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We study many-body correlations in the ground state of a general quantum system of bosons or fermions by
including an additional Jastrow function in our recently proposed variational coupled-cluster method. Our
approach combines the advantages of state-dependent correlations in the coupled-cluster theory and of the
strong, short-ranged correlations of the Jastrow function. We apply a generalized linked-cluster expansion for
the Jastrow wave function and provide a detailed analysis for practical evaluation of the Hamiltonian expec-
tation value as an energy functional of the Jastrow function and the bare density-distribution functions intro-
duced and calculated in our earlier publications; a simple, first-order energy functional is derived and detailed
formulas for the higher-order contributions are provided. Our energy functional does not suffer the divergence
as most coupled-cluster calculations often do when applying to Hamiltonians with hardcore potentials. We also
discuss possible applications of our technique, including applications to strongly correlated fermion systems.
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I. INTRODUCTION

Most microscopic quantum many-body theories devel-
oped over the last five decades can perhaps be broadly di-
vided into two categories, one in real space and the other
in momentum �configurational� space. While a real-space
many-body theory usually focuses on the interaction poten-
tial part of a Hamiltonian and evaluates the Hamiltonian ex-
pectation value in a first quantization form, a momentum-
space theory often starts from the kinetic part of a
Hamiltonian, is a basis of or closely related to many-body
perturbation theories, and mostly deals with the Hamiltonian
in a second quantization form �1,2�. A typical real-space ap-
proach to the ground state of a quantum many-body system
is provided by the Jastrow wave function which is con-
structed by a state-independent two-body correlation func-
tion �3�. Systematic �perturbative� techniques based on the
Jastrow wave function are now generally referred to as the
method of correlated basis functions �CBFs� �4–6�. The CBF
method has proved to be efficient in dealing with the strong,
short-ranged correlations typified by those in quantum he-
lium liquids �4�. On the other hand, momentum-space many-
body theories, due to inclusion of the state-dependent corre-
lations, are capable of producing accurate results for a wide
range of quantum systems, such as boson gases �7�, quantum
antiferromagnets with the Néel order �8�, finite nuclei �9�,
and electron systems such as the electron gas �10�, atoms,
and molecules �11�. A typical momentum theory is the
coupled-cluster method �CCM� in which the wave functions
are explicitly constructed by the state-dependent operators
�12,13�. State-of-the-art calculations of the CCM with high
accuracy have often been carried out in quantum chemistry
�14�, and recently in quantum spin lattices with the Néel
order �15�. Systematic resummations of diagrams in a pertur-
bation theory for boson systems have revealed interesting
relations between the two approaches; for example, the hy-
pernetted chain approximation in the CBF method, in fact,
contains a consistent resummation of both infinite ring and
infinite ladder diagrams of a momentum-space approach
�16,17�. It appears that real-space and momentum-space ap-

proaches complement each other and unification of these two
approaches may provide a quantitative description applicable
to a wider range of quantum many-body systems �18�, in-
cluding, in particular, the strongly correlated fermion sys-
tems.

We recently extended the CCM to a variational formalism
in which the bra and ket states are now Hermitian to one
another �19–21�, in contrast to the traditional CCM where
they are not �22�. We introduced a Hermitian-conjugate pair
of the important bare density-distribution functions for prac-
tical and systematical calculations; the traditional CCM was
shown to correspond to a simple linear approximation in one
set of the distribution functions of our variational coupled-
cluster method �VCCM�. The well-known momentum ap-
proaches such as the Bogoliubov theory of boson gas, Ander-
son’s spin-wave theory �SWT�, and BCS theory of
superconductivity �23� can all be explicitly shown as special
low-order approximations in both the ground- and excited-
state wave functions of the VCCM. This has been demon-
strated by a detailed application to quantum antiferromagnets
with the Néel order. The approximations beyond the SWT
improve results for the ground-state properties �20�; excita-
tion states in addition to the magnon excitations of the SWT
have also been obtained �21�. Furthermore, our calculations
for the bare density-distribution functions can be carried out
by diagrammatical techniques similar to those employed by
the CBF methods. Hence, a bridge between the coupled-
cluster theory and the Jastrow theory is built. We therefore
believe it is a natural next step to combine the two methods
for a unified description. This is our main purpose in this
article. Krotscheck, Kümmel, and Zabolitzky made the first
attempt in 1980 for fermion systems �18�. They employed
the traditional CCM with only the ket state specified and the
Jastrow function fixed beforehand; the Hamiltonian
eigenequation was used to obtain the ground-state energy
and equations for the ket-state coefficients. Here we take the
advantage of the recent progress in the coupled-cluster
theory and employ explicit ket and bra states of the VCCM
and calculate the distribution functions in terms of these ket-
and bra-state coefficients; the energy functional is derived in
terms of the distribution functions and the Jastrow function.
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We focus here on the formal development of our approach
and organize this article as follows. In Sec. II we introduce
our correlated wave functions and their distribution func-
tions. The generalized linked-cluster expansion technique is
employed for calculations of the generating functional in
terms of the bare distribution functions. In Sec. III we evalu-
ate the Hamiltonian expectation value using Jackson-
Feenberg transformations; a first-order energy functional is
derived and formulas for higher-order contributions are pro-
vided. We conclude in Sec. IV with a summary and discus-
sion on the relations between our approach and other many-
body theories, and on possible applications using our
approach.

