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A B S T R A C T

We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair bound-
aries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the bound-
ary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra
of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge
states are topologically protected and also tunable. Our results may explain the origin of the novel edge states
recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental
confirmations.

1. Introduction

One intriguing aspect of electrons moving in finite-sized honeycomb
lattices is the presence of edge states, which have strong implications
in the electronic properties and play an essential role in the electronic
transport [1–3]. It is well known that natural graphene exhibits edge
states under some particular boundaries [4,5]. For example, there are
flat edge states connecting the two Dirac points in a lattice with zig-zag
[1] or bearded edges [6]. On the contrary, there are no edge states in
a lattice with armchair boundary [7], unless a boundary potential is
applied [8].

The edge states have also been studied in magnetic insulators
[9–11], where the spin moments are carried by magnons. Recently,
it has been shown that the magnonic equivalence for the Kane-Mele-
Haldane model is a ferromagnetic Heisenberg Hamiltonian with the
Dzialozinskii-Moriya interaction [12,13]. Firstly, while the energy band
structure of the magnons of ferromagnets on the honeycomb lattice
closely resembles that of the fermionic graphene [14,15], it is not clear
whether or not they show similar edge states, particularly in view of the
interaction terms in the bosonic models which are usually ignored in
graphene [16]. Secondly, most recent experiments in photonic lattices
have observed novel edge states in honeycomb lattices with bearded
[17] and armchair [18] boundaries, which are not present in fermionic
graphene. The main purpose of this paper is to address these two
issues. By considering a ferromagnetic honeycomb lattice with arm-
chair boundaries, we find that the bosonic nature of the Hamiltonian
reveals novel edge states which are not present in their fermionic coun-
terpart. After introducing an external on-site potential at the outermost
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sites, we find that the edge states are tunable. Interestingly, we find that
the nature of such edge states is Tamm-like [19], in contrast with the
equivalent model for armchair graphene [8] but, as mentioned earlier,
in agreement with the experiments in photonic lattices [17,18]. Fur-
thermore, after introducing a Dzialozinskii-Moriya interaction (DMI),
we find that the topologically protected edge states are sensitive to the
presence of the Tamm-like states and they also become tunable.

2. Model Hamiltonian

We consider the following Hamiltonian for a ferromagnetic honey-
comb lattice,

H = −J
∑
⟨i,j⟩ Si ⋅ Sj +

∑
⟨⟨i,j⟩⟩ Dij ⋅

(
Si × Sj

)
, (1)

where the first summation runs over the nearest-neighbors (NN) and
the second over the next-nearest-neighbors (NNN), J > 0 is the isotropic
ferromagnetic coupling, Si is the spin moment at site i and 𝐃ij is the DMI
vector between NNN sites [20]. If we assume a lattice in the x-y plane,
according to Moriya’s rules [20], the DMI vector vanishes for the NN
but has non-zero component along the z direction for the NNN. Hence,
we can assume Dij = D𝜈ij ẑ, where 𝜈ij = ±1 is an orientation dependent
coefficient in analogy with the Kane-Mele model [21]. For the infinite
system in the linear spin-wave approximation (LSWA), the Hamiltonian
in Eq. (1) can be reduced to a bosonic equivalent of the Kane-Mele-
Haldane model [12–14]. To investigate the edge states we consider an
armchair boundary along the x direction, with a large N sites in the y
direction, as shown in Fig. (1). A partial Fourier transform is made and
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Fig. 1. Squematics of the upper armchair edge of a honeycomb lattice. The external on-
site potential 𝛿1 is applied at the outermost sites. Here, n is a real-space row index in y
direction perpendicular to the edge. For a large N, we consider the opposite edge with
the same structure and with an on-site potential 𝛿N .

the Hamiltonian given in Eq. (1) in LSWA can be written in the form,

H = −t
∑

k
Ψ†

kMΨk, (2)

where Ψ†
k =

[
Ψ†

k, A,Ψ
†
k, B

]
is a 2N × 2N, 2-component spinor, k is the

Bloch wave number in the x direction and t = JS. The matrix elements
of M are N × N matrices given by,

