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Abstract
We extend the recently proposed variational coupled-cluster method to describe
excitation states of quantum many-body interacting systems. We discuss, in
general terms, both quasiparticle excitations and quasiparticle-density-wave
excitations (collective modes). In application to quantum antiferromagnets,
we reproduce the well-known spin-wave excitations, i.e. quasiparticle magnons
of spin ±1. In addition, we obtain new, spin-zero magnon-density-
wave excitations, which have been missing in Anderson’s spin-wave theory.
Implications of these new collective modes are discussed.

1. Introduction

In previous papers ([1, 2], hereafter referred to as paper I and paper II), we proposed a general
variational theory for ground states of quantum many-body interacting systems. Our analysis
extends the well-established coupled-cluster method (CCM) [3–5] to a variational formalism in
which bra and ket states are now Hermitian to one another, in contrast to the traditional CCM
where they are not [6]. Ever since the CCM was first proposed, attempts have been made to
extend it to a standard variational formalism, for example, in the 1970s in nuclear physics [7]
and later in quantum chemistry [8]. It is perhaps fair to say that progress of this variational
approach is slow, particularly when comparing with a plethora of applications made by the
traditional CCM over the last 35 years [9], including its recent state-of-the-art application
to spin-lattice models [10]. The main difficulties in this variational approach include ad hoc
approximation truncations and slow convergent numerical results. In I and II, we provided
a new systematic scheme to overcome these difficulties. In particular, we introduced two
sets of important bare distribution functions and derived self-consistency equations for these
functions; calculations of physical quantities can all be done in terms of these functions.
This strategy is similar to that employed by another well-established variational theory, the
method of correlated basis functions (CBFs) [11], where density distribution functions are key
ingredients. We showed that the traditional CCM is a simple linear approximation to one
set of bare distribution functions. We introduced diagrammatic techniques to calculate those
distribution functions to high orders for achieving convergent results; resummations of infinite
(reducible) diagrams can now be done by a practical, self-consistent technique. Furthermore,
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in our diagrammatic approach, a close relation with the CBF method was established and
exploited; a possible combination of these two methods was also proposed. We demonstrated
the efficacy of our variational method by applying it to quantum antiferromagnets. The ground-
state properties of spin-wave theory (SWT) [12] was reproduced in a simple approximation.
Approximation beyond SWT by including higher-order, infinite sets of reducible diagrams
produced the convergent, improved numerical results for square and cubic lattices and,
interestingly, it also cures the divergence by SWT in one-dimensional systems.

In this paper we extend our variational CCM to describe excitation states. A brief report
of some preliminary results has been published [13]. We investigate two different types
of excitation state using two approaches. In the first approach, we follow the traditional
CCM [14, 15] to investigate quasiparticle excitations, but keeping our ket and bra excited
states Hermitian to one another. We then investigate collective modes by adapting Feynman’s
excitation theory of the phonon-roton spectrum of helium liquid [16] to our method. In
application to antiferromagnets, we find that quasiparticle excitations correspond to Anderson’s
spin-wave excitations which are often referred to as magnons with spin +1 or −1 [12]. We find
that collective modes in these quantum antiferromagnets are longitudinal, spin-zero magnon-
density-wave excitations which have been missing in Anderson’s theory. In our approximation,
the energy spectra of these spin-zero excitations show a large gap for a cubic lattice (three
dimensions) and are gapless in a square lattice (two dimensions). These spectra are similar to
those of charge-density-wave excitations (plasmons) in quantum plasmas such as electron gases
at low temperature [17]. More discussion on these collective modes will be given in section 5
of this paper.

2. Ground states investigated by the variational coupled-cluster method

We briefly summarize in this section our variational approach for describing the ground
state of a many-body interacting system. Details can be found in I and II. We take a
spin-s antiferromagnetic Heisenberg model on a bipartite lattice as our model system. The
Hamiltonian is given by

H = 1
2

∑

l,n

sl · sl+n, (1)

where index l runs over all lattice sites, and n runs over all z nearest-neighbour sites. We use
the Coester representation for both ket and bra ground states, and write

|�g〉 = eS|�〉, S =
∑

I

FI C†
I ; 〈�̃g| = 〈�|eS̃, S̃ =

∑

I

F̃I CI , (2)

where the model state |�〉 is given by the classical Néel state, and C†
I and CI with nominal

index I are the so-called configurational creation and destruction operators and are given by,
for the spin lattice of equation (1),

