing single qn by
double ones k → (n, d). However, there are divergence problem when we go beyond
zeroth-order. Consider the 1st-order correction to the wavefunction

Ψ
(1)
nd =

∑

n′d′

c
(1)
nd,n′d′Φn′d′

=
∑

d′ 6=d

c
(1)
nd,nd′Φnd′ + other contributions from states with n′ 6= n

with the diverging coefficient

c
(1)
nd,nd′ =

Vnd,nd′

E
(0)
nd − E

(0)
nd′

=
Vnd,nd′

en − en
.

Solution: Recall the basic assumption in PT

quantum number after perturbation = quantum number before perturbation.

We need to modify this by introducing a new quantum number k as

before perturbation : (n, d)

after perturbation : (n, k) .

This is equivalent to introduce a new basic set {Ωnk, k = 1, 2, · · ·, M}as

Ωnk =
M
∑

d=1

bkdΦnd, k = 1, 2, · · ·, M
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with coefficients bkd to be determined by the condition to avoid the divergence men-
tioned above.

Now our new PT expansion series are

Enk = E
(0)
nk + λE

(1)
nk + · · ·

Ψnk = Ψ
(0)
nk + λΨ

(1)
nk + · · ·

and the zeroth-order equation does not change much

Ĥ0Ψ
(0)
nk = E

(0)
nk Ψ

(0)
nk → E

(0)
nk = en, Ψ

(0)
nk = Ωnk =

M
∑

d=1

bkdΦnd

and the 1st-order eq.
(

V̂ − E
(1)
nk

)

Ψ
(0)
nk =

(

E
(0)
nk − Ĥ0

)

Ψ
(1)
nk

where we expand Ψ
(1)
nk in terms of Ωnk

Ψ
(1)
nk =

∑

k′

c
(1)
kk′Ωnk′, k = 1, 2, · · ·, M .

As before, we substitute this into the 1st-order eq. and take inner product with state
Ωnk′′ on both sides, we have

∫

d3r Ω∗nk′′

(

V̂ − E
(1)
nk

)

Ωnk =
∫

d3r Ω∗nk′′

∑

k′

c
(1)
kk′

(

E
(0)
nk − Ĥ0

)

Ωnk′

or
Vnk′′,nk − E

(1)
nk δk′′k =

∫

d3r Ω∗nk′′

∑

k′

c
(1)
kk′ (en − en)Ωnk′ = 0 .

Take k′′ = k, we have
E

(1)
nk = Vnk,nk

and take k′′ 6= k, we have

Vnk′′,nk =
∫

d3r Ω∗nk′′ V̂ Ωnk = 0, for all k′′ 6= k .

This last equation means operator V̂ is diagonal in the new basis. Therefore, the
coefficients {bkd} in Ωnk =

∑M
d=1 bkdΦnd is chosen so that V̂ is diagonal.

Example: Spin-orbit coupling (or LS-coupling). An electron moving in a
central potential V̂ = V (r) has Hamiltonian as

Ĥ0 = − h̄2

2m
∇2 + V (r) .



62 CHAPTER 3. APPROXIMATION METHODS IN QM

In general the eigenvalues Enl of Ĥ0 are 2 (2l + 1)-fold degenerate (for hydrogen,
Enl = En, and degeneracy is 2n2-fold). One of relativistic effects (Dirac) is the
addition of a potential, the so-called spin-orbit coupling (or LS-coupling)

V̂LS = A (r) L̂ · Ŝ .

We can treat this V̂LS as perturbation potential and write

V̂LS =
1

2
A (r)

(

Ĵ2 − L̂2−Ŝ
2
)

, Ĵ ≡ L̂ + Ŝ

As we know, the eigenstates of Ĥ0 can be represented by the product of orbital wave-
functions and spin wavefunctions, or |nlm〉 |sms〉 = |nlmlsms〉. Within the first-order
degenerate PT, we need to use these |nlmlsms〉 to diagonalize the perturbation oper-
ator V̂LS and to obtain the zero-order wavefunction and first-order energy correction.
We have already done so in the previous chapter. The zeroth-order wavefunction are
angular momentum states |nlsjm〉 which are eigenstates of Ĵ2 and Ĵz with angular
momentum quantum number, using s = 1/2

j = l ± 1

2
, m = −j,−j + 1, · · ·, j − 1, j .