II. DISTRIBUTION FUNCTIONS

As proposed earlier �20�, we consider a general varia-
tional wave function by adding a Jastrow correlation opera-
tor on top of the Coester state ��c�

��� = eS0/2��c� �1�

and we use the following notation:

��̃� = ��̃c�eS0/2 �2�

for the bra state. In Eqs. �1� and �2�, the Hermitian operator
S0 is the Jastrow correlation operator, and is given in terms
of field operators as �2�

S0 =
1

2
� dx1dx2�†�x1��†�x2�u�x1,x2���x2���x1� , �3�

where field operators �†�x� and ��x� obey the usual boson or
fermion commutation relations, u�x1 ,x2� is a local, symmet-
ric function u�x1 ,x2�=u�x2 ,x1�, and x are particle coordinates
including spin degrees of freedom. We also require that
u�x1 ,x2� is bound and short-ranged in real space. We do not
include in S0 any single-body operator as it can be easily
absorbed in the Coester states to be defined next. The boson
or fermion symmetry is contained in the Coester states by
definition. More specifically, the Coester ket state is given
by, using the convenient notation invented by Arponen and
Bishop �24�,

��c� = eS���, S = 	
I

FICI
†, �4�

where S is constructed by the so-called configurational cre-
ation operators CI

† which are defined with respect to the
model state ��� with the nominal index I labeling multipar-
ticle excitation states from the model state ���, with FI often
referred to as the correlation coefficients. The Coester bra

state ��̃c� is given by the Hermitian conjugate of the ket state

��̃c� = ���eS̃, S̃ = 	
I

F̃ICI �5�

in our VCCM. In the traditional CCM, however, the bra state
is parametrized differently from the ket state and is written as
�22�

��̃c� = ���S̃�e−S, S̃� = 1 + 	
I

F̃I�CI, �6�

where S is defined as in the ket state of Eq. �4� and F̃I� is the
bra state coefficients which, in general, are not Hermitian
conjugates of FI. As discussed in the Appendix, the CCM
states violate the condition for application of the generalized
linked-cluster expansion due to the linear construction of the
bra state. We therefore will not discuss the CCM further and
focus only on the VCCM basis of Eqs. �4� and �5�. Clearly,

the natural variational parameters are �F , F̃ ,u� in the VCCM

basis, where we have used the notations F= 
FI�, F̃= 
F̃I�,
and u=u�x1 ,x2�. In principle, if these Coester states are exact
�namely, all configurations are included in the summations
over all I indices in Eqs. �4� and �5��, the parameter u is
redundant. However, as we always need to make a finite
truncation approximation in the summations over I indices in
any practical application and it is well known that the Co-
ester states in a finite truncation approximation are not effi-
cient in dealing with the strong, short-ranged correlations,
the two-body Jastrow function u�x1 ,x2� is a useful, important
variational parameter in a real application. We hence always
assume that the summations in Eqs. �4� and �5� are within the
subset of a truncation approximation. One of such trunca-
tions is the so-called SUBm approximation in which we re-
tain up to m-body creation operators only.