∑

I

FI C†
I =

N/2∑

k=1

∑

i1···, j1···
fi1···, j1···

s−
i1

· · · s−
ik

s+
j1

· · · s+
jk

(2s)k
, (3)

for the ket state. The bra state operators are given by the corresponding Hermitian conjugate
of equation (3), using the notation F̃I = f̃i1···, j1··· for the bra-state coefficients. As before, we
have used index i exclusively for the spin-up sublattice of the Néel state and index j for the
spin-down sublattice. The coefficients {FI , F̃I } are then determined by the standard variational
equations as

δ〈H 〉
δ F̃I

= δ〈H 〉
δFI

= 0, 〈H 〉 ≡ 〈�̃g|H |�g〉
〈�̃g|�g〉

. (4)
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The important bare distribution functions, gI ≡ 〈CI 〉 and g̃I ≡ 〈C†
I 〉, can be expressed in

self-consistency equations as

gI = G(g̃J , FJ ), g̃I = G(gJ , F̃J ), (5)

where G is a function containing up to linear terms in g̃J (or gJ ) and finite-order terms in FJ

(or F̃J ). The Hamiltonian expectation 〈H 〉 of equation (4) can be expressed as, in general, a
function containing up to linear terms in gI and g̃I and a finite-order polynomial in FI (or in
F̃I ),

〈H 〉 = H(gI , g̃I , FI ) = H(g̃I , gI , F̃I ). (6)

In I and II, as a demonstration, we considered a simple truncation approximation in which
the correlation operators S and S̃ of equations (2) and (3) retain only the two-spin-flip operators
as

S ≈
∑

i, j

fi j C
†
i j =

∑

i, j

fi j

s−
i s+

j

2s
, S̃ ≈

∑

i, j

f̃i j Ci j =
∑

i, j

f̃i j

s+
i s−

j

2s
. (7)

The spontaneous magnetization (order parameter) in this two-spin-flip approximation is
given by the one-body density function ρi j as

〈sz
i 〉 = s − ρ, ρ =

∑

j

ρi j =
∑

j

fi j g̃i j, (8)

where we have taken the advantage of translational invariance of the lattice system. For the
j -sublattice, 〈sz

j 〉 = ρ − s. Within this approximation the SWT result for the correlation
coefficient can be derived from equation (4) as

fq = f̃q = 1

γq

[√
1 − (γq)2 − 1

]
, γq = 1

z

∑

n

eiq·rn , (9)

where fq is the sublattice Fourier transformation of fi j with q restricted to the magnetic zone,
z is the coordination number of the lattice, and n is the nearest-neighbour index. The Fourier
component of the one-body bare distribution function is derived as

g̃q = f̃q

1 − f̃q fq

. (10)

Finally, the two-body distribution functions is approximated by, in the same order,

g̃i j,i ′ j ′ ≈ g̃i j g̃i ′ j ′ + g̃i j ′ g̃i ′ j . (11)

Approximation beyond these SWT formulae produced improved results, and these are
given in detail in section 2. For simplicity of our first attempt to discuss excitation states, we
shall restrict ourselves to these approximations of equations (7)–(11) in the following.

3. Quasiparticle excitations

As mentioned in section 1, inspired by the close relation between our approach and the
CBF method, we can investigate quasiparticle-density-wave excitations by adapting Feynman’s
excitation theory, as well as usual quasiparticle excitations by a similar approach to that in the
traditional CCM. One well-known example of a quantum system exhibiting two similar kinds of
excitation is quantum electron gases [17], where quasiparticle excitations are electron or hole
excitations and collective modes are plasmon excitations representing longitudinal, charge-
neutral density fluctuations of those quasielectrons and holes. In this section we focus on
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quasiparticle excitations, and we leave the discussion of collective modes to the next section.
We will first discuss these excitations in general terms and then apply them to the spin-lattice
model of equation (1) as a demonstration.