M11 =
(
1 − 𝛿1

)
T†T +

(
1 − 𝛿N

)
TT† + 𝛿sI + MD,

M12 = −J1I − J2
(
T + T†) ,

M21 = M†
12,

M22 = M11 − 2MD,

(3)

with 𝛿s =
(
1 + 𝛿1 + 𝛿N

)
I and MD = J3

(
TT − T†T†) + J4

(
T† − T

)
the

DMI contribution. Here, T is a displacement matrix as defined in
Ref. [22] and I a N × N identity matrix. We have also introduced
two on-site energies 𝛿1 and 𝛿N at the outermost sites of each bound-
ary, respectively. The coupling terms are: J1 = e-ik, J2 = eik∕2, J3 = iD′,
J4 = 2iD′ cos

(
3k∕2

)
and D′ = D∕J. The numerical diagonalization of the

matrix given by Eq. (2) reveals that the bulk spectra is gapless only if
N = 3m + 1, with m a positive integer [23]. However, to avoid size-
dependent bulk gaps or hybridization between edge states of opposite
edges [8], we consider a large N where the edge states are independent
of the size [24,25].

3. Edge states and boundary conditions

From the explicit form of the matrix elements given in Eq. (3), the
coupled Harper equations can be obtained [26]. If we assume that the
edge states are exponentially decaying from the armchair boundary, we
can consider the following anzats [27,28] for the eigenstates of M in Eq.
(2),

Ψk(n) =

[
𝜓k,A(n)

𝜓k,B(n)

]
= zn

[
𝜙k,A

𝜙k,B

]
, (4)

where
[
𝜙k,A, 𝜙k,B

]t is an eigenvector of M, z is a complex number and
n{= 1,2, 3,…} is a real space lattice index in the y direction, as shown
in Fig. (1). Upon substitution of the anzats in the coupled Harper equa-
tions, the complex number z obey the following polynomial equation,

4∑
𝜇=0

a𝜇(z + z−1)𝜇 = 0, (5)

with coefficients: a0 = 1 − (3 − 𝜀)2 − 4J2
4, a1 = 8J3J4 + J∗1J2 + J∗2J1, a2 =

−4J2
3 + J2

4 + 1, a3 = -2J3J4 and a4 = J2
3. For a given k and energy 𝜀, such

a polynomial always yields four solutions for (z + z−1). Since we require
a decaying wave from the boundary, only the solutions with |z| < 1

are relevant for the description of the edge states at the upper edge
and |z| > 1 for the lower (opposite) edge. The eigenfunction of Eq. (2)
satisfying lim

n→∞
Ψk (n) = 0 may now in general be written as,

𝜓k,l(n) =
4∑

𝜐=1
cvzn

v𝜙l,v , (6)

where the coefficients c𝜐 are determined by the boundary conditions
and 𝜙l,v is the two-component eigenvector (l = A,B) of M. From the
Harper equations provided by the Eq. (3) and Eq. (4), the boundary
conditions are satisfied by,(
1 − 𝛿1

)
𝜓k,A(1) − J2𝜓k,B(0) = 0, (7)

(
1 − 𝛿1

)
𝜓k,B(1) − J∗2𝜓k,A(0) = 0, (8)

J4𝜓k,A(0) − J3𝜓k,A(−1) = 0, (9)

J4𝜓k,B(0) − J3𝜓k,B(−1) = 0. (10)

By Eq. (6), the above relations can be written as a set of equations for
the unknown coefficients cv. The non-trivial solution and the polyno-
mial given by Eq. (5), provide us a complete set of equations for the
edge state energy dispersion and they can be solved numerically. The
same procedure can be followed to obtain the solutions for the opposite
edge.

4. Results and discussions

4.1. Zero DMI

For the system without DMI, the coupling terms involving J3 and
J4 vanish, and the boundary conditions are reduced to the Eqs. (7) and
(8) with a quadratic polynomial in (z + z−1) of Eq. (5). In particular, for
the (uniform) case with 𝛿1 = 𝛿N = 1, the edge and the bulk sites have
the same on-site potential and the boundary conditions provide us with
two bulk solutions with z2 = 1. Therefore, in analogy with graphene
with armchair edges, there are not edge states [7]. However, as shown
in Fig. (2a), in the absence of external on-site potential

(
𝛿1 = 𝛿N = 0

)
,

two new dispersive localized modes are obtained. Located between
(red, continuous line) and below (green, dotted) the bulk bands, such
edge states are well defined along the Brillouin zone and their energy
bands are doubly degenerated due to the fact that there are two edges
in the ribbon. These edge states have not been previously predicted
or observed in magnetic insulators. However, we believe that they are
analogous to the novel edge states recently observed in a photonic hon-
eycomb lattice with armchair edges [18]. Although in Ref. [18] these
edge states may be attributed to the dangling bonds along the bound-
ary sites (the details have been given for zig-zag and bearded but not
for armchair edges), and since these dangling bonds can be viewed as
effective defects along the edges, similar physics is contained in our
model where the effective defects are described by the different on-
site potential at the boundaries. We believe that our approach has the
advantage of simple implementation for various boundary conditions.
In particular, we have obtained expressions for the wavefunctions and
their confinement along the boundary. The latter is given by the pene-
tration length (or width) of the edge state [29] defined as,