Our basic strategy for calculations is to evaluate the gen-
erating functional W of Eqs. �1� and �2�,

W = ln��̃��� = Wc + Wu, �7�

where Wc is the generating function for the pure Coester
states without the Jastrow operator

Wc = ln��̃c��c� �8�

and Wu is the remainder containing the u function

Wu = ln�eS0
�c, �eS0

�c =
��̃c�eS0

��c�

��̃c��c�
. �9�

The general strategy for calculating Wc=Wc�F , F̃� was dis-
cussed in our earlier papers and detailed calculations were
demonstrated in the spin-lattice application �19,20�. Briefly,
we first introduce the Hermitian-conjugate pair of the bare
density-distribution functions

g̃I
c = �CI

†�c =
�Wc

�FI
, gI

c = �CI�c =
�Wc

�F̃I

, �10�

where the expectation values �¯�c are calculated using the
Coester states of Eqs. �4� and �5�; any physical quantity is
expressed in terms of these distribution functions; these dis-
tribution functions are then calculated either by the algebraic
technique �19� or by the diagrammatic technique �20�. In
particular, in the diagrammatic approach, many techniques
employed by the CBF method are also applicable here. For

example, the coefficients F̃I can be replaced in every diagram
of Wc expansion by the bare distribution functions g̃I

c after
resummations of infinite ring diagrams. In general, the en-
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ergy expectation value can be expressed as a functional poly-
nomial in F and g̃c as Ec=Ec�F , g̃c�; and the variational equa-
tions can then be derived by the functional derivatives in
Ec�F , g̃c� �25�.

In terms of the distribution functions as discussed above,
we now consider evaluating �eS0

�c of Eq. �9�. After cluster
expansion of the Jastrow part of the wave functions, we ap-
ply the generalized linked-cluster theorem discussed in the
Appendix in a similar fashion as the traditional Jastrow
theory �2,26� to obtain

Wu = ln�eS0
�c = 	

n=2

1

n!
� dx1 ¯ dxn�Zn�n

c�L, �11�

where Zn�Y� are the n-body Yvon-Mayer functions of the
bound function Y12=eu�x1,x2�−1, �n

c is the n-body density dis-
tribution functions of the Coester states, and the notations
�¯�L denote that only the linked components of the products
are included. In deriving Eq. �11� in the Appendix, we have
assumed that the Coester states satisfy the cluster-
decomposition properties �i.e., the higher-order �n

c are given
by a sum of products of the lower-order ones plus a nonde-
composable core�. While this is true in a SUB2 approxima-
tion in our spin lattice application and the SUB2 approxima-
tion for the Bose gas and BCS superconductors �20,27�, we
are not able to provide a general proof for a general SUBm
approximation �or even the SUB2 approximation for a gen-
eral fermion system� without the details of truncation ap-
proximations employed in the Coester states in a real appli-
cation. Hence by using Eq. �11�, we have assumed its
validity for the truncation approximations of the Coester
states employed. In the following discussion this assumption
is understood and we will examine this property in real ap-
plications. The following analysis for calculating �n

c in terms
of FI and g̃I

c shows such examination causing no major dif-
ficulty.

As all the Yvon-Mayer diagrams in Z2 and Z3 are linked,
we simply have

�Z2�2
c�L = Y12�2

c, �2
c�x1,x2� = ��†�x1��†�x2���x2���x1��c

�12�

for the two-body cluster contribution and

�Z3�3
c�L = �Y12Y23 + Y23Y31 + Y31Y12 + Y12Y23Y31��3

c

�13�

for the three-body cluster contributions with �3
c as the three-

body distribution function in the Coester states. From the
four-body function Z4�Y� and onward, however, there are
unlinked Yvon-Mayer diagrams which are to be included in
the product �Zn�n

c�L only after multiplying with the terms of
�n

c to form the linked components, and details of which will
depend on applications with a truncation approximation in
the Coester states. There is clearly a trade-off between the
order of the linked-cluster expansion and the order of the
truncation approximation of the Coester states. We hope to
get experience in real applications in the future. Importantly,
these density-distribution functions can be calculated in
terms of F and g̃c; by using the linearity theorem of the

