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A. What are the eigenvalues of angular momentum operator?
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2.1 Angular momentum and addition of two an-

gular momenta

2.1.1 Schrödinger Equation in 3D

Consider the Hamiltonian of a particle of mass m in a central potential V (r)

Ĥ = − h̄2

2m
∇2 + V (r) .

Since V (r) depends on r only, it is natural to express ∇2 in terms of spherical
coordinates (r, θ, ϕ) as

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2
.

Operators in Spherical Coordinates

A. Laplacian operator
By coordinate transformation between Cartesian (x, y, z) and spherical coordi-

nates (r, θ, ϕ)

x = r sin θ cosϕ, r =
√

x2 + y2 + z2

y = r sin θ sinϕ, tan2 θ =
x2 + y2

z2

z = r cos θ, tanϕ =
y

x

we have

∂r

∂x
= sin θ cosϕ,

∂r

∂y
= sin θ sinϕ,

∂r

∂z
= cos θ

∂θ

∂x
=

1

r
cos θ cosϕ,

∂θ

∂y
=

1

r
cos θ sinϕ,

∂θ

∂z
= −1

r
sin θ

∂ϕ

∂x
= −1

r

sinϕ

sin θ
,

∂ϕ

∂y
= −1

r

cosϕ

sin θ
,

∂ϕ

∂z
= 0 .

Using the derivative rule

∂

∂x
=

∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂ϕ

∂x

∂

∂ϕ
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= sin θ cosϕ
∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ
∂

∂y
= sin θ sinϕ

∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
− 1

r

cosϕ

sin θ

∂

∂ϕ
∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

Therefore

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

(

sin θ cosϕ
∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

)

×
(

sin θ cosϕ
∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

)

+

(

sin θ sinϕ
∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
− 1

r

cosϕ

sin θ

∂

∂ϕ

)

×
(

sin θ sinϕ
∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
− 1

r

cosϕ

sin θ

∂

∂ϕ

)

+

(

cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ

)

×
(

cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ

)

and this is equal to, after some considerable algebra

∇2 =
∂2

∂r2
+

1

r2

∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂ϕ2
+

2

r

∂

∂r
+

cot θ

r2

∂

∂θ

=
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2

=
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2
Â (θ, ϕ)

with definition

Â (θ, ϕ) ≡ 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2
.

B. Angular momentum operators
Consider first the z-component, using the above formulas for ∂

∂x
and ∂

∂y

L̂z = −ih̄
(

x
∂

∂y
− y

∂

∂x

)

= (−ih̄) r sin θ cosϕ

(

sin θ sinϕ
∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
− 1

r

cosϕ

sin θ

∂

∂ϕ

)
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− (−ih̄) r sin θ sinϕ

(

sin θ cosϕ
∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

)

= −ih̄ ∂

∂ϕ

similarly we can derive the x- and y-components as

L̂x = −ih̄
(

− sinϕ
∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)

L̂y = −ih̄
(

+ cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

.

¿From the definition of the raising and lowering operators

L̂± ≡ L̂x ± iL̂y

it is straightforward to obtain

L̂± = −ih̄e±iϕ

(

±i ∂
∂θ

− cot θ
∂

∂ϕ

)

.

C. Angular momentum square
In order to obtain the square of angular momentum operator in the spherical

coordinates, consider
(

L̂x

)2

(

L̂x

)2

−h̄2 =

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)2

= sinϕ
∂

∂θ
sinϕ

∂

∂θ
+ sinϕ

∂

∂θ
cot θ cosϕ

∂

∂ϕ
+ cot θ cosϕ

∂

∂ϕ
sinϕ

∂

∂θ

+ cot θ cosϕ
∂

∂ϕ
cot θ cosϕ

∂

∂ϕ

= sin2 ϕ
∂2

∂θ2
+ sinϕ cosϕ

∂

∂θ
cot θ

∂

∂ϕ
+ cot θ cos2 ϕ

∂

∂θ

+ cot θ cosϕ sinϕ
∂2

∂ϕ∂θ
− cot2 θ cosϕ sinϕ

∂

∂ϕ
+ cot2 θ cos2 ϕ

∂2

∂ϕ2

(

L̂y

)2

−h̄2 =

(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)2

= cos2 ϕ
∂2

∂θ2
− sinϕ cosϕ

∂

∂θ
cot θ

∂

∂ϕ
+ cot θ sin2 ϕ

∂

∂θ

− cot θ cosϕ sinϕ
∂2

∂ϕ∂θ
+ cot2 θ sinϕ cosϕ

∂

∂ϕ
+ cot2 θ sin2 ϕ

∂2

∂ϕ2
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now

L̂2

−h̄2 =
L̂2

x + L̂2
y + L̂2

z

−h̄2 =
∂2

∂θ2
+ cot θ

∂

∂θ
+
(

cot2 θ + 1
) ∂2

∂ϕ2

=
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
= Â (θ, ϕ)

=
1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

L̂2
z

h̄2

where Â (θ, φ) is as defined before in the Laplacian ∇2.
The Schrödinger eq. becomes

{

− h̄2

2m

[

1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2

]

+ V (r)

}

Ψ (r, θ, ϕ)

= EΨ (r, θ, ϕ)

or
{[

− h̄2

2m

1

r2

∂

∂r

(

r2 ∂

∂r

)

+ V (r)

]

+
L̂2

2mr2

}

Ψ (r, θ, ϕ) = EΨ (r, θ, ϕ) .

This eq. is separable. Let

Ψ (r, θ, ϕ) = R (r)Y (θ, ϕ)

where Y (θ, ϕ) is assumed to be the eigenstate of L̂2 with eigenvalue λ

L̂2Y (θ, ϕ) = λY (θ, ϕ)

we have the equation for the radial part of wavefunction

{[

− h̄2

2m

1

r2

∂

∂r

(

r2 ∂

∂r

)

+ V (r)

]

+
λ

2mr2

}

R (r) = ER (r) .