𝜉i(k) ≡
√

3
2

[
ln

|||| 1
zi(k)

||||
]−1

, (11)

indicating a decay of the form ∼ e−y∕𝜉i(k). In the above equation, zi is
the i-th decaying factor in the linear combination, Eq. (6). Since we
require two decaying factors to construct the edge state, we have two
penetration lengths as mentioned in Ref. [18]. The penetration lengths
for the edge states with 𝛿1 = 𝛿N = 0 are shown in the Fig. (2b). The
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Fig. 2. a) Edge state energy dispersion for D = 0 and 𝛿1 = 𝛿N = 0. The blue regions are
the bulk energy spectra. The green (dotted) and red (continuous) lines are the edge state
energy bands. In b) their corresponding penetration lengths are shown. The magnon den-
sity profile for the edge magnon is shown in c) for 𝜀 = (2 ±

√
2)t at k = ±𝜋∕3, and in d) for

𝜀 = 0.298t at k = ±0.65. The radius of each circle is proportional to the magnon density.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

dotted (green) and continuous (red) lines are the corresponding pen-
etration lengths for the edge states in the Fig. (2a). The edge state
between the bulk bands (red, continuous) is composed by two pene-
tration lengths but they are indistinguishable to each other. This indi-
cates that the decaying factors are complex conjugates to each other,
z1 = z∗2 [14,29]. The edge state below the lower bulk band (green, dot-
ted) depends on two penetration lengths in the region around k = ±𝜋∕3.
However, outside such region, one penetration length diverges, that
is |z| → 1, while the other one decreases to a minimum value. This
means that the edge state tends to merge with the bulk and is almost
indistinguishable at k = 0,±2𝜋∕3. Furthermore, as we can see in the
Fig. (2b), at k = ±𝜋∕3, the penetration length of both edge states is iden-
tical hence they have their maximum confinement along the boundary
at the same Bloch wave-vector. This is shown in the Fig. (2c) where
we plot the magnon density, ||𝜓k,l(n)∕𝜓k,l(1)||2, for both edge states at
k = ±𝜋∕3 with their corresponding energies, 𝜀 = (2 ±

√
2)t. In addition,

in the Fig. (2d) the magnon density for the edge state below the lower
bulk band with energy 𝜀 = 0.298 t at k = ±0.65 is shown, where as we
mentioned before, if k approaches to zero, the edge state tends to spread
to the inner sites.

The edge states described before have been obtained with no gap
in the bulk for a non-interacting bosonic Hamiltonian, Eq. (2) and for
𝛿1 = 𝛿N = 0. They are located between the Dirac points and their exis-
tence without external on-site potentials indicates that they are “Tamm-
like” [17,19]. Such type of states are usually associated with surface
perturbations or defects. However, in our system no defects are present.
The origin of such edge states is related to the on-site contribution along
the boundary, where each site has two nearest neighbors hence the on-
site potential is lower than in the bulk. Such difference creates an effec-
tive defect and induces the “Tamm-Like” edge states. We also like to
point that such on-site potentials come from the original spin-model of
Eq. (1). In analogy with the photonic model described in Ref. [17], the
missing bonds along the boundary give rise to a reduction of the on-site
potential and makes the edge itself a defect. This is taken into account
in the first terms of both Eq. (7) and Eq. (8), which contains the on-site
contribution to the boundary conditions in both sublattices. Such on-
site terms are missing in their fermionic counterpart. This may explain
why the observed edge states discussed in this paper do not exists in
graphene unless an edge potential be applied [8].