VCCM �21�, we can show that all �n
c functions contain only

up to linear terms in g̃c and finite-order terms in F. As a
demonstration, we consider the two-body function �2

c

�2
c�x1,x2� = �A2�c =

1

��̃c��c�
��̃c�A2eS���

=
1

��̃c��c�
��̃c�eSĀ2��� , �14�

where A2=�†�x1��†�x2���x2���x1� and Ā2=e−SA2eS. Using
the nested commutation series �12,19�, it is easy to show that

evaluation of Ā2��� in general leaves only a constant and
creation operators acting on ���, namely,

Ā2��� = �X2,0�F;x1,x2� + 	
I

X2,I�F;x1,x2�CI
†���� , �15�

where X2,0 and X2,I are two-body functions containing up to
fourth-order terms in F. Therefore, using the definition of
Eq. �10�

�2
c�x1,x2� = X2,0�F;x1,x2� + 	

I

X2,I�F;x1,x2�g̃I
c. �16�

In similar fashion, we derive

�n
c = Xn,0 + 	

I

Xn,Ig̃I
c �17�

for the n-body density-distribution function of the Coester
states. Therefore, the linked-cluster contribution of Eq. �11�
is written as

Wu =
1

2
� dx1dx2Z2�X2,0 + 	

I

X2,Ig̃I
c�

+
1

6
� dx1dx2dx3Z3�X3,0 + 	

I

X3,Ig̃I
c + ¯ . �18�

Before we consider the density-distribution functions of
the Jastrow-Coester states of Eqs. �1� and �2�, we need to
define biased distribution functions as

g̃I �
1

��̃���
��̃c�eS0

CI
†��c�, gI �

1

��̃���
��̃c�CIe

S0
��c� .

�19�

They are so called because they are not defined usually as
�CI

†�, and clearly g̃I� �CI
†� due to the fact that CI

† and S0 /2 do
not commute in general. These biased distribution functions
can be calculated by the functional derivatives of the gener-
ating functional of Eq. �7� as

g̃I =
�W

�FI
= g̃I

c +
�Wu

�FI
, �20�

where the functional derivative �Wu /�FI can be calculated
using Eq. �18�.

Using the fact that S0 /2 commutes with density operator
�†�x���x�, the single-particle density function �1�x�
= ��†�x���x�� can then be calculated as
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�1�x� =
1

��̃���
��̃c�eS0

�†�x���x�eS���

= �1
c�x� + 	

I

X1,I�F;x�
�Wu

�FI
, �21�

where we have used Eq. �17� and where �1
c�x� is the one-

body density-distribution function of the Coester states. The
two-body density-distribution function of states of Eqs. �1�
and �2� can be calculated in a similar fashion as �1 shown
above. We take a more efficient calculation by the functional
derivative as �2�x1 ,x2�=2�W /�u�x1 ,x2� which involves only
the Yvon-Mayor functions Zn and it is easy to derive as

�2�x1,x2� = eu�x1,x2��2
c�x1,x2�

+
1

3
� dx1�dx2�dx3�

�Z3�x1�,x2�,x3��
�u�x1,x2�

�3
c�x1�,x2�,x3�� + ¯ .

�22�

We can see immediately that the short-ranged correlation
function u�x1 ,x2� will play an important role for applications
to the strongly correlated systems, where the pure Coester
states are known to be inefficient.

III. EVALUATION OF HAMILTONIAN
EXPECTATION VALUE

In evaluating a general Hamiltonian expectation value, we
first notice that the kinetic part of a Hamiltonian in general
does not commute with the Jastrow operator S0 /2 in our
states of Eqs. �1� and �2�. In real space, however, the kinetic
operator contains only second-order derivatives in particle
coordinates. We want to take this advantage by expressing
our states in real space for the first part of the calculations.
As can be shown, the wave functions of the Jastrow-Coester
states of Eqs. �1� and �2� in real space are given by a product

� = �u�c, �̃ = �̃c�u, �23�

where �u=eU/2=exp�	i�ju�xi ,xj� /2� is the familiar Jastrow

wave function and �c�x1 , . . . ,xN� and �̃c�x1 , . . . ,xN� are real-
space wave functions of the corresponding Coester ket and
bra states, respectively. In general, we do not need to know

the explicit functional forms of �c and �̃c as our calcula-
tions involving them are always carried out in a second
quantization form as we show below. It is interesting never-
theless to know that in a low-order SUB2 approximation,
many-body function �c is known explicitly as independent
pair functions for boson gas �28� or BCS superconductors
�29�.