The solution of this equation depends on the given potential V (r). But the solution
for the angular part of wavefunction Y (θ, ϕ) is universal and can be discussed in
general.

2.1.2 Operators and their algebra

Classically, angular momentum is defined as

L = r × p
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or in component form

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx

in QM, they all become operator

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x .

Their commutation relations are given by
[

L̂x, L̂y

]

= [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z]

= [ŷp̂z, ẑp̂x] + [ẑp̂y, x̂p̂z]

= ŷ [p̂z, ẑ] p̂x + [ẑ, p̂z] p̂yx̂

= −ih̄ŷp̂x + ih̄p̂yx̂

= ih̄L̂z
[

L̂y, L̂z

]

= ih̄L̂x
[

L̂z, L̂x

]

= ih̄L̂y

we can memorize these relations by

L̂ × L̂ = ih̄L̂ .

In spherical coordinates, these operators are expressed as

L̂x = −ih̄
(

− sinϕ
∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)

L̂y = −ih̄
(

+ cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

L̂z = −ih̄ ∂

∂ϕ

and

L̂2 = −h̄2

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)

.

Hence the Laplacian operator ∇2 and Hamiltonian take the following simple form

∇2 =
1

r2

∂

∂r
r2 ∂

∂r
− L̂2

h̄2r2

Ĥ = − h̄2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ V (r) +

1

2m

L̂2

r2
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It is easy to see L̂z commutes with L̂2

[

L̂z, L̂
2
]

= 0

and L̂2 commute with operators Ĥ ,
[

L̂2, Ĥ
]

= 0 .

(note: we also have
[

L̂x, L̂
2
]

=
[

L̂y, L̂
2
]

= 0) Therefore we can find a wavefunction

which is eigenfunctions to both Ĥ, L̂2, and L̂z. Furthermore, since they are separable,
the eigenfunction of Ĥ can be written in general as

Ψn.l,m (r, θ, ϕ) = Rnl (r)Θl (θ) Φm (ϕ) = Rnl (r)Yl,m (θ, ϕ)

with

L̂zΦm (ϕ) = λmΦm (ϕ) → −i ∂
∂ϕ

Φm (ϕ) = λmΦm (ϕ)

L̂2Yl,m (θ, ϕ) = λl,mYl,m (θ, ϕ) →
(

− h̄2

sin θ

∂

∂θ
sin θ

∂

∂θ
+

λ2
m

sin2 θ

)

Θl (θ) = λl,mΘl (θ)

ĤΨn.l,m (r, θ, ϕ) = λn,l,mΨn.l,m (r, θ, ϕ)

→
(

− h̄2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+ V (r) +

1

2µ

λl,m

r2

)

Rnl (r) = λn,l,mRnl (r)

In Dirac notation

Φm (ϕ) → |m〉
Yl,m (θ, ϕ) → |l, m〉

Ψn.l,m (r, θ, ϕ) → |n, l,m〉 .

Instead of dealing with L̂x, L̂y, and L̂z, one can define angular raising and lowering

operators L̂+ and L̂− as,

L̂± ≡ L̂x ± iL̂y = −ih̄e±iϕ

(

±i ∂
∂θ

− cot θ
∂

∂ϕ

)

and we have the equivalent set L̂x, L̂y, and L̂z or L̂−, L̂+ and L̂z. The algebra for
this 2nd set is more convenient. It is easy to show the commutations between three
operators Lz, L

± are given by
[

L̂z, L̂
±
]

= ±h̄L̂±,
[

L̂+, L̂−
]

= 2h̄L̂z .
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Note: Compare this algebra with harmonic oscillator
[

â, â†
]

= 1. These algebra will

determine the eigenfunctions and eigenvalues of L̂2. It is also easy to derive

L̂+L̂− = L̂2 − L̂2
z + h̄L̂z,

L̂−L̂+ = L̂2 − L̂2
z − h̄L̂z,

and

L̂2 = L̂2
z + h̄L̂z + L̂−L̂+ = L̂2

z − h̄L̂z + L̂+L̂− = L̂2
z +

1

2

(

L̂+L̂− + L̂−L̂+
)

.

Note: compare this with harmonic oscillator Ĥ = h̄ω
(

â†â + 1
2

)

.

2.1.3 Eigenvalues and eigenfunctions

(i) Solution for Φm (ϕ) is simple

−ih̄ ∂

∂ϕ
Φm (ϕ) = λmΦm (ϕ)

Φm (ϕ) =
1√
2π
eiλmϕ/h̄

and using spherical symmetry of the system, we must have

Φm (ϕ+ 2π) = Φm (ϕ) → λm

h̄
= m = 0,±1,±2, · · ·

therefore
L̂z |m〉 = mh̄ |m〉 , m = 0,±1,±2, · · · .

(ii) Consider the eigenequations

L̂2 |l, m〉 = λl,m |l, m〉

it is obvious |l, m〉 is also eigenfunction of L̂z

L̂z |l, m〉 = h̄m |l, m〉

we next examine the effect of L̂+ and L̂− when acting on |l, m〉. We divide the whole
process by following steps.

(a) Using the commutation relationship
[

L̂z, L̂
±
]

= ±h̄L̂±, we have

L̂zL̂
± |l, m〉 =

(

L̂±L̂z ± L̂±
)

|l, m〉 =
(

h̄mL̂± ± h̄L̂±
)

|l, m〉 = h̄ (m± 1) L̂± |l, m〉



2.1. ANGULAR MOMENTUM AND ADDITION OF TWO ANGULAR MOMENTA31

therefore, L̂+ effectively increases m by a unity and L̂− effectively decreases m by a
unity, hence we write

L̂± |l, m〉 = C± (l, m) |l, m± 1〉
where C± (l, m) are constants. Therefore, the states |l, m〉 with m = 0,±1,±2, · · ·
can be related by raising or lowering operator L̂±.

