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Abstract
We investigate the magnon-density waves proposed as the longitudinal excitations in
triangular lattice antiferromagnets by including the cubic and quartic corrections in the
large-s expansion. The longitudinal excitation spectra for the two-dimensional (2D)
triangular antiferromagnetic model and quasi-one-dimensional (quasi-1D) antiferro-
magnetic materials have been obtained for a general quantum spin number s. For the
2D triangular lattice model, we find a significant reduction (about 40%) in the energy
spectra at the zone boundaries due to both the cubic and quartic corrections. For the
quasi-1D antiferromagnets, since the cubic term comes from the very weak couplings
on the hexagonal planes, theymake very little correction to the energy spectra, whereas
the major correction contribution comes from the quartic terms in the couplings along
the chains with the numerical values for the energy gaps in good agreement with the
experimental results as reported earlier (Merdan and Xian in Phys Rev B 87:174434,
2013).

Keywords Quantum antiferromagnets · Longitudinal excitation · Spin-wave
excitation

1 Introduction

Since Haldane [1] predicted difference between the excitations of integer spin and
half-odd-integer spin chains, the nature of excitations of quantum Heisenberg anti-
ferromagnets has attracted both experimental and theoretical attentions. In particular,
for the spin-1 chains, the singlet ground state is separated from the triplet excitation
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states by an energy gap. This theoretical prediction has been confirmed experimentally
in the quasi-1D spin-1 antiferromagnetic compounds such as CsNiCl3 and RbNiCl3
[2]. Haldane’s conjecture was also supported by some other experiments [2–6] and
theoretical studies [7–11]. Furthermore, a longitudinal excitation has been proposed
by Affleck for explanation of a gapped excitation mode observed in very low tempera-
ture in these quasi-1D hexagonal antiferromagnetic compounds CsNiCl3 and RbNiCl3
which possessNéel order at low temperature [12,13]. This longitudinalmode describes
the fluctuations of the long-range order parameter and is beyond the spin-wave theory
(SWT) which predicts only the transverse spin-wave excitations (magnons).

On the other hand, the triangular latticeHeisenberg antiferromagnet is the prototype
system of geometrically frustrated magnets and has been under intensive investiga-
tion for fundamentally different types of ground and excited states [14–16]. It is now
widely accepted that the ground state of the antiferromagnet on a triangle lattice has
the long-range noncollinear Néel-like order with the 120◦ magnetic three-sublattice
structure as predicted by variousmethods [17,18], including a SWTbased on three sub-
lattices [19–29]. The interaction between spin-wave excitations in antiferromagnetic
materials of collinear spin configuration is depicted by higher-order anharmonicities
beginning with the quartic term [30,31]. The higher-order anharmonicities of antifer-
romagnetic systems with noncollinear spin configuration begin with the cubic term
which describes the coupling between transverse (one-magnon) and longitudinal (two-
magnon) fluctuations [32,33], in addition to the quartic term. This cubic term is similar
to those that describe the interaction between one- and two-particle states of phonons
in crystals [34] and excitations in superfluid bosonic systems [35]. In noncollinear anti-
ferromagnets, the cubic term comes from products of the spin operator components
Sz and Sx,y , which are not present in collinear lattices. For the correction in spin-wave
spectrum, the cubic term has been included in perturbation theory and represents the
coupling of the transverse fluctuations in one sublattice to the longitudinal ones in the
others [22,26,32,33,36–38].

For a generic quantum spin-s antiferromagnetic Hamiltonian system with a Néel
order, a microscopic theory of the longitudinal modes has been proposed [39]. In
this theory, the longitudinal excitations are identified as the collective modes of the
magnon-density waves, and the corresponding wave functions are constructed by
employing the magnon-density operator Sz in similar fashion to Feynman’s theory
on the low-lying excited states of the helium-4 superfluid where the particle density
operator is used [40]. In our earlier calculations for the quasi-1D hexagonal struc-
tures of CsNiCl3 and RbNiCl3 and tetragonal structure of KCuF3, we find that, after
inclusion of the higher-order contributions from the quartic terms in the large-s expan-
sion, the energy gap values at the magnetic wavevector are in good agreement with
experimental results [41,42].