Evaluating the kinetic energy involving the Jastrow func-
tion is helped by the Jackson-Feenberg transformation �2�. In
particular, it can be shown that

� dX�̃�i
2� =� dX��̃ceU�i

2�c +
1

4
�̃ceU��i

2U��c

−
1

4
eU�i

2��̃c�c� �24�

and another equivalent expression

� dX�̃�i
2� =� dX�̃ceU��i

2 +
1

4
��i

2U� +
1

2
��iU� · �i�c,

�25�

where dX=dx1dx2¯dxN. Both the above transformations in-
volve one- and two-body density-distribution functions only,
and the Jastrow factor eU appears on the left of the deriva-
tives. The biased distribution functions defined in Eq. �19�
are then applicable. The expectation value of a general
Hamiltonian with an external field �and/or chemical poten-
tial� A�x� and a pair-interaction potential v�xi ,xj� is calcu-
lated as, using Eq. �24�,

E1 =� dx�−
�2

2m
�1��x� + Âeff�x��1�x�

+
1

2
� dx1dx2veff�x1,x2��2, �26�

where �1 and �2 are the one- and two-body density-

distribution functions, Âeff�x�=A�x�− �2

8m ��c�2 is the effective
external field operator with operator �c defined as applying
to the Coester states only; veff=v�x1 ,x2�− �2

8m ��1
2

+�2
2�u�x1 ,x2� is the effective potential, and �1� is the one-

body density function derived from the first term of Eq. �24�
and is written in the second quantization form as

�1��x� =
1

��̃���
��̃c�eS0

T1��c�, T1�x� = �†�x��2��x� .

�27�

The other equivalent expression for the energy functional is
obtained by using Eq. �25�,

E2 =� dx�−
�2

2m
�1��x� + A�x��1�x�

+
1

2
� dx1dx2�veff�x1,x2��2 −

�2

4m
�2��u� , �28�

where �2��u� is the two-body density functions derived from
the third integral of Eq. �25�,

�2��u� =
1

��̃���
��̃c�eS0

T2�u���c� , �29�

with the two-body operator T2�u� given by

T2�u� = �†�x1��†�x2���1u�x1,x2� · �1

+ �2u�x1,x2� · �2���x2���x1� . �30�

The difference between the two energy functionals derived
above is that in E1 of Eq. �26� we need to take care of the
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operator �c which applies only to the Coester states and in
E2 of Eq. �28� we need to calculate the two-body density
function �2��u�. We hope to get experience in real applica-
tions as to which form is more practical. The density-
distribution functions �1 and �2 were calculated earlier by
Eqs. �21� and �22�. Calculations of �1� and �2� follow the
similar fashion. We hence obtain

�n� = �n�
c�x� + 	

I

Xn,I� �F;x�
�Wu

�FI
, n = 1,2, �31�

where �n�
c= �Tn�c and Xn,I� are obtained in the similar fashion

as before in Eq. �17�.
Equations �31� together with density distributions of Eq.

�21� and �22� are all we need for calculating the two equiva-
lent energy functionals of Eqs. �26� and �28�. Denoting the
three terms from the first term of �1�, �1, and �2 as �, and the
higher-order remainders as 	El with l=1,2 for the two en-
ergy functionals, we rewrite the energy functionals of Eqs.
�26� and �28� as

El�F, g̃c,u� = ��F, g̃c,u� + 	El�F, g̃c,u�, l = 1,2, �32�

where the same ��F , g̃c ,u� is given by

� = K1
c +� dxA�x��1

c�x�

+
1

2
� dx1dx2veff�x1,x2�eu�x1,x2��2

c�x1,x2� , �33�

with K1
c =−��2 /2m��T1�c for the kinetic energy of the VCCM

states. We notice that this first-order energy functional � is
nothing but the energy functional of the VCCM after replac-
ing the bare potential v by the new potential V=veffe

u,
namely,

��F, g̃c,u� = �Ec�F, g̃c��v→V,

V�v,u� = �v�x1,x2� −
�2

8m
��1

2 + �2
2�u�x1,x2�eu�x1,x2�,

�34�

where Ec�F , g̃c� is the energy functional of the pure VCCM
states. This is convenient indeed as no new calculations are
needed after the VCCM calculations have been done. We
notice also that � of Eq. �33� or �34� involves only the first-
order approximation in the cluster expansion of the
Jastrow function, and it does not specify the approximations
such as the SUBm truncation in the Coester states which will
be needed for any practical calculations of the density func-
tions �1

c and �2
c in Eq. �33�.