(b) L̂2 degeneracy. The eigenvalue of L̂2 is independent of m, λl,m = λl

L̂2 |l, m〉 = λl |l, m〉 .

Proof: using
[

L̂2, L̂±
]

= 0, we have

L̂2L̂± |l, m〉 = C±L̂
2 |l, m± 1〉 = λl,m±1C± |l, m± 1〉 = λl,m±1L̂

± |l, m〉
= L̂±L̂2 |l, m〉 = λl,mL̂

± |l, m〉

hence

λl,m±1 = λl,m → λl .

(c) For a given λl (or l), the values ofm must be bounded. Because
〈(

L̂2
x + L̂2

y

)〉

>

0, L̂2 = L̂2
x + L̂2

y + L̂2
z → L̂2

x + L̂2
y + h̄2m2. Let this maximum value of |m| be Ml ≡ l,

remember l is only an index for labeling. Hence

|l, m〉 , m = 0,±1,±2, · · ·,±l .

Altogether, there are (2l + 1) values of m.
(d) Consider state |l, l〉. Since its m is at maximum, cannot increase any more,

we must have

L̂+ |l, l〉 = 0

hence

L̂2 |l, l〉 =
(

L̂2
z + h̄L̂z + L̂−L̂+

)

|l, l〉 = h̄2
(

l2 + l
)

|l, l〉
= h̄2l (l + 1) |l, l〉 .

Using the degeneracy of L̂2, we have

L̂2 |l, m〉 = h̄2l (l + 1) |l, m〉 , m = 0,±1,±2, · · ·,±l .

(e) We can now determine the coefficients C± (l, m)

L̂± |l, m〉 = C± (l, m) |l, m± 1〉 .
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Using the fact that
(

L̂−
)†

= L̂+, assuming |l, m〉 and |l, m± 1〉 have already been
normalized, we have

L̂+ |l, m〉 = C+ (l, m) |l, m + 1〉
C2

+ (l, m) =
(

〈l, m| L̂−
) (

L̂+ |l, m〉
)

= 〈l, m| L̂−L̂+ |l, m〉
= 〈l, m|

(

L̂2 − L̂2
z − h̄L̂z

)

|l, m〉 = h̄2 [l (l + 1) −m (m+ 1)]

or
C+ (l, m) = h̄

√

l (l + 1) −m (m + 1)

similarly

C− (l, m) = h̄
√

l (l + 1) −m (m− 1) .

(f) From the definition of L̂+ in spherical coordinate

L̂+ = −ih̄eiϕ

(

i
∂

∂θ
− cot θ

∂

∂ϕ

)

and using the fact that
L̂+ |l, l〉 = 0

we derive the equation for the highest-order spherical harmonic function, |l, l〉 =
Yll(θ, φ)

(

∂

∂θ
− l cot θ

)

Yll = 0, Yll = c eilφ sinl θ, c =
(−1)l

√
4π

√

√

√

√

(2l + 1)!!

(2l)!!

where c is the normalization constant, determined by

2π
∫ π

0
sin2l+1 θdθ = 2π

(

∫ π/2

0
+
∫ π

π/2

)

sin2l+1 θdθ = 2π

(

∫ π/2

0
sin2l+1 θdθ +

∫ π/2

0
cos2l+1 θdθ

)

= 4π
∫ π/2

0
sin2l+1 θdθ = 4π

(2l)!!

(2l + 1)!!
.

By applying L− repeatedly, we obtain the general spherical harmonic, Ylm(θ, ϕ).
(iii) For a general angular momentum L̂, all above derivations are still valid,

except that we do not have the representation L̂z = −ih̄∂/∂ϕ, etc. And the corre-
sponding rotational invariance Φ (ϕ+ 2π) = Φ (ϕ) → m = 0,±1,±2, · · · are hence
not necessarily true. Hence we derive the following general angular momentum
theorem,

L̂2 |l, m〉 = h̄2l (l + 1) |l, m〉
L̂z |l, m〉 = h̄m |l, m〉

m = −l,−l + 1, · · ·, l− 1, l
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with (2l + 1) values of m. As 2l + 1 must be an integer, l must be an integer or
half-odd-integer.

Example: Electron spin. An electron has an intrinsic angular momentum,
called spin, denoted as Ŝ, with quantum number S. Experimentally, it was found
S = 1/2. The corresponding z-component quantum number is therefore given by
m = −1/2, 1/2. Therefore, applying the above universal algebra to the spin angular
momentum, we have

Ŝ2 |S,m〉 = h̄2S (S + 1) |S,m〉

= h̄2 1

2

(

1

2
+ 1

)

|S,m〉

=
3

4
h̄2 |S,m〉 , m = −1

2
,
1

2

Ŝz |S,m〉 = h̄m |S,m〉 .

Since for an electron, S = 1/2 is fixed and well-know, Ŝ2 = 3
4
h̄2 is a constant. We

denote m = −1
2

as spin-up state, and m = − 1
2

as spin-down state, we write

∣

∣

∣

∣

S,m =
1

2

〉

= |↑〉 → χ↑,
∣

∣

∣

∣

S,m = −1

2

〉

= |↓〉 → χ↓

and

Ŝz |↑〉 =
h̄

2
|↑〉 , Ŝz |↓〉 = − h̄

2
|↓〉 .

2.1.4 Addition of Angular Momenta

We know that the eigenstates of a general angular momentum L̂ has two quantum
numbers (qn): l - angular momentum qn and m - magnetic qn, the corresponding
eigen eqs. are

L̂2 |l, m〉 = h̄2l (l + 1) |l, m〉
L̂z |l, m〉 = h̄m |l, m〉 , m = −l,−l + 1, · · ·, l − 1, l .