Following Emrich in the traditional CCM [14, 15], we express the excitation ket-state
|�e〉 by a linear operator X constructed from creation operators acting onto the ground state
|�g〉 as

|�e〉 = X |�g〉 = XeS |�〉, X =
∑

L

xLC†
L , (12)

and, unlike the traditional CCM, our bra excitation state is the corresponding Hermitian
conjugate, involving only destruction operators such as

〈�̃e| = 〈�̃g|X̃ = 〈�|eS̃ X̃ , X̃ =
∑

L

x̃LCL . (13)

In equations (12) and (13), the ground-state operators S and S̃ are as given by equation (2);
xL and its Hermitian conjugate x̃L are excitation coefficients. For quasiparticle creation
and destruction operators C†

L and CL of equations (12) and (13), we use the index L to
mark the following important difference from the ground-state counterparts C†

I and CI of
equations (2). Due to symmetry considerations, some configuration operators are not included
in the correlation operators S and S̃ of the ground states but they are important in the excited
states. In our spin-lattice example of equation (1), the ground-state operators of equation (3)
always contain an even number of spin-flip operators (each spin-flip-up operator for the i -
sublattice always pairs up with one spin-flip-down operator for the j -sublattice) to ensure the
total z-component of angular momentum sz

total = 0. For the excitation operators, however, the
constraints are different. The single spin-flip operator s−

i for the i -sublattice (or s+
j for the j -

sublattice) will be the important first term in equation (12) to be discussed in the following;
the corresponding excitation state |�e〉 is in the sz

total = −1 sector (or +1 if s+
j is used).

Therefore, these excitations are referred to as quasiparticles carrying spin ±1. For our spin-
lattice models, we expect that these quasiparticles are the well-known magnons of spin-wave
excitations [12].

If the ground state |�g〉 is exact with energy E0, the energy difference between the
excitation state of equation (12) and the ground state can be written as

ε = 〈�̃g|X̃ H X |�g〉
〈�̃e|�e〉

− E0 = 〈�̃g|X̃[H, X]|�g〉
〈�̃e|�e〉

, (14)

which involves a commutation. In general, |�g〉 is not exact but is calculated by
approximations. For our variational ground states of equations (2), equation (14) can be shown
to remain valid after replacing the exact energy E0 by the variational energy Eg, which obeys
the following optimal conditions:

Eg = 〈H 〉 = 〈H C†
I 〉

g̃I
= 〈CI H 〉

gI
, (15)

derived from equation (4).
To prove equation (14) after replacing the exact E0 by the variational Eg, we first express

the normalization of excited states of equations (12) and (13) as an expectation value in the
ground states of equation (2) as

Ie = 〈�̃e|�e〉 = Ig〈X̃ X〉 = Ig

∑

L ,L ′
x̃L ′ xL〈CL ′ C†

L 〉, (16)
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where Ig = 〈�̃g|�g〉. We now consider a general linear operator O = O(C†
I , CI ) (a

polynomial of C†
I and/or CI ), and write

O|�g〉 = OeS |�〉 = eS Ō|�〉, (17)

where the similarity-transformed operator Ō ≡ e−S OeS = O(C̄†
I , C̄I ), C̄†

I = C†
I and

C̄I = e−S OeS = CI + [CI , S] + 1

2! [[CI , S], S] + · · · , (18)

which always terminates for a finite-order operator CI . In each term of such Ō expansion series,
by shifting all destruction operators CI to the right, and using the property CI |�〉 = 0, we
conclude that only terms containing constants or only creation operators survive. We therefore
have a general expression

O(C†
I , CI )|�g〉 = O(C†

J , FJ )|�g〉, (19)

where O(C†
J , FJ ) is a function containing up to linear terms in C†

J and finite-order terms in FJ .
We shall refer to equation (19) as the linear theorem in our variational approach as it is useful
for general analysis. In fact, the important equations (5) and (6) in section 2 are two specific
application of this linear theorem. Therefore we can write, for a special case of equation (19),

CL ′ C†
L |�g〉 = YL ′ L(C†

I , FI )|�g〉, (20)

where YL ′,L (C†
I , FI ) is a function containing up to linear terms in C†

I and finite-order terms in
FI . Using equation (20), equation (16) can be written as

Ie = Ig

∑

L ,L ′
x̃L ′YL ′L (g̃I , FI )xL . (21)

Combining with the optimal condition of equation (15), it is easy to show that

1

Ie
〈�̃g|H X̃ X |�g〉 = Eg. (22)