Hence, the energy level shift by LS-coupling is

E
(1)
LS = 〈nlsjm| V̂LS |nlsjm〉 =

h̄2

2

[

j (j + 1)− l (l + 1)− 3

4

]

〈A (r)〉nl .

3.3 Time-dependent perturbation theory

3.3.1 Newton’s equation

As we have seen before, the time-dependent Schrödinger eq. is

ih̄
∂

∂t
Ψ (r, t) = ĤΨ (r, t) , −ih̄

∂

∂t
Ψ∗ (r, t) = ĤΨ∗ (r, t) .

The expectation value of an arbitrary operator Â = Â (t), assumed Ψ (r, t) is normal-
ized,

〈

Â
〉

= 〈Ψ| Â |Ψ〉 =
∫

d3r Ψ∗ (r, t) Â (t) Ψ (r, t)

has the following evolution equation

d

dt

〈

Â
〉

=
∫

d3r
∂

∂t

[

Ψ∗ (r, t) Â (t) Ψ (r, t)
]

=
∫

d3r Ψ∗ (r, t)
∂Â

∂t
Ψ (r, t) +

1

ih̄

∫

d3r Ψ∗ (r, t)
(

ÂĤ − ĤÂ
)

Ψ (r, t)
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or
d

dt

〈

Â
〉

=

〈

∂Â

∂t

〉

+
1

ih̄

〈[

Â, Ĥ
]〉

.

Using this formula, Newton’s equation becomes, using Ĥ = p̂2/2m + V̂ (r)

d

dt
〈p̂〉 = −

〈

∇V̂
〉

.

3.3.2 Time-dependent expansion

Consider now the following Hamiltonian

Ĥ = Ĥ0 + V̂ (t)

where Ĥ0 is time-independent with eigen eqs.

Ĥ0Φn (r) = EnΦn (r) , n = 1, 2, · · ·

and the time dependent part of the Hamiltonian is V̂ (t). The general time-dependent
wavefunction Ψ (r, t) can be expanded in the following general form as

Ψ (r, t) =
∑

n

dn (t) Φn (r) =
∑

n

cn (t) Φn (r) e−iEnt/h̄

and after substituting into the Schrödinger eq., we have

∑

n

(

Encn + ih̄
dcn

dt

)

Φn (r) e−iEnt/h̄ =
∑

n

(

En + V̂
)

cnΦn (r) e−iEnt/h̄

or

ih̄
∑

n′

dcn′

dt
Φn′ (r) e−iE

n′ t/h̄ =
∑

n′

cn′ V̂ Φn′ (r) e−iE
n′ t/h̄ .

Taking inner product with Φn (r) on both sides of eq., we have the time-evolution
equation for cn (t)

ih̄
dcn

dt
=
∑

n′

Vnn′cn′eiω
nn′ t, n = 1, 2, · · ·

with
Vnn′ ≡ 〈Φn| V̂ |Φn′〉 =

∫

d3r Φ∗nV̂ Φn′ , h̄ωnn′ = En − En′ .

these are a set of first-order, coupled equations for {cn, n = 1, 2, · · ·}. Normally diffi-
cult to solve. For some special case, exact solution can be found. See Mandl, Quantum

Mechanics, Section 9.2, P 198.
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Consider a typical initial condition: at t = 0, the system is in one of the eigenstate,
say, |1〉, namely

cn (0) = δ1n .

For V̂ (t) = 0, the amplitudes cn (t) retain this initial value at all times and

Ψ (r, t) =
∑

n

cn (t) Φn (r) e−iEnt/h̄ = Φ1 (r) e−iE1t/h̄

the time-dependent part is trivial.

3.3.3 Perturbation Theory

Now we treat V̂ as perturbation potential and write the Hamiltonian as before

Ĥ = Ĥ0 + λV̂ (t)

and correspondingly
cn = c(0)

n + λc(1)
n + λ2c(2)

n + · · ·
the evolution equation for cn becomes

ih̄
d

dt

(

c(0)
n + λc(1)

n + λ2c(2)
n + · · ·

)

=
∑

n′

(

c
(0)
n′ + λc

(1)
n′ + λ2c

(2)
n′ + · · ·

)

λVnn′eiω
nn′ t .