The reason is simply that these two operators commute with one another
[

L̂2, L̂z

]

=
0. People usually refer these proper qn’s as good quantum numbers.

Now we consider addition of two angular momenta

L̂ = L̂1 + L̂2

L̂2 = L̂2
1 + L̂2

2 + 2L̂1 · L̂2

L̂1 · L̂2 = L̂x1L̂x2 + L̂y1L̂y2 + L̂z1L̂z2 .
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Physical examples are the total angular momentum of two separate particles, or the
total momentum of the orbital and spin angular momenta of a single particle, etc.
The eigen states of L̂2

1 and L̂2
2 are known separately as

L̂2
i |li, mi〉 = h̄2li (li + 1) |li, mi〉 , i = 1, 2

L̂zi |li, mi〉 = h̄mi |li, mi〉 , mi = −li,−li + 1, · · ·, li − 1, li .

We want to know what are the good qn’s for the eigenstates of total L̂, and what are
the eigenvalues.

The algebra for total L̂ is the same as before. It is easy to prove

[

L̂2, L̂2
1

]

=
[

L̂2, L̂2
2

]

=
[

L̂2, L̂z

]

= 0

L̂z = L̂z1 + L̂z2

but

[

L̂2, L̂z1

]

= 2
[

L̂x1L̂x2 + L̂y1L̂y2, L̂z1

]

= 2ih̄
(

−L̂y1L̂x2 + L̂x1L̂y2

)

6= 0
[

L̂2, L̂z2

]

= 2
[

L̂x1L̂x2 + L̂y1L̂y2, L̂z2

]

= 2ih̄
(

−L̂x1L̂y2 + L̂y1L̂x2

)

6= 0 .

Therefore, we can find a common eigen state to L̂2
1, L̂

2
2, L̂

2, L̂z and denote as |l1, l2, l, m〉,
these are good quantum numbers. (m1 and m2 are not good quantum numbers).
The eigen eqs. are

L̂2
1 |l1, l2, l, m〉 = h̄2l1 (l1 + 1) |l1, l2, l, m〉

L̂2
1 |l1, l2, l, m〉 = h̄2l2 (l2 + 1) |l1, l2, l, m〉

L̂2 |l1, l2, l, m〉 = h̄2l (l + 1) |l1, l2, l, m〉
L̂z |l1, l2, l, m〉 = h̄m |l1, l2, l, m〉 , m = −l,−l + 1, · · ·, l − 1, l

etc.
The question is: for a given l1 and l2, what are the possible values for l. For this

purpose, we consider the following few steps:

(a) Total dimensionality (no. of independent states) is (2l1 + 1) × (2l2 + 1). This
will restrict the number of possible l

∑

l

(2l + 1) = (2l1 + 1) × (2l2 + 1) .
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(b) Starting with the state

|l1, m1 = l1〉 |l2, m2 = l2〉

it is eigenstate of L̂z

L̂z (|l1, m1 = l1〉 |l2, m2 = l2〉) = h̄ (l1 + l1) (|l1, m1 = l1〉 |l2, m2 = l2〉)

and since m = l1 + l1 is the largest possible value for m, l = l1 + l1 is the largest
possible value for l. This is the only one. Hence

|l1, l2, l1 + l1, l1 + l1〉 = |l1, l1〉 |l2, l2〉

(c) Next, consider state with m = l1 + l1 − 1. There are two possible l, with
l = l1 + l1 and l = l1 + l1 − 1, hence denoted as

|l1, l2, l1 + l1, l1 + l1 − 1〉 , |l1, l2, l1 + l1 − 1, m = l1 + l1 − 1〉

In terms of |l1, m1〉 |l2, m2〉 representation, these are a linear combination of two pos-
sible states, as seen in the following table

m1 m2 m
l1 l2 l1 + l2
l1 l2 − 1 l1 + l2 − 1
l1 − 1 l2 l1 + l2 − 1
l1 l2 − 2 l1 + l2 − 2
l1 − 1 l2 − 1 l1 + l2 − 2
l1 − 2 l2 l1 + l2 − 2

· · ·

(d) Continue this process, the possible value of l decreases by one, and number of
states increases by one. Therefore,

l = l1 + l2, l1 + l2 − 1, l1 + l2 − 2, · · ·, |l1 − l2|

the minimum value is |l1 − l2| since l must be a positive number.
(e) And we have identity

l1+l2
∑

l=|l1−l2|
(2l + 1) = (2l1 + 1) × (2l2 + 1)

= 2 (l1 − l2 + 0) + 1, let l1 > l2

+2 (l1 − l2 + 1) + 1
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+2 (l1 − l2 + 2) + 1

· · ·
+2 (l1 − l2 + 2l2) + 1

= 2l1 (2l2 + 1) − 2l2 (2l2 + 1) + 2 × 1

2
2l2 (2l2 + 1) + (2l2 + 1)

= (2l1 + 1) × (2l2 + 1)

where we have used

1 + 2 + 3 + · · · + n =
1

2
n (n + 1) .

Angular momentum addition theorem: Total angular momentum L̂ = L̂1 + L̂2

eigenstates are denoted by good quantum numbers |l1, l2, l, m〉, and eigenvalues are
given by

L̂2|l1, l2, l, m〉 = h̄2l(l + 1)|l1, l2, l, m〉, L̂z|l1, l2, l, m〉 = h̄m|l1, l2, l, m〉

with m = −l,−l + 1, ..., l − 1, l, and l = l1 + l2, l1 + l2 − 1, ..., |l1 − l2|.
Example. An electron is in a state with orbital angular momentum l = 5. Its

total angular momentum
Ĵ = L̂ + Ŝ

has possible quantum numbers as

J =
11

2
,
9

2

and the total number of states
(

2 × 11

2
+ 1

)

+
(

2 × 9

2
+ 1

)

= (2 × 5 + 1)
(

2 × 1

2
+ 1

)

= 22 .