Hence, we obtain a similar equation to equation (14) for the energy difference,

ε = 1

Ie
〈�̃g|X̃ H X |�g〉 − Eg = Ig

Ie
〈X̃ [H, X]〉. (23)

We now apply the above formulae to discuss quasiparticle excitations of spin systems of
equation (1). For simplicity, we consider an approximation in which we retain only single-
spin-flip operators in X and X̃ of equations (12) and (13),

X ≈
∑

i

xi s
−
i , X̃ ≈

∑

i

x̃i s
+
i , (24)

with coefficients chosen as

xi = xi(q) =
√

2

N
eiq·ri , x̃i = x̃i(q) =

√
2

N
e−iq·ri , (25)

to define a linear momentum q. Such an excited state, |�e〉 = X |�g〉, is therefore in the sector
of sz

total = −1 and has a linear momentum q. The normalization integral of equation (24) is
easily calculated as

Ie

Ig
= 〈X̃ X〉 = 2

∑

i

x̃i xi〈sz
i 〉 + 2s

∑

i,i ′, j

x̃i ′ xi fi ′ j g̃i j −
∑

i,i ′, j, j ′
x̃i ′ xi fi ′ j fi ′ j ′ g̃i j,i ′ j ′, (26)

and using equations (8) and (11) we derive

Ie

Ig
= 2(s − ρ)(1 + ρq), (27)
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where ρq ≡ fq g̃q . Using approximations of equations (9)–(11), we obtain, for the isotropic
point A = 1,

Ie ∝ 1

q
, q → 0, (28)

in all dimensions.
Calculation of the numerator in equation (23) is slightly more complicated. We quote the

result here, to the order of (2s)2, as

〈X̃ [H, X]〉 ≈ 2s2z(1 + ρq + γq gq). (29)

The energy spectrum of equation (23) is therefore given, to the order of (2s), by

εq = Ig

Ie
〈X̃ [H, X]〉 ≈ sz

1 + ρq + γq gq

1 + ρq
. (30)

Using equations (9)–(11), we obtain the energy spectrum as

εq = sz
√

1 − (γq)2, (31)

which agrees exactly with the spin-wave theory [12]. The spectrum of equation (31) is gapless
in any dimension because εq ∝ q as q → 0. Similar calculations using spin-flip operators s†

j

and s−
j for the j -sublattice in equation (24) will produce the same spectrum as equation (31),

except that the corresponding excitation state has spin sz
total = +1. These spin-wave excitations

are often referred to as magnons.

4. Quasiparticle-density-wave excitations

In the previous section, by using quasiparticle operators (i.e., spin-flip operators s±), we have
reproduced the magnon excitations with spin equal to +1 or −1. These quasiparticles in general
interact with one another, thus producing quasiparticle density fluctuations. Excitation states
due to these fluctuations are usually referred to as collective modes and are best discussed
in terms of the corresponding density operator. For our spin models, density operators are
clearly given by operators sz as they measure the number of spin-flips with respect to the Néel
model state, and the expectation value is the order parameter as given by equation (8). For
general purposes, we use the notation C0

L for the quasiparticle density operators as opposed
to the quasiparticle operators C†

L and CL used earlier. At this point, it is interesting to
note that a general theory of elementary excitations (collective modes) for Fermi systems has
been formulated by extending the random-phase approximation to strongly interacting Fermi
systems within the framework of the CBF method [18], where a single particle–hole operator
is employed, in contrast to the explicit density operator employed here. The efficiency and
advantage of using explicit density operators to investigate collective modes of a quantum
interacting system was demonstrated by Feynman for the phonon-roton spectrum of quantum
fluid helium-4 [16]; he extended Bijl’s theory [19] in a much simpler and clearer fashion.
Feynman’s excitation formula, involving a double commutation of the so-called f -sum rule,
was also derived by Pines for the plasmon spectrum of three-dimensional (3D) metals [17].
The 2D plasmon spectrum first derived by Stern [20] can also be derived by using a density
operator, as shown in [21]. It is interesting to note that both the CBF method for the ground
state and Feynman’s theory for excitation states have been successfully applied to fractional
quantum Hall effects [22, 23]. Feynman’s excitation theory is now often referred to as a single-
mode approximation [23].