Setting the coefficients of each power of λ equal on both sides we have a series suc-
cessive eqs.,

ih̄
d

dt
c(0)
n = 0, c(0)

n (t) = const.

ih̄
d

dt
c(1)
n =

∑

n′

c
(0)
n′ Vnn′eiω

nn′ t

ih̄
d

dt
c(2)
n =

∑

n′

c
(1)
n′ Vnn′eiω

nn′ t

· · · .

Consider the typical initial condition: applying the perturbation V̂ (t) after t > 0,
namely

V̂ (t)

{

= 0, t ≤ 0
6= 0, t > 0

and assume for t ≤ 0, the system is in one of the eigenstates of Ĥ0, say |1〉,

cn (0) = c(0)
n (t) = δ1n
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Hence the first-order equation becomes

ih̄
d

dt
c(1)
n =

∑

n′

c
(0)
n′ Vnn′eiω

nn′ t = Vn1e
iωn1t

Integrating these equations from t = 0 to t > 0, subject to the condition that cn (0) =
δ1n, we have

c
(1)
1 (t) = 1 +

1

ih̄

∫ t

0
V̂11 (t′) dt′

c(1)
n (t) =

1

ih̄

∫ t

0
V̂n1 (t′) eiωn1t′dt′, ωn1 =

En − E1

h̄
, n 6= 1

where
∣

∣

∣c
(1)
1 (t)

∣

∣

∣

2
is the probability (in 1st-order approximation) that the system at

t > 0 stays in the original state |1〉, and
∣

∣

∣c(1)
n (t)

∣

∣

∣

2
is the probability (in 1st-order

approximation) that the system at t > 0 is in another state |n〉 (n 6= 1).
Example. A hydrogen atom is placed in a spatially homogeneous time-dependent

electric field in the z-axis

ε =

{

0, t ≤ 0
ε0e
−t/τ , t > 0

with τ > 0. At time t = 0, the atom is in the (1s) ground state with wavefunction
and energy

φ1s =
1

√

πa3
0

e−r/a0 , E1s = − e2

8πε0a0
, a0 =

4πε0h̄
2

me2
.

Find the probability, in the 1st order perturbation theory, that after a sufficiently
long time the atom is in the (2p) excited state with wavefunction and energy

φ2p =
1

√

32πa5
0

r cos θ e−r/2a0 , E2p =
E1s

4
.

Solution: According to the 1st-order perturbation theory, the probability ampli-
tude for the transition (1s)→ (2p) is

c (t) =
1

ih̄

∫ t

0
V̂2p,1s (t′) eiω2p,1st′dt′

with

ω2p,1s =
E2p − E1s

h̄
= −3E1s

4h̄

and
V̂ (t′) = eε0e

−t′/τz = eε0e
−t′/τr cos θ .
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The matrix element V̂2p,1s (t′) is

V̂2p,1s (t′) = 〈2p| V̂ (t′) |1s〉 = eε0e
−t′/τ 〈2p| r cos θ |1s〉

= eε0e
−t′/τ

∫





1
√

32πa5
0

r cos θ e−r/2a0 · 1
√

πa3
0

e−r/a0



 r2 sin θdrdθdφ

= eε0e
−t′/τ 1

4
√

2πa4
0

(∫ ∞

0
r4e−3r/2a0dr

)(∫ π

0
cos2 θ sin θdθ

)(∫ 2π

0
dφ
)

= eε0e
−t′/τ 1

4
√

2πa4
0

· 4!25a5
0

35
· 2
3
· 2π = Ce−t/τ , C ≡ 215/2

35
eε0a0

and the amplitude

c (t) =
C

ih̄

∫ t

0
eiω2p,1st′−t′/τdt′ =

C

ih̄

eiω2p,1st−t/τ − 1

iω2p,1s − 1/τ

and the transition probability is

|c(t)|2 =
C2

h̄2

1 + e−2t/τ − 2e−t/τ cos(ω2p,1st)

ω2
2p,1s + 1/τ 2

,

and after a sufficiently long time, t =∞, the probability is

|c (∞)|2 =
215

310

(eε0a0)
2

(3E1s/4)2 + (h̄/τ)2 .