Example. Eigenvalues of operator Ĥ = L̂ · Ŝ. Write this operator as

Ĥ = L̂ · Ŝ =
1

2

(

Ĵ2 − L̂2 − Ŝ2
)

and its eigenstates are characterized by the good quantum numbers |l, s, j,mj〉. So

Ĥ |l, s, j,mj〉 =
1

2

(

Ĵ2 − L̂2 − Ŝ2
)

|l, s, j,mj〉

=
h̄2

2
[j (j + 1) − l (l + 1) − s (s+ 1)] |l, s, j,mj〉

=
h̄2

2

[

j (j + 1) − l (l + 1) − 3

4

]

|l, s, j,mj〉 , j = l ± 1

2
.
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Two spin-1/2 systems. Two interacting spins have the following Heisenberg
Hamiltonian

Ĥ = αŜ1·Ŝ2

where α is the coupling constant. Determines its eigenvalues and eigenstates. Write
the Hamiltonian as

Ĥ = αŜ1·Ŝ2 =
α

2

[

Ŝ2 − Ŝ2
1 − Ŝ2

2

]

, Ŝ = Ŝ1+Ŝ2

hence its eigenvalues are, using s1 = s2 = 1/2

Es =
αh̄2

2
[s (s+ 1) − s1 (s1 + 1) − s2 (s2 + 1)]

=
αh̄2

2

[

s (s+ 1) − 3

2

]

.

By the angular momentum addition theorem, there are only two possible values for
s: 0, 1. So the eigenvalues are

E0 = −3αh̄2

4
, E1 =

αh̄2

4
.

In order to determine the corresponding eigenstates |s,m〉, we first observe that,
considering the quantum number m for Ŝz, there is only one state for E0 with m = 0,
denoted as |0, 0〉 with eigenequation

Ĥ |0, 0〉 = E0 |0, 0〉 ;

there are three states for E1 since there three possible m values m = 0,±1, denoted
as |1, 0〉 and |1,±1〉 with eigen equations

Ĥ |1, 0〉 = E1 |1, 0〉 , Ĥ |1,±1〉 = E1 |1,±1〉 .

Note that these later three states are degenerate. All these four states are obtained
from the following four basis states |↑〉1 |↑〉2 , |↓〉1 |↑〉2 , |↑〉1 |↓〉2 , |↓〉1 |↓〉2. It is easy to
see that only one basis state |↑〉1 |↑〉2 gives m = 1, hence

|1,+1〉 = |↑〉1 |↑〉2 ;

similarly there is only one state with m = −1, hence

|1,−1〉 = |↓〉1 |↓〉2 ;
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and the other two basis state, |↓〉1 |↑〉2 and |↑〉1 |↓〉2, clearly have m = 0. Their com-
binations will give |0, 0〉 and |1, 0〉. The only two possible independent combinations
are

1√
2

(|↓〉1 |↑〉2 ± |↑〉1 |↓〉2)

with the normalization factor 1/
√

2. By directly applying the Hamiltonian Ĥ to these
two states (see Exercise 2, Question 4), it is easy to show that

|0, 0〉 =
1√
2

(|↓〉1 |↑〉2 − |↑〉1 |↓〉2)

and

|1, 0〉 =
1√
2

(|↓〉1 |↑〉2 + |↑〉1 |↓〉2) .

Conclusion: the two-spin Hamiltonian Ĥ = αŜ1·Ŝ2 has two levels, a singlet level with
energy E0 = −3αh̄2

4
and state 1√

2
(|↓〉1 |↑〉2 − |↑〉1 |↓〉2) and a triplet level with energy

E1 = αh̄2

4
and three states |↑〉1 |↑〉2 , 1√

2
(|↓〉1 |↑〉2 + |↑〉1 |↓〉2) and |↓〉1 |↓〉2.

2.2 Hydrogen-like Atom

The system of a Hydrogen-like atom consists of an electron and a nucleus containing
Z protons, interacting with attractive Coulomb potential. The Hamiltonian for the
relative motion is given by

Ĥ = − h̄2

2µ
∇2 + V (r) , V (r) = − e2

4πε0

Z

r

= − h̄2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+ V (r) +

1

2µ

L̂2

r2

with reduced mass µ = memn/(me + mn) where mn is the nuclear mass. The
Schrödinger eq.

Ĥ |n, l,m〉 = λn,l,m |n, l,m〉 , ĤΨn,l,m (r, θ, ϕ) = λn,l,mΨn,l,m (r, θ, ϕ)

with

Ψn,l,m (r, θ, ϕ) = Rn,l,m (r)Yl,m (θ, ϕ) → |n, l,m〉
Yl,m (l, m) = Θl,m (θ) Φm (ϕ) → |l, m〉

Φm (ϕ) → |m〉 , m = 0,±1,±2, · · ·,±l
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and
L̂2 |l, m〉 = h̄2l (l + 1) |l, m〉 , L̂z |l, m〉 = h̄m |l, m〉

Therefore, eigen problem for Ĥ becomes, Rn,l,m (r) → Rn,l (r) , λn,l,m → λn,l

(

− h̄2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+ V (r) +

h̄2l (l + 1)

2µ

1

r2

)

Rn,l (r) = λn,lRn,l (r)

Solution of this eigenequation is not universal, depending on the given V (r). For the
Coulomb potential V (r) = − e2