IV. SUMMARY AND DISCUSSION

In summary, we have calculated the Hamiltonian expec-
tation value of a general quantum many-body system as en-
ergy functionals of the Coester-state coefficients 
FI�, bare
distribution functions 
g̃I

c� of the Coester states, and the
Jastrow correlation function u�x1 ,x2�. Two equivalent energy
functionals are derived by Eqs. �26� and �28�. A simple, first-

order energy functional of Eq. �34� from both expressions is
derived as the usual VCCM energy functional but with a new
potential V�v ,u�=veffe

u. The formulas for practical calcula-
tions of the higher-order terms are also provided in details
for calculations. It is easy to see that, due to the short-ranged
Jastrow factor, our energy functionals do not suffer the di-
vergence as most coupled-cluster calculations often do when
potential v�x1 ,x2� approaches hardcore potentials. It will be a
straightforward extension of an earlier work of Fantoni et al.
�28�, which corresponds to the VCCM SUB2 calculations for
soft-core potentials, and will be interesting to demonstrate
the convergence for the ground-state energy even in the hard-
core limit. We wish to report this result soon.

Similar wave functions to Eqs. �23� were employed by
Owen for a study of the spin-dependent correlations in
nuclear matter �30�. In particular, �c was approximated by
the product of an independent pair function �spin dependent�
and the Slater determinant; and in the cluster expansion, the
Jastrow function and the independent pair function are
treated together. This differs from our approach. Our calcu-
lations involving the Coester states are always in a second
quantization form and are applicable to the higher-order trun-
cation approximations. There are a few earlier works �31,32�
extending the traditional Jastrow wave function to include
state-dependent correlation functions. The obvious difficulty
in these approaches lies in the fact that these state-dependent
operators do not commute with one another and this problem
was also discussed in detail by Krotscheck �33�. As pointed
out in Ref. �18�, the advantage of combining the state-
independent Jastrow function and the state-dependent Co-
ester states as given by Eqs. �1� and �2� over the traditional
approaches is that all state-dependent operators in the Co-
ester states commute with one another. We believe this ad-
vantage of our approach may increase the accuracy for nu-
merical results. Clearly, our approach presented here
provides an alternative method for calculating the state-
dependent many-body correlations in nuclear problems.

We are also encouraged by the numerical results of com-
puter simulations �34� using the wave function similar to Eq.
�23�. In particular, the Coester-state part of total wave func-
tions are represented by a linear approximation in real space
for finite systems. Numerical results clearly demonstrate sig-
nificant improvements for the ground-state energy of finite
helium-4 clusters over the pure Jastrow wave function when
including �linear-approximated� Coester states in the SUB2
and SUB3 levels. Again, it will be interesting to apply our
analytical approach presented here to such systems, particu-
larly for the large clusters and extended systems where the
linear approximation in the Coester states in Ref. �34� will
not be appropriate.

On the technical aspect, it is interesting to compare our
energy functional E�F , g̃c ,u� with the counterpart in the tra-
ditional Jastrow theory E�a ,u�, where a is the one-body
function. Clearly, the missing state-dependent correlations in
E�a ,u� are now included in our E�F , g̃c ,u� in terms of F and
g̃c. However, a typical calculation of the Jastrow theory prac-
ticed today mostly includes resummation of all cluster terms
of the linked cluster expansion by the hypernetted chain
�HNC� approximation for bosons or Fermi-HNC approxima-
tion for fermions �5,6�, and one optimization route for the
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boson system is provided by the pair-phonon analysis �PPA�
of Campbell and Feenberg �35�. This is possible as the ref-
erence states are the product of the single-particle wave func-
tions. In our cluster expansion calculations, the reference
state is the Coester states which already contain rich multi-
particle correlations including, in particular, the correct long-
ranged correlations such as in the SUB2 approximation. The
introduction of the Jastrow function is to provide a correct
description of the strong, short-ranged correlations and we
expect such a scheme may provide reasonable results even if
we include a first few cluster terms. It will also be interesting
to investigate the relations between our approach and the
PPA of Campbell and Feenberg.