3.3.4 Fermi golden rule

Now we consider the following simpler case, a step function perturbation potential

V̂ (t) =

{

0, t ≤ 0

V̂ , t > 0

where V̂ is independent of time. What is the transition probability per unit time
for the system originally in state |1〉 at t ≤ 0 to the state |2〉 at t > 0?

Solution: From the above 1sr-order perturbation theory, the time-integration in
the transition probability amplitude can be carried out,

c
(1)
2←1 (t) =

1

ih̄

∫ t

0
V2,1 (t′) eiω2,1t′dt′ =

V2,1

h̄ω2,1

(

1− eiω2,1t
)

V2,1 = 〈2| V̂ |1〉 , ω2,1 =
E2 − E1

h̄
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and the probability is, using sin y = (eiy − e−iy)/2,

P2←1 (t) =
∣

∣

∣c
(1)
2←1 (t)

∣

∣

∣

2
=

4 |V2,1|2

h̄2

sin2 (ω2,1t/2)

ω2
2,1

=
2πt

h̄2 |V2,1|2 D (ω2,1, t)

D (x, t) =
2

πt

sin2 (xt/2)

x2
, x = ω2,1

where function D (x, t) has a simple integral

∫ ∞

−∞
D (x, t) dx =

2

πt

∫ ∞

−∞

sin2 (xt/2)

x2
dx = 1, using

∫ ∞

−∞

sin2(ax)

x2
dx = πa,

similar to the continuous delta function δ (x). In the limit t → ∞, the two become
identical. So we have the transition probability given by, for large t

P2←1 (t) =
2πt

h̄2 |V2,1|2 δ (ω2,1) =
2πt

h̄
|V2,1|2 δ (E2 − E1)

and the probability per unit time

Ṗ2←1 (t) =
2π

h̄
|V2,1|2 δ (E2 − E1) .

This is the famous Fermi Golden rule.

3.4 Variational method

3.4.1 Variational principle

Variational principle (Rayleigh-Ritz): The expectation value of a given Hamiltonian
Ĥ in any state Ψ is always greater or equal to the exact ground-state energy E0,

〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉 ≥ E0

the equality holds if |Ψ〉 is the exact ground state.

Proof: Suppose

Ĥ |Φn〉 = En |Φn〉 , n = 0, 1, 2, · · ·
E0 < En, for n > 0
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Write |Ψ〉 as a linear combination of |Φn〉

|Ψ〉 =
∞
∑

n=0

Cn |Φn〉 = C0 |Φ0〉+
∞
∑

n=1

Cn |Φn〉

〈Ψ |Ψ〉 = |C0|2 +
∞
∑

n=1

|Cn|2

Therefore

Ĥ |Ψ〉 = Ĥ

(

C0 |Φ0〉+
∞
∑

n=1

Cn |Φn〉
)

= E0C0 |Φ0〉+
∞
∑

n=1

CnEn |Φn〉

and

〈Ψ| Ĥ |Ψ〉 = E0 |C0|2 +
∞
∑

n=1

En |Cn|2

> E0 |C0|2 + E0

∞
∑

n=1

|Cn|2 = E0

(

|C0|2 +
∞
∑

n=1

|Cn|2
)

= E0 〈Ψ |Ψ〉

so
〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉 ≥ E0 .

In general, we do not know the exact ground state energy E0. We wish to find
an approximation for its value. By the variational principle, our approximation 〈Ĥ〉
using any trial wavefunction |Ψ〉 will always be greater than the exact value E0.
Hence, the lower the expectation value 〈Ĥ〉 (i.e., the closer to the exact value), the
better the trial wavefunction. A typical varitaional calculation is as follows: we first
choose a trial wavefunction Ψ with a few variational parameters α1, α2, · · ·

Ψ (α1, α2, · · ·)
and calculate the expectation value

E (α1, α2, · · ·) =
〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉 .

Next, we minimize this E (α1, α2, · · ·) through variational equations

∂

∂α1
E (α1, α2, · · ·) = 0

∂

∂α2
E (α1, α2, · · ·) = 0

· · ·
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The solution for (α1, α2, · · ·) of these equations then put back to E (α1, α2, · · ·) and
this minimum E represents the best estimate for the trial function of the form
Ψ (α1, α2, · · ·).

Clearly, the success of this nonperturbative method will depend crucially on the
form of the trial wave functions we choose to start with.

3.4.2 Examples

Hydrogen atom. The trial function for the ground state of Hydrogen is choose as

Φα = Ce−αr, C =

√

α3

π

the Hamiltonian is

Ĥ = − h̄2

2m
∇2 − e2

4πε0r
, ∇2 =

1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2
Â (θφ)

and the expectation value is

Eα = 〈Φα| Ĥ |Φα〉 =
h̄2α2

2m
− e2α

4πε0

hence
∂Eα

∂α
= 0 → α =

e2m

4πε0h̄
2 =

1

a0

where a0 is the Bohr radius. So the best estimate for the ground state energy is

Eα =
h̄2

2m

1

a2
0

− e2α

4πε0

1

a0
= −1

2

e2

4πε0a0

and for the ground state is

Φ =
1

√

a3
0π

e−r/a0

both are actually exact. This is not surprising because the trial function has the
correct form.

Helium atom. In this case we do not know the exact result and we are dealing
with two identical particles. Consider in general Helium-like ions with the follow-
ing Hamiltonian describing two electrons interacting each other and with a nucleus
containing Z protons

Ĥ = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
Ze2

4πε0

(

1

r1

+
1

r2

)

+
e2

4πε0

1

r12

.
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We want to approximate the ground state of this system by a simple trial wavefunction
(actually, PT), using the knowledge from hydrogen-like ions.

We know the eigenstates φnlm (r) for a single electron Ĥ = − h̄2

2m
∇2 − Ze2

4πε0
1
r

are

φ1s (r) = R10 (r)Y00 (θ, φ) =

√

Z3

πa3
0

e−Zr/a0

φ2s (r) = R20 (r)Y00 (θ, φ) =

√

Z3

8πa3
0

(

1− Zr

2a0

)

e−Zr/a0

...

with φ1s (r) as the ground state, and eigenvalues

Enl = En = − e2

8πε0a0

Z2

n2
, n = 1, 2, · · · .

We also know electrons have spin degree of freedom, indicated by two states |↑〉 or
|↓〉. We want to construct the simplest two-body wavefunction from these single-body
state. There is a (anti)symmetry requirement we need to impose. The following is a
trial wavefunction satisfying this requirement,

Ψ0 (1, 2) = φ1s (r1)φ1s (r2)χ12, χ12 =
1√
2

(|↑〉1 |↓〉2 − |↓〉1 |↑〉2)

hence Ψ (1, 2) = −Ψ (2, 1). This is a spin-singlet state. Another possible trial state
is the spin-triplet,

Ψ′0 (1, 2) =
1√
2

[φ1s (r1)φ2s (r2)− φ2s (r1)φ1s (r2)] τ12,

τ12 = |↑〉1 |↑〉2 ,
1√
2

(|↑〉1 |↓〉2 + |↓〉1 |↑〉2) , |↓〉1 |↓〉2

but this will give higher energy due to the present of the higher level state φ2s (r1).
(It is quite easy to test experimentally if the ground state Helium is singlet or triplet.)
Using the singlet state Ψt (1, 2), we evaluate the energy expectation value

〈

Ĥ
〉

= 2 ·
〈

h̄2

2m
∇2

1 −
Ze2

4πε0

1

r1

〉

+
e2

4πε0

〈

1

r12

〉

= 2 ·
(

− Z2e2

8πε0a0

)

+
5

4

Ze2

8πε0a0

=
(

−2Z2 +
5

4
Z
)

Ry, Ry =
e2

8πε0a0

= −5.50 Ry, Z = 2

which is only 6% above the experimental result of −5.81 Ry.
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Math Note: Evaluate
〈

1
r12

〉

:

〈

1

r12

〉

=
1

π2

(

Z

a0

)6 ∫

d3r1d
3r1

1

|r1 − r2|
e−2Z(r1+r2)/a0 .