4πε0
1
r
, we have

l = 0, 1, 2, · · ·, (n− 1)

for the condition existing solution,

λn,l = λn = − e2

8πε0a0

Z2

n2
≈ −13.6

1

n2
(eV) , a0 =

4πε0h̄
2

µe2
≈ 0.53 × 10−10 (m)

for the eigenvalues, and

Rn,l (r) = e−Zr/na0rl
(

C0 + C1r + C2r
2 + · · · + Cn−l−1r

n−l−1
)

for the eigenfunctions, where Ci are real constants. We plot the first few radial
probability distributions in Fig. 2. In Fig. 3, we plot the angular parts probability
distributions. (Figures are copied from Gasiorowicz’s Quantum Physics)

Fig. 2 Radial probability distributions r2R2
nl(r). The horizontal axis

is r in units of a0.
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Fig. 3 Angular probability distributions |Ylm(θ, φ)|2. The sketches rep-
resent sections of the distributions made in the z-x plane. It should be
understood that the three-dimensional distributions are obtained by ro-
tating the figures about the z-axis.
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Summary of Hydrogen Atom QM

QM of Hydrogen (or Hydrogen-like atoms)

Ĥ |n, l,m,ms〉 = En |n, l,m,ms〉 , En = −13.6
Z2

n2
(eV) ,

|n, l,m,ms〉 → Rn,l (r)Yl,m (θ, ϕ)χms

Ĥ = − h̄2

2µ

1

r2

∂

∂r
r2 ∂

∂r
− Ze2

4πε0

1

r
+

1

2µ

L̂2

r2

with reduced mass µ and electron spin ms = ±1/2. The degeneracy for each given n
is

Dn =
n−1
∑

l=0

(2l + 1) = n2 .

Yl,m (θ, ϕ) is the eigenstate of angular momentum L̂2

L̂2 |l, m〉 = h̄2l (l + 1) |l, m〉 , |l, m〉 → Yl,m (θ, ϕ) = Θl,m (θ) Φm (ϕ)

L̂2 = −h̄2

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

L̂2
z

h̄2

)

with degeneracy for each given l

l
∑

m=−l

1 = 2l + 1

where Φm (ϕ) is the eigenstate of L̂z

L̂z |m〉 = h̄m |m〉 , |m〉 → Φm (ϕ) , m = 0,±1,±2, · · ·,±l

L̂z = −ih̄ ∂

∂ϕ
, Φm (ϕ) =

1√
2π
eimϕ .
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2.3 Pauli exclusion principle and periodic table

In this section, we introduce some important concepts of quantum many-body theory
as atoms and molecules are many-body systems. We will mainly ignore the inter-
actions between electrons and only consider their Coulomb repulsion by empirical
rules.

Consider two identical particle system (e.g., two electrons in a Helium atom).
Suppose their wavefunction is ψ (x1, x2) , where xi is the coordinate of the ith particle,
e.g., x = (r, σ) with r the spatial position and σ =↑, ↓ the spin of the particle, etc.

Consider the exchange operation P̂ : exchanging the coordinates of the two par-
ticles,

P̂1↔2ψ (x1, x2) = ψ (x2, x1) .

If we choose ψ (x1, x2) as an eigenstate of P̂1↔2 with eigenvalue p, then the eigenequa-
tion is

P̂1↔2ψ (x1, x2) = pψ (x1, x2) .

Acting P̂1↔2 second time we get back to the original state,

p2ψ (x1, x2) = ψ (x1, x2) , or p2 = 1

Therefore, p can only has two values

p = ±1.

The quantum particles with p = 1 are referred to as Boson particles, or simply
Bosons; The quantum particles with p = −1 are referred to as Fermion particles, or
simply Fermions. A more general analysis shows that with integer spin are always
Bosons, and particles with half-odd-integer spins are always Fermions. For example,
electrons and protons are Fermions, and photons (light quanta) are Bosons; Helium-4
is Boson because its spin is zero, but Helium-3 atom is Fermion with spin 1/2.

For a general quantum many-body wavefunction, the exchange operation is

P̂n↔mψ (· · ·, xn, · · ·, xm, · · ·) = ±ψ (· · ·, xm, · · ·, xn, · · ·) ,

where + corresponds to Boson system, and − to Fermion system. This is a exact
property of a quantum many-body system.

Now let us consider its consequence. A general Hamiltonian of N -particle system
is

Ĥ =
N
∑

i=1

Ĥi + V̂
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where V̂ is the interaction potential and usually given by

V̂ =
1

2

N
∑

i6=j

V (rij) .

For example

V̂ =
e2

4πε0

1

r12

for helium atom and

V̂ =
e2

4πε0

(

1

r12
+

1

r13
+

1

r23

)

for lithium. Now consider the simplest approximation by ignoring V̂ , (the corre-

sponding wavefunction is the zero-order approximation to the true eigenstate), the
Hamiltonian becomes separate

Ĥ ≈
N
∑

i=1

Ĥi

and the wavefunction becomes a product of single particle states. In general, we
refer to such approximation as the independent-particle approximation. The
essence of this approximation is to keep the quantum nature of particles but ignoring
their dynamic interactions (later, we will include some corrections due to Coulomb
repulsion by empirical Hund’s rule). Assume that we have solved the single-particle
Schrödinger eq.