We are also applying our Jastrow coupled-cluster method
to the spin-lattice problems which, in fact, motivated this
approach in the first place. In particular, we believe that the
Jastrow-types of correlations �i.e., S0→	ij f ijsi

zsj
z with sz as

the z component of the angular momentum operator� are im-
portant in the low-dimensional systems as discussed earlier
�20,21�, and the one-dimensional antiferromagnetic Heisen-
berg model is in fact a strongly correlated system for which
the SWT fails. Our long term projects also include investi-
gation of helium-3 quantum liquids which still represent a
challenge to the existing many-body theories �36�.

APPENDIX: � REPRESENTATION AND GENERALIZED
LINKED-CLUSTER EXPANSION

It is straightforward to show that the states of Eqs. �1� and
�2� correspond to the following real space wave functions:

��x1, . . . ,xN� = �u�c, �̃�x1, . . . ,xN� = �̃c�u, �A1�

where �u=eU/2=exp�	i�ju�xi ,xj� /2� is the familiar Jastrow

wave function and �c�x1 , . . . ,xN� and �̃c�x1 , . . . ,xN� are the
corresponding Coester state functions in real space. The Co-

ester wave functions �c and �̃c obey proper symmetry;
namely, they are antisymmetric for fermions and symmetric
for bosons under the exchange of any pair xi�xj. We do not
need to know their explicit functional forms as our later cal-
culations are always carried out in a second quantization
form of momentum space.

We follow a similar analysis for the evaluation of Eq. �11�
as in the traditional Jastrow theory �2,16�. After the usual
cluster expansion of the Jastrow wave function in terms of
Yvon-Mayor functions Zn�Y� with the bound function Y12
=eu�x1,x2�−1,

eU = 1 + 	
i�j

Z2�xi,xj� + 	
i�j�k

Z3�xi,xj,xk� + ¯ , �A2�

the expectation in Eq. �11� is written as

�eS0
�c = 1 +

1

Ic
	
n=2

N!

�N − n� ! n!


� dx1 ¯ dxN�̃cZn�x1, . . . ,xn��c

= 1 + 	
n=2

1

n!
� dx1 ¯ dxnZn�n

c , �A3�

where Ic= ��c ��c� is the normalization integral, the first few
Zn are given by

Z2 = Y12, Z3 = Y12Y23 + Y23Y31 + Y31Y12 + Y12Y23Y31,

�A4�

etc., and �n
c is the n-body density-distribution functions

�n
c = ��†�x1� ¯ �†�xn���xn� ¯ ��x1��c. �A5�

Evaluation of �n
c of the Coester states in terms of the bare

distribution function g̃c were discussed in details by Eqs.
�14�–�17� of Sec. II. Here we need to consider their cluster
properties in order to apply the linked-cluster theorem. For
this purpose, we introduce the so-called 	 representation dis-
cussed as follows. We consider evaluation of n-body distri-
bution functions in the state ��d� with the following cluster
decomposition property: any higher-order �n

d can be written
as products of the lower order �m

d with m=1,2 , . . . ,n−1, plus
a nondecomposable core 	n. Let us demonstrate this prop-
erty in details. We start with the one-body density-
distribution matrix, also the one-body core matrix by defini-
tion,

�1
d�x;x�� = ��†�x���x���d = 	1�x;x�� , �A6�

where we have used the usual notation �¯�d for the expec-
tation value in state ��d�. The two-body distribution �diago-
nal� function �2

d= ��†�x1��†�x2���x2���x1��d is then given by,
using this decomposition property,

�2
d = 	1�x1;x1�	1�x2;x2� − 	1�x1;x2�	1�x2;x1�

+ 	2�x1,x2;x1,x2� , �A7�

where the first two terms are as given before for the fermions
�for bosons, all terms have positive sign� and 	2 is the two-
body nondecomposable core tensor. We can also write Eq.
�A7� in a symbolic notation as