First we use the expression (Fourier transformation)

1

|r1 − r2|
=
∫

d3k

(2π)3 eik·(r1−r2) 4π

k2

hence
〈

1

r12

〉

=
1

π2

(

Z

a0

)6 ∫ d3k

(2π)3

4π

k2

∣

∣

∣

∣

∫

d3r1e
ik·r1−2Zr1/a0

∣

∣

∣

∣

2

now
∫

d3r1e
ik·r1−2Zr1/a0 =

16πZ/a0
[

k2 + (2Z/a0)
2
]2

and finally
〈

1

r12

〉

=
4Z

πa0

∫ ∞

0

dx

(x2 + 1)4 =
5

8

Z

a0
.
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We can improve our wavefunction by introducing a variational parameter Z ′

φ1s (r) =

√

Z ′3

πa3
0

e−Z′r/a0 , Ψ0 (1, 2) = φ1s (r1) φ1s (r2) χ12

and repeat our calculation as before, see example one,

〈

Ĥ
〉

Z′

= 2 ·
〈

h̄2

2m
∇2

1 −
Ze2

4πε0

1

r1

〉

Z′

+
e2

4πε0

〈

1

r12

〉

Z′

= 2 ·
(

Z ′2e2

8πε0a0

− ZZ ′e2

4πε0a0

)

+
5

4

Z ′e2

8πε0a0

= 2
(

Z ′2 − 2Z ′Z +
5

8
Z ′
)

Ry, Ry =
e2

8πε0a0

and variational eq.
∂

∂Z ′

〈

Ĥ
〉

Z′

= 0→ Z ′ = Z − 5

16
and the estimated ground-state energy

〈

Ĥ
〉

Z′=Z−5/16
= −2

(

Z − 5

16

)2

Ry, Z = 2

= −2 · 272

162
Ry = −5.70 Ry

which is closer to the experimental result of −5.81 Ry. (higher no more than 2%).
Physically, the variational parameter Z ′ represents the mutual screening by the two
electrons.

Now how does one go from here? Can we further improve our estimate and how?
A more sophisticated variational wavefunction (Hylleraas) is

Ψ (1, 2) = P (s, t, u)Ψ0 (1, 2)

s ≡ Z ′

a0
(r1 + r2) , t ≡ Z ′

a0
(r1 − r2) , u ≡ Z ′

a0
r12

where P (s, t, u) is expanded in power series of s, t and u

P (s, t, u) =
∑

l,n,m

cn,2l,msnt2lum

and variational eqs. are

∂

∂cn,2l,m

〈

Ĥ
〉

= 0,
∂

∂Z ′

〈

Ĥ
〉

= 0
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and by including 10 cn,2l,m parameters, the accuracy can reach to 6-7 digits. See
Intermediate QM, 1964, H.A. Bethe.

Variational method and diagonalization. For a given basis set (truncated or
untruncated), {|n〉 , n = 1, 2, · · ·, N}, the trial wavefunction can be written as

|Ψ〉 =
N
∑

n=1

cn |n〉 , 〈Ψ| =
N
∑

n=1

〈n| c∗n

where {c∗n, cn; n = 1, 2, · · ·, N} are variational parameters determined by

δ

δc∗n

〈

Ĥ
〉

=
δ

δcn

〈

Ĥ
〉

= 0,
〈

Ĥ
〉

=
〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉

or
〈Ψ |Ψ〉∑N

n′=1 Hnn′cn′ − 〈Ψ| Ĥ |Ψ〉 cn

〈Ψ |Ψ〉2
= 0, Hnn′ ≡ 〈n| Ĥ |n′〉

or
N
∑

n′=1

Hnn′cn′ =
〈

Ĥ
〉

cn, n = 1, 2, · · ·, N .

This is precisely the eigenequation for the Hamiltonian matrix {Hnn′} with the energy

eigenvalue
〈

Ĥ
〉

. Therefore, the variational method and diagonalization is equivalent.