6
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Following Feynman, we write the quasiparticle density-wave excitation state as

|�0
e 〉 = X0|�g〉, X0 =

∑

L

xLC0
L , (32)

where, as defined earlier, C0
L are the quasiparticle density operators. The bra state is given by

the Hermitian conjugate of equation (32), 〈�̃e| = 〈�̃g|X̃0. Using the same argument as before
for the quasiparticle excitation of equation (23), we obtain a similar equation for the energy
difference for our collective modes as

ε0 = Ig

I 0
e

〈X̃0[H, X0]〉, (33)

where I 0
e = 〈�̃0

e |�0
e 〉. We notice that, by definition, the density operator C0

L is a Hermitian
operator, (C0

L )† = C0
L . By considering a similar excited state X̃0|�g〉, it is straightforward to

derive the following double commutation formula,

ε0 = Ig

2I 0
e

〈[X̃0, [H, X0]]〉. (34)

The double commutation in the above equation is the key to the efficiency of Feynman’s
excitation theory. It is often referred to as the f -sum rule in other quantum systems such
as electron gases [17].

Before we apply equation (34) for collective modes in spin lattices, it is useful to discuss
sum rules in our spin models, as density operators normally obey sum rule equations [11, 24].
The order parameter of equation (8) can also be calculated through two-body functions as

(〈sz
i 〉)2 = 〈�̃g|(sz

a)
2|�g〉

〈�̃g|�g〉
, (35)

where sz
a = ∑

l(−1)l sz
l /N is the staggered spin operator. We introduce the total magnon-

density operator n̂i as

2n̂i = 2s − sz
i + 1

z

z∑

n=1

sz
i+n, (36)

where, as before, summation over n is over all z nearest neighbours. Hence, the sum rule for the
one-body function is simply 2

N

∑
i〈n̂i 〉 = ρ. The two-body equation (35) can now be written,

using the translational invariant property ρi = ρ, as

2

N

N/2∑

i ′=1

〈n̂i n̂i ′ 〉 = ρρi = ρ2, (37)

which is the familiar two-body sum rule equation [11, 24]. In the approximations of
equations (7)–(11), we find that this sum rule is obeyed in both cubic and square lattices in
the limit N → ∞. In particular, we find that ( 2

N

∑
i ′ 〈n̂i n̂i ′ 〉 − ρ2) ∝ 1/N in a cubic lattice and

∝ (ln N)/N in a square lattice. These asymptotic properties are important in the corresponding
excitation states as will be discussed later. However, equation (37) is violated in the one-
dimensional model, showing the deficiency of the two-spin-flip approximation of equation (7)
for the one-dimensional model. We therefore leave further investigation elsewhere and focus
on the cubic and square lattices in the following, using approximations of equations (7)–(11).

We therefore write our magnon-density-wave excitation state, using the total magnon
density operator n̂i of equation (36), as

|�0
e 〉 = X0

q |�g〉, X0
q =

∑

i

xi(q)n̂i , q > 0 (38)

7
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 0.15

 0.1

 0.05

 0
(π,0,0)(π/2,0,0)(0,0,0)(π/2,π/2,π/2)(π,π,π)

q

S0(q)

N(q)

S0(q)

N(q)

S0(q)

N(q)

S0(q)

N(q)

Figure 1. N(q) and S0(q) of equations (40) and (41) for a cubic lattice. Shown are the values for
two regions q = (0, 0, 0) to (π, 0, 0) and to (π, π, π).

and its Hermitian counterparts for the bra state, 〈�̃0
e | = 〈�̃g|X̃0

q . The coefficient xi(q) =√
2
N eiq·ri , etc. The condition q > 0 in equation (38) ensures the orthogonality between this

excited state and the ground state. The excitation energy difference is given by equation (34)
as

ε0
q = N(q)

S0(q)
, q > 0 (39)

where N(q) ≡ 〈[X̃0
q , [H, X0

q]]〉/2, and S0(q) ≡ 〈X̃0
q X0

q〉 is the structure function. Both N(q)

and S0(q) can be straightforwardly calculated, using approximations of equations (7)–(11), as