�2
d = 	1 � 	1 + 	2. �A8�

In a similar way, the three-body density-distribution function
is then given by

�3
d = 	1 � 	1 � 	1 + 	1 � 	2 + 	3, �A9�

where 	3 is the nondecomposable core tensor. All terms from
the product 	1�	1�	1 of Eq. �A9� were given in details as
diagrams in the references quoted earlier. Similar to these
diagrams, the new contributions in products 	1�	2 also in-
clude both unlinked terms such as 	1�x1 ;x1�	1�x2 ,x3 ;x2 ,x3�,
and linked terms such as 	1�x1 ;x3�	2�x2 ,x3 ;x2 ,x1�. The
rules for sign and for the symbolic product ��� can also be
defined in a similar fashion as before and we will discuss
them in details somewhere else. Clearly, such decomposition
can be carried to higher order.

Using the cluster decomposition property as discussed
above, we have the key ingredient for the linked-cluster ex-
pansion; namely, all contributions in the product Zn�n

d can be
represented by clusters of diagrams. If we denote the linked
diagrams as �A ,�B, etc., a contribution in similar cluster ex-
pansion as Eq. �A3� for the state ��d� can then be written as
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� = ��A��A��B��B
¯ , A � B , �A10�

with coefficients

N�A,B, . . .� =
n!

�nA!��A�nB!��B
¯

, �A11�

giving by the number of distributing the linked part along the
n points of the diagram. We therefore have

	
�n

1

n!
�n = 	

A,B,. . .

1

n!
N�A,B, . . .���A��A��B��B

¯

= exp��A/nA ! + �B/nB ! + ¯� . �A12�

Hence we have the following generalized linked-cluster ex-
pansion for the state ��d�,

ln�eS0
�d = 	

n=2

1

n!
� dx1 ¯ dxn�Zn�n

d�L, �A13�

where the notation �Zn�n
d�L denotes the contributions to Zn�n

d

by the linked diagrams only. Since all terms in Z2 and Z3 are
linked, the first two terms in Eq. �A13� are independent of
the diagram structures of �2

d and �3
d and we write

ln�eS0
�d =

1

2
� dx1dx2Z2�2

d +
1

6
� dx1dx2dx3Z3�3

d

+ 	
n=4

1

n!
� dx1 ¯ dxn�Zn�n

d�L. �A14�

From n=4 and onward, we need to know the diagram details
of �n

d for calculating their contributions.
In order to apply the generalized linked-cluster expansion

of Eq. �A14� to our Coester states, we need to prove that the

Coester states satisfy the cluster decomposition property as
discussed above. In our earlier VCCM calculation for spin
lattices, we have shown indeed the Coester states satisfy such
property in a SUB2 approximation employed, where arbi-
trary order distribution functions can be calculated by the
simple functional derivative �g̃i�j� /�Fij = g̃ij�g̃i�j and these
bare distribution functions correspond to the density-
distribution matrices �similar analysis also applied to the
SUB2 state for the Bose gas and the BCS superconductors�
�20,27�. We also notice that a similar so-called SUBm trun-
cation approximation in the 	 representation can be defined
as the approximation retaining up to m core distribution ten-
sors only �i.e., 	n=0 for nm�. It is intuitive to relate the
real-space cluster parametrization by the core distribution
tensor 
	n� in the 	 representation and momentum-space pa-
rametrization by 
FI , g̃I� in the Coester states; the Coester
representation provides a practical way to calculate these
core tensors. We will not intend to provide a general proof
that the Coester states in any truncation approximation will
satisfy the cluster decomposition property. We will adopt a
practical strategy to apply the linked-cluster expansion for-
mula of Eq. �A14� to the Coester states in real applications
and to examine the cluster property in the particular trunca-
tion approximation employed. We believe this will not cause
a major difficulty as we use the relations between the full
distribution functions �n

c and the bare distribution functions
g̃I

c as given by Eqs. �17�.
We would also like to point out that the traditional CCM

states certainly fail the cluster decomposition property due to
the linear construction of the bra state of Eq. �6�. This can be
easily seen as any expectation in the CCM is always linear in
the bra state coefficients, contradictory to the cluster decom-
position property. Therefore, the generalized linked-cluster
expansion of Eq. �A14� cannot be applied to the CCM states.
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