We next discuss the effects of edge potentials. It has been shown that
edge states can be induced by edge potentials in the armchair graphene
[8], however, the edge states that we found are a consequence of the
bosonic nature of the lattice as discussed above. Since they exist with-
out opening a gap and they are dispersive, it is not clear if they can be
predicted by a topological approach. Our approach reveals that the edge
states in a bosonic lattice are strongly dependent on the on-site poten-
tial along the boundary. For example, if 𝛿1 = 2.5 (with 𝛿N = 0) some
new features are obtained. As shown in Fig. (3a), the presence of the
strong external on-site potential reveals three edge states at the upper
boundary: a high energy edge state over the bulk bands (black, contin-
uous line), an edge state between the bulk bands (purple, dot-dashed
line), and interestingly, an edge state within the bulk bands (orange
circle). Such edge state is strongly localized and is highly dispersive,
Fig. (3b). It merges into the bulk with an small change in their Bloch
wave-number and may be difficult to detect in a magnetic insulator. It
is therefore very encouraging that similar edge state was observed in a
photonic lattice [18].

4.2. Non-zero DMI

It is well known that a non-zero DMI in a bosonic honeycomb
lattice makes the band structure topologically non-trivial and reveals
metallic edge states which transverse the gap [12]. However, the edge
states that appear, under, within and over the bulk bands in Figs. (2a)
and (3a) are distinct to the edge states predicted by topological argu-
ments.

In the Fig. (4) we show the energy bands for a DMI strength of D =
0.1J, where we keep a fixed 𝛿N = 1 and we modified 𝛿1. The continuous
(green) line that cross the gap from the lower to the upper bulk bands
is the edge state at the lower edge. The dotted (red) lines correspond
to the edge states at the upper edge. If we follow the edge state energy
spectra at the upper boundary from the Fig. (4a) to the Fig. (4c), we
observe that the edge state within the bulk gap change its concavity.
The Tamm-like state below the bulk bands, Fig. (4a), merge with the
bulk and a new Tamm-like state appears at the top of the upper bulk
band, as shown in Fig. (4c). If we keep increasing the value of the
external on-site potential the Tamm-like state over the bulk band in
Fig. (4c) moves away from the upper bulk band, Fig. (4d). Furthermore,
a second Tamm-like state appears with components within the bulk, as
shown in Fig. (4d) and (4e). The boundary conditions suggest that the
existence of these two tunable edge states is due to the two sites in
the unit cell of the armchair boundary and, by symmetry, the same
behavior is expected at the opposite edge. These edge states can be
made to locate below, within and over the bulk bands. If a non-trivial
gap is induced the topologically protected edge states are also tunable.

Finally, similar phenomena is expected for a lattice with zig-zag or
bearded boundaries. In both cases there is a single outermost site and
Tamm-like edge states may appear due to the missing bond and/or by

Fig. 3. a) Edge state energy dispersion for D = 0 with 𝛿1 = 2.5 and 𝛿N = 0. The blue
regions are the bulk energy spectra. The dotted (green) and continuous (red) lines are
the edge state energy bands at the lower edge. The dot-dashed (purple) line, continu-
ous (black) line and the circle (orange) are the edge states at the upper edge. In b) the
penetration lengths of the corresponding edge states at the upper edge is shown. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 4. Edge state energy dispersion for D = 0.1J. The blue regions are the bulk energy spectra. For 𝛿N = 1 (lower edge) there is an edge state crossing the gap (green, continuous). The
red (dotted) lines are the edge states for a) 𝛿1 = 0, b) 𝛿1 = 1, c) 𝛿1 = 2, d) 𝛿1 = 3 and e) 𝛿1 = 4. The circles in d) and e) are edge states within the bulk energy bands. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the external on-site potential. Since the outermost site at the lattice with
a bearded boundary has three missing bonds, the effective defect should
be stronger than the corresponding to a zig-zag boundary. This may be
related with the existence of the “unconventional” edge states found in
optical lattices [17]. A more extensive investigation of Tamm-like edge
states along different boundaries will be reported elsewhere.

5. Conclusions

We have analyzed the edge states in a ferromagnetic honeycomb
lattice with armchair edges and an external on-site potential at the out-
ermost sites. In contrast with graphene, our system without external on-
site potential reveals two edge states. It is clear that the open boundary
in a bosonic lattice creates an effective defect by a difference in the on-
site potential between the bulk and boundary sites. This effective defect
is responsible for the existence of the novel edge states. By introducing
an external on-site potential at the outermost sites we found that the
nature of this edge states is Tamm-like. We also found that these edge
states are tunable in their shapes and positions depending on the exter-
nal on-site potential strength. Such tunability can be used to modify the
topologically protected edge states when a non-trivial gap is induced.
Finally, we found that the number of these tunable edge states is related
to the number of sites in a unit cell along the boundary. We believe that
our results may explain the edge states recently found in optical lattices
[17,18] and motivate new experiments in both magnonic and photonic
lattices.
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