N(q) = − sz

2

∑

q ′
(γq ′ + γqγq−q ′)g̃q ′, (40)

and

S0(q) = 1
4 (1 + γ 2

q )ρ + 1
4

∑

q ′
[(1 + γ 2

q )ρq ′ρq−q ′ + 2γq g̃q ′ g̃q−q ′ ], (41)

where q > 0. The energy spectrum ε0
q of equation (39) can then be calculated numerically. We

notice that equation (41) is closely related to the sum rule equation (37) which corresponds
to the q = 0 case (with an additional term in equation (41) when q → 0). Using the
approximation of equations (9) and (10), it is not difficult to show that N(q) of equation (40)
has a nonzero, finite value for all values of q . Any special feature such as a gapless mode
in the spectrum ε0

q therefore comes from the structure function of equation (41), and hence is
determined by the asymptotic behaviour of the sum rule equation (37) mentioned earlier.

For a cubic lattice, we show a plot of N(q) and S0(q) for two regions of q in figure 1. In
figure 2 we have plotted the corresponding spectra of equation (39), together with that of the
magnon excitations of equation (31) for comparison. As can be seen from figure 2, the spectrum
ε0

q has a nonzero gap everywhere. The minimum gap is about ε0
q ≈ 0.96sz at q = (q0, q0, q0)

with q0 ≈ 0.04π . (This is slightly different to that reported in [13], where detailed calculations
in this region had not been done.) This gap is about the same as the largest magnon energy,
εq = sz at q = (π/2, π/2, π/2) from equation (31). At q = (π/2, π/2, π/2), we have the

8
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Figure 2. Excitation energy spectra in units of sz in a cubic lattice. The higher branch is for
the plasmon-like excitation of equation (39) and the lower one is for the magnon excitation of
equation (31).
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 0.4

 0.2

 0
(π,0)(π/2,0)(0,0)(π/2,π/2)(π,π)

q

S0(q)

N(q)

Figure 3. Similar to figure 1 but for a square lattice. The divergence of S0(q) at q = (0, 0) and
(π, π) is given in the text.

largest energy, ε0
q ≈ 2.92sz. This is nearly three magnons’ energy at this q. At q = (π, 0, 0),

we obtain ε0
q ≈ 2.56sz.

For a square lattice, the structure function S0(q) of equation (41) has a logarithmic
behaviour ln q as q → 0. This is not surprising as discussed earlier in the sum rule
equation (37), where there occurs asymptotic behaviour of (ln N)/N as N → ∞. For small
values of q , N(q) approaches a finite value: N(q) ≈ 0.275sz as q → 0. The corresponding
energy spectrum of equation (39) is therefore gapless as q → 0. As with the cubic lattice,
we show a plot of N(q) and S0(q) of a square lattice in figure 3, and the corresponding
spectra of equations (39) and (31) in figure 4. As can be seen from figure 4, the magnon-
density-wave energy is always larger than the corresponding magnon energy. At small values
of q (q < 0.05π ), we find a good approximation by numerical calculations for the structure
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Figure 4. Similar to figure 2 but for a square lattice. The behaviour near q = (0, 0) and (π, π) for
magnon density waves is given by equation (42).

function, S0(q) ≈ 0.31 − 0.16 ln q with qx = qy . Similar behaviour holds near q = (π, π).
The energy spectrum of equation (39) in these region can therefore be approximated by

ε0
q ≈ 0.275sz

0.31 − 0.16 ln q
, q → 0 (42)

for a square lattice with qx = qy . We notice the slight difference for the coefficients of
equation (42) to that of equation (19) of [13] where we focused in the region with qy = 0.
Although our calculations clearly show that this spectrum of a square lattice is gapless at q = 0
and q = (π, π), it is nevertheless very ‘hard’ when compared with the magnon’s soft mode
εq ∝ q at small q . For example, if we consider a system with lattice size N = 1010, the
smallest value for q is about q ≈ 10−10π , and we have energy ε0

q ≈ 0.07sz. Comparing
this value with the corresponding magnon energy εq ≈ 10−10sz, we conclude that the energy
spectrum of equation (39) is ‘nearly gapped’ in a square lattice. We also notice that the largest
energy in a square lattice ε0

q ≈ 2.79sz at q = (π, 0), not at q = (π/2, π/2) as is the case
in a cubic lattice. At q = (π/2, π/2), we obtain ε0

q ≈ 2.62sz for the square lattice. We will
discuss physical implications of these excitations in the next section.