Ĥ1Φk (x1) = EkΦk (x1)

the total wavefunction may be written as

Ψ (x1, x2, · · ·, xN) ∝ Φk1 (x1) Φk2 (x2) · · · ΦkN (xN )

not taking the exchange symmetry into account. In order to include this important
quantum symmetry, consider first a 2-particle system, N = 2,

ψB (x1, x2) =
1√
2

[ϕn1
(x1)ϕn2

(x2) + ϕn1
(x2)ϕn2

(x1)] for Bosons

[or ϕn1(x1)ϕn1(x2) etc.] and

ψF (x1, x2) =
1√
2

[ϕn1
(x1)ϕn2

(x2) − ϕn1
(x2)ϕn2

(x1)] for Fermions

so that ψB (x1, x2) = ψB (x2, x1) for Bosons and ψF (x1, x2) = −ψF (x2, x1) for
Fermions. One can also construct a symmetric wavefunction for two Bosons by a
single wavefunction as ψB(x1, x2) = ϕn1

(x1)ϕn1
(x2), or ϕn2

(x1)ϕn2
(x2).
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Extending t o N -particle system, for the Fermions, we can write the wavefunction
as a determinant, Slater determinant,

ψ (x1, · · ·, xN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕn1
(x1) ϕn1

(x2) · · · ϕn1
(xN)

ϕn2
(x1) ϕn2

(x2) · · · ϕn2
(xN)

· · ·
ϕnN

(x1) ϕnN
(x2) · · · ϕnN

(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Notice that if k1 = k2, ψF (x1, x2) = 0, but not ψB (x1, x2). This indicates that two
Fermions cannot occupy the same state, but it two bosons are allowed to occupy the
same state. It can be extended to a more general statement:

A state can only be occupied by at most a single Fermion;

But it can be occupied by any number of Bosons.

The first above statement is Pauli exclusion principle. The second statement is
the property that leads to the so-called Bose-Einstein condensation of bosons at low
temperature. As active ingredients in atoms and molecules are electrons which are
fermions, we will mainly use Pauli principle. It is obvious that in the independent-
particle approximation (e.g., ignoring particle interactions), the ground state of an
N -electron system is given by the Slater determinant constructed from the lowest
N single particle states. For atoms, these single particles states are naturally the
eigenstates of hydrogenlike atoms as we discussed previously. For molecules, these
single particle states are constructed by a linear combinations of atomic states at
different nuclear configurations. We will discuss QM of molecules in the last chapter.
Sometimes it is convenient to separate total wavefunction as discussed above into
product of spatial and spin parts of wavefunctions, namely

Ψ(x1, · · · , xN ) = ψ(r1, · · · , rN)χ(σ1, · · · , σN ).

Hence, if spin wavefunction χ is antisymmetric, the spatial wavefucntion ψ must be
symmetric in order for the total wavefunction Ψ to be antisymmetric, vice versa.

Now we apply this simple analysis to atoms, the elements on the periodical table,
where the identical fermions are electrons with spin-1/2. We will qualitatively discuss
the ground states of the atoms. In the next section, we will attempt to calculate the
ground-state energy value of the two electron system, helium atom. By solving the
Schrödinger equation of hydrogenlike atoms in the previous section, we know the elec-
tron’s states in an atom can be characterized by four quantum numbers (n, l,m,ms):
n - principle quantum number specified main energy levels (shells), l - (orbital) angu-
lar momentum quantum number, and m - (orbital) magnetic quantum number and
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ms - spin magnetic quantum number. We extend this to many-electron’s state ig-
noring the interactions, spin-orbit couplings, etc., by using the independent-particle
approximation. Using notation

l = 0 → s state, 1 → p state, 2 → d state · ··

and noticing m and ms are degenerate quantum numbers, we conclude that s shell
can take up to two electrons (single orbital with m = 0 but one electron with spin up
ms = 1/2, the other electron with spin down ms = −1/2); p shell can take up to 6
electrons (three states specified by m = 1, 0,−1, each can take one electron with spin
up and one electron with spin down); d shell can take up to 10 electrons (5 states
with m = 2, 1, 0,−1,−2, each can take two electrons), etc. These energy levels are
ordered as,

orbitals (shells) : 1s 2s 2p 3s 3p 4s 3d 4p 5s · · ·
electron no. : 2 4 10 12 18 20 30 36 38 · · ·

In the above table, we also list total possible maximal number of electrons.
In this independent-particle picture, the way each electron of an atom occupies

a particular hydrogen state is called electron configuration. As we are mainly in-
terested in the ground state, the electron configuration of an atom is given by filling
these hydrogen orbitals from the lowest, in the ordered series as

(1s)(2s)(2p)(3s)(3p)(4s)(3d)(4p)(5s) · · · .
We notice that a given electron configuration will not uniquely determine some basic
properties (such as total angular momentum, spins etc.) of the corresponding atom.
More information can be specified by using the so called atomic spectral term (or
atomic term) to represent states of an atoms. Some correction to independent-particle
approximation for the ground-state atomic term due to Coulomb repulsion will be
considered by the empirical rules.

Atomic spectral terms. We use notation (2S+1)LJ to denote a particular atomic
state where S is its total spin, L its total orbital angular momentum and J the total
angular momentum (spins and orbitals). We use capital Latin letters for each value
of orbital quantum number as

L = 0 1 2 3 4 5 6 7 8 9 10 · · ·
S P D F G H I K L M N · · ·

For example, 2P3/2 denotes levels with L = 1, S = 1/2 and J = 3/2. The difference
in energy between atomic levels having different L and S but the same electron
configuration is due repulsive Coulomb interaction between electrons. These energy
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differences are small. We have the following empirical Hund’s rules (F.Hund, 1925)
concerning relative position of levels with the same configuration but different L and
S:

(i) For a given shell (configuration), the term with greatest possible value of S gives
the lowest energy;

(ii) The greatest possible value of L (for this S) has the lowest energy;

(iii) For half or less than half filling shell, J = |L−S| gives lowest energy; For more
than half-filling shell, J = L + S gives lowest energy.

The origin of the first rule is obvious: the largest total spin corresponds to symmetric
(parallel) spin wavefunction and antisymmetric orbital wavefunction, the later reduces
electron-electron repulsive interaction energy.