Although there is no report of direct experimental observations of longitudinal
modes in 2D triangle antiferromagnetic lattices, a theoretical investigation of dynamic
structure factors does find some broad peaks in the two-magnon continuum and amas-
sive contribution from the longitudinal fluctuations to the high energy spectral weight,
clearly indicating the strong magnon–magnon interactions in the system [32]. In this
article, we extend our preliminary investigation of the longitudinal modes in the 2D
triangle antiferromagnetic model [43], focusing now on the higher-order calculations
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by including both the cubic and quartic terms. Our results show a significant reduc-
tion in the energy spectra due to the higher-order corrections. We also examine the
cubic term contribution to the energy spectrum correction for the quasi-1D hexagonal
systems of CsNiCl3 and RbNiCl3, not considered in our earlier study [41]. We find
that in these systems, the cubic term contribution is negligible, mainly due to the very
weak coupling on the triangular planes of the systems.

We organize this article as follows. Section 2 outlines the main results of the spin-
wave theory for the triangular latticemodel using the bosonization approach. InSects. 3
and 4, we review our microscopic theory for the longitudinal excitations, including the
higher-order corrections from the cubic and quartic terms and using the approximated
ground state from SWT, and apply to the 2D triangular antiferromagnetic model. In
Sect. 5, we re-examine our calculation of the higher-order corrections in the quasi-
1D hexagonal systems where there are several experimental results for comparison.
We notice that the energy gap changes very little after the inclusion of the cubic
contribution, mainly due to the small coefficient for the plane Hamiltonian when
compared with the coefficient of the perpendicular (chain) Hamiltonian. In Sect. 6, we
conclude this article by a summary and a critical discussion of the longitudinal modes
in 2D triangle lattices.

2 Spin-Wave Formalism for Triangular Lattice Model

The Heisenberg antiferromagnet on a triangular lattice is described by Hamiltonian
with spin operator S,

H = J
∑

〈i, j〉
Si · S j , (1)

where J > 0 is the coupling parameter and the sum on 〈i, j〉 runs over all the
nearest-neighbor pairs of the triangular lattice once. The classical ground state of
the antiferromagnetic Heisenberg model on a triangular lattice consists of three sub-
lattices where the direction of each spin on one sublattice forms an angle of 120◦ from
those on the other two sublattices. We choose the direction of classical orientation in
the xz-plane at the one i-sublattice surrounded by six j-sublattices. The Hamiltonian
of Eq. (1) can be transformed into a rotating local basis as

Sxi → Sxi cos θi + Szi sin θi ,

Syi → Syi ,

Szi → Szi cos θi − Sxi sin θi ,

(2)

where θi = Q · ri and Q = (4π/3, 0) is the magnetic ordering wavevector of the
hexagonal Brillouin zone of the triangular lattice as shown in Fig. 1.

The Hamiltonian operator of Eq. (1) after this transformation is given by

H =J
∑

〈i, j〉

[
cos(θi − θ j )(S

x
i S

x
j + Szi S

z
j ) + ξ Syi S

y
j

+ sin(θi − θ j )(S
z
i S

x
j − Sxi S

z
j )

]
, (3)
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Fig. 1 The hexagonal first
Brillouin zone of a triangular
lattice in reciprocal space. The
coordinates of the labeled points
are Γ = (0, 0), P = (2π/3, 0),
L = (π, 0), Q = (4π/3, 0),
M = (π, π/

√
3),

K = (2π/3, 2π/
√
3) and

O = (0, π/
√
3) (Color figure

online)
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where we have also introduced an anisotropy parameter ξ(≤ 1) along the y-axis. The
Holstein–Primakoff transformation which transforms spin operators into bosons is
used for the spin-wave calculations such that