5. Discussion

We have obtained two main results in this article. Firstly, we have succeeded in extending
our recently proposed variational approach to describe, in general terms, excitation states
of a quantum many-body system. Secondly, we have applied our technique to quantum
antiferromagnets, thus reproducing the well-known magnon excitations and, in addition, we
have obtained new, spin-zero longitudinal collective modes which have been missing in the
spin-wave theory of Anderson [12]. In the following, we shall discuss further physical
implications of these new excitations, and we conclude this article with a summary.

It is interesting to notice similar behaviours between collective modes of quantum
antiferromagnets and plasmon excitations of electron gases as both spectra show a large
energy gap in three dimensions and are gapless in two dimensions. In fact, further similarity
between these two quantum systems can be made. It is generally accepted that, for many
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purposes, a quantum antiferromagnet at zero temperature can be considered as a gas of weakly
interacting, equal numbers of spin ±1 magnons (the transverse spin-flip wave excitations with
respect to the classical Néel state); also present in the system are the spin-zero, longitudinal
fluctuations consisting of the multi-magnon continuum [25–28]. This is similar to quantum
electron gases, which can also be considered as a gas of weakly interacting, equal numbers of
quasielectrons and holes (the transverse excitations near the Fermi surfaces) and the charge-
neutral, longitudinal fluctuations producing the quasielectron–hole continuum [17]. Plasmon
excitations of electron gases have been well observed as sharp peaks over the electron–hole
continuum [17]. However, plasmon-like collective modes of quantum antiferromagnets as
discussed in this article have so far eluded observation, to our best knowledge. We can only
draw some support by considering a finite-size Heisenberg model of equation (1). As the
ground state of a finite antiferromagnetic Heisenberg lattice is spin-singlet, we expects that low-
lying excitations are triplets with the z-component of spin equal to 0,±1. As the lattice size
increases from finite to infinite, for cubic and square lattices, spontaneous symmetry breaking
occurs, and the ground state is no longer a spin-singlet but has a long-ranged antiferromagnetic
order. We expect that the triplet excitation splits into different branches. The magnon spectrum
of equation (31) with spin ±1 and the spectrum of equation (39) for spin-zero magnon-density
waves are our approximation for these different branches of excitations. We also notice that
recently modified spin-wave theories were applied to finite systems with results in reasonable
agreements with exact finite-size calculations [29–31]. As pointed out in [30], however, a
major deficiency in this theory is the missing spin-zero excitations as the low-lying excitations
for a finite-lattice Heisenberg model are always triplets, as mentioned earlier. We believe
that our magnon-density-wave excitation as discussed here corresponds to the missing branch;
the energy gap in the cubic lattice and the nearly gapped spectrum in the square lattice of
equation (39) reflect the nature of long-ranged Néel order in the ground states of infinite
systems. Improvement for spectra of equation (39) can be done in similar fashion as was done
for the ground state detailed in paper II, particularly for the square lattice. We will have more
motivation to do so if we have experimental evidence of these collective modes.

In any case, this article concludes our general presentation of a new formalism of the
variational coupled-cluster method for a quantum many-body system. Beginning in paper I,
we introduced and discussed bare distribution functions, the key ingredient of this formalism.
In paper II, we developed diagrammatic techniques for practical, high-order calculations of
these functions. Application to quantum antiferromagnets has demonstrated the efficacy of this
technique. The present article extends this formalism to excitation states. As discussed earlier,
application to quantum antiferromagnets has produced new modes which have been missing in
all spin-wave theories and are yet to be confirmed by experiment. Our next main focus is to
combine our present variational approach with the CBF method, as first discussed in paper II.
Hence we write our new ground state as

|�u〉 = eS0 |�g〉 = eS0
eS|�〉, (43)

where S is as given by equation (2) and S0 is the generalized Jastrow correlation operator
involving quasiparticle density operators as

S0 =
∑

i j

f 0
i j s

z
i sz

j , (44)

with f 0
i j as new variational functions. Using the 2-spin-flip approximation of equation (7) for

S, the new wavefunction of equation (43) can be understood as including both quasiparticle
fluctuations described by the operator exp(S) and quasiparticle-density fluctuations described
by the operator exp(S0). The results of collective modes obtained in section 4 certainly make
this new wavefunction of equation (43) much more appealing and imperative.
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