Example. Helium (Z = 2) has a simple configuration (1s)2. Hence S = 0 and
L = 0. The ground state term is 1S0 with J = 0. We will use this term to construct
an approximate wavefunction to calculate its ground-state energy in the next section.

Example. Carbon (Z = 6) has electron configuration as (1s)2(2s)2(2p)2. There
are three p orbitals with m = 1, 0,−1 as l = 1. Two electrons with both spin equal
to 1/2 (corresponding to total largest spin S = 1) are in orbital m = 1, 0 with total
maximal M = 1 + 0 = 1, corresponding to L = 1. Hence the ground state term is
3P0. It is less than half-filling, J = |L − S| = 0. The other two possible terms are
1S and 1D. They correspond to higher energies. Do you know how to obtain these
terms? Hint: Use symmetry argument.

Example. Nitrogen (Z = 7): He(2s)2(2p)3. Three electrons with total spin
S = 3/2 are in states m = 1, 0,−1 with total maximal M = 0 corresponding to
L = 0. Ground state term is therefore 4S3/2. Other terms are 2P and 2D.

Example. Oxygen (Z = 8): He(2s)2(2p)4. Equivalent to two holes (two missing
electrons for filled shell) in 2p orbitals. Its ground state term is therefore same as
carbon, 3P . However, as it is more than half-filling, J = L + S = 2. So we have 3P2

for its ground state.
Example. Boron (Z = 5) and fluorine (Z = 9) have similar term but different J

values, due to electron-hole symmetry. Can you write down their electron configura-
tions and figure out their ground state terms?

Notice the particle-hole symmetry discussed in the last two examples. A hole is
equivalent to an electron in its quantum nature; it is defined as the missing electron(s)
for the otherwise filled shell.
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2.4 Ground state of helium atom

There two electrons in a helium atom and we are dealing with two identical particles.
Consider in general helium-like ions with the following Hamiltonian describing two
electrons interacting each other and with a nucleus containing Z protons

Ĥ = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
Ze2

4πε0

(

1

r1
+

1

r2

)

+
e2

4πε0

1

r12
.

As a first approximation, we want to estimate the ground state energy of this Helium
atom by applying approximate two-body state of Slater determinant discussed earlier,

Ψ0 =
1√
2

[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)] ,

using the knowledge from hydrogen-like ions. Note x includes position and spin, i.e.
x = (r, σ) with spin σ =↑, ↓ and the single body wavefunction ψ(x) is a product of
spatial and spin parts ψ(x) = φ(r)χ(σ).

For the spatial wavefunction, we use the eigenstates φnlm (r) for a single electron

Ĥ = − h̄2

2m
∇2 − Ze2

4πε0
1
r

are

φ1s (r) = R10 (r)Y00 (θ, φ) =

√

Z3

πa3
0

e−Zr/a0

φ2s (r) = R20 (r)Y00 (θ, φ) =

√

Z3

8πa3
0

(

1 − Zr

2a0

)

e−Zr/a0

...

with φ1s (r) as the ground state, and eigenvalues

Enl = En = − e2

8πε0a0

Z2

n2
, n = 1, 2, · · · .

For the ground state of Helium atom, we want both electrons in the lowest energy
state φ1s(r), and antisymmetry requirement can be realized in the spin part of wave-
function,constructed from two spin states |↑〉 or |↓〉,

Ψ0 (1, 2) = φ1s (r1)φ1s (r2)χ(σ1, σ2), χ(σ1, σ2) =
1√
2

(|↑〉1 |↓〉2 − |↓〉1 |↑〉2)

hence Ψ (1, 2) = −Ψ (2, 1). This is a spin-singlet state. Another possible trial state
is the spin-triplet,

Ψ′
0 (1, 2) =

1√
2

[φ1s (r1)φ2s (r2) − φ2s (r1)φ1s (r2)] τ(σ1, σ2),

τ(σ1, σ2) = |↑〉1 |↑〉2 ,
1√
2

(|↑〉1 |↓〉2 + |↓〉1 |↑〉2) , |↓〉1 |↓〉2
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but this will give higher energy due to the present of the higher level state φ2s (r1).
(It is quite easy to test experimentally if the ground state Helium is singlet or triplet.)
Using the singlet state Ψt (1, 2), we evaluate the energy expectation value

〈

Ĥ
〉

= 2 ·
〈(

h̄2

2m
∇2

1 −
Ze2

4πε0

1

r1

)〉

+
e2

4πε0

〈

1

r12

〉

= 2 ·
(

− Z2e2

8πε0a0

)

+
5

4

Ze2

8πε0a0

=
(

−2Z2 +
5

4
Z
)

Ry, Ry =
e2

8πε0a0

= −5.50 Ry, Z = 2

which is only 6% above the experimental result of −5.81 Ry. In the first line of the
above equation, evaluation of < 1/r12 > is nontrivial. See the following math note.
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Math Note: Evaluation of
〈

1
r12

〉

In this note, we evaluate the following integral from Helium problem,

〈

1

r12

〉

=
1

π2

(

Z

a0

)6 ∫

d3r1d
3r1

1

|r1 − r2|
e−2Z(r1+r2)/a0 .

First we use the expression (Fourier transformation)

1

|r1 − r2|
=
∫

d3k

(2π)3 e
ik·(r1−r2) 4π

k2

hence
〈

1

r12

〉

=
1

π2

(

Z

a0

)6 ∫ d3k

(2π)3

4π

k2

∣

∣

∣

∣

∫

d3r1e
ik·r1−2Zr1/a0

∣

∣

∣

∣

2

now
∫

d3r1e
ik·r1−2Zr1/a0 =

16πZ/a0
[

k2 + (2Z/a0)
2
]2

and finally
〈

1

r12

〉

=
4Z

πa0

∫ ∞

0

dx

(x2 + 1)4 =
5

8

Z

a0

.