Szi = s − a†i ai , S+
i = √

2s fi ai , S−
i = √

2sa†i fi , (4)

where fi =
√
1 − a†i ai/2s, s is the spin quantum number and S±

i = Sxi ± i Syi .
Substituting Eqs. (4) into (3) and approximating the expansion of the square root in
fi to the first order in a

†
i ai/2s, we obtain the following Hamiltonian

H = H0 + H1 + H2 + H3 + H4, (5)

where H0 = −3/2J Ns2 is the classical ground-state energyO(s2), H2 is the harmonic
part of the linear SWT (LSWT) correction O(s), H3 is the cubic anharmonic term
O(s1/2) and H4 is the quartic anharmonic termO(s0). TheLSWTdepicts the harmonic
approximation or noninteracting magnons. The quadratic terms in H2 can be written
as

H2 =1

4
Js

∑

〈i, j〉

[
2(ni + n j ) − (1 + 2ξ)(aia j + a†i a

†
j )

− (1 − 2ξ)(aia
†
j + a†i a j )

]
, (6)

where ni = a†i ai and n j = a†j a j are number operators. After Fourier transforma-

tion for the boson operators with the Fourier component operators aq and a†q, and
performing the diagonalization of H2 by the canonical Bogoliubov transformation,
aq = uqαq + vqα

†
−q, the linear spin-wave Hamiltonian now reads
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H ′ = H0 + H2 = −3

2
J Ns(s + 1) +

∑

q

Eq
(

α†
qαq + 1

2

)
, (7)

where Eq = 3Js ωq is the spin-wave excitation spectrum with the dimensionless
spectrum ωq given by

ωq =
√
A2
q − B2

q =
√

(1 − γq)(1 + 2ξγq) , (8)

with Aq and Bq defined by

Aq = 1 +
(

ξ − 1

2

)
γq, Bq =

(
ξ + 1

2

)
γq, (9)

respectively, and γq defined by

γq = 1

z

∑

	

eiq·r	 = 1

3

(
cos qx + 2 cos

qx
2

cos

√
3

2
qy

)
, (10)

with the summation over the nearest-neighbor index 	 and the coordination number
z = 6 for the triangular lattice.

The cubic term exists in the triangular lattice because of the coupling of Sz and Sx

spin components. In terms of boson operators, the cubic term reads

H3 = J

√
s

2

∑

〈i, j〉
sin(θi − θ j )

[
(ai + a†i )n j − ni (a j + a†j )

]
. (11)

We notice that for the collinear spin lattices, sin(θi − θ j ) = 0 and the cubic terms
vanish and that H1 with one boson terms always cancel out. Furthermore, the LSWT
ground-state expectation value of the three-boson operators is always zero. This cubic
term has been included in the perturbation theory with the contribution of order 1/s2.
In more details, after performing Fourier and Bogoliubov transformations, we obtain

H3 = J zi

√
3s

8N

∑

q,k

[ 1

2! F1(q,k)†q
†
k−qk

+ 1

3! F2(q,k)α†
qα

†
k+qα

†
k + H.c.

]
, (12)

with F1(q,k) and F2(q,k) given by

F1(q,k) = γ̄q(uq + vq)(ukuq−k + vkvq−k)

+ γ̄k(uk + vk)(uquq−k + vqvq−k)

− γ̄q−k(uq−k + vq−k)(uquk + vqvk), (13)
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and

F2(q,k) = γ̄q(uq + vq)(ukvq+k + vkuq+k)

+ γ̄k(uk + vk)(uqvq+k + vquq+k)

− γ̄q+k(uq+k + vq+k)(uqvk + vquk), (14)

where ui and vi are Bogoliubov parameters and the function γ̄q is given by

γ̄q = 1

3

(
sin qx − 2 sin

qx
2

cos

√
3

2
qy

)
. (15)

The first term in Eq. (12) is called “decay” which describes the interaction between
one- and two-magnon states, and it is symmetric under permutation of two outgoing
momenta. The second term is called “source,” and it is symmetric under permuta-
tion of three outgoing momenta [44]. The 1/s2 contribution from the second-order
perturbation of H3 is evaluated by Miyake [22,36] such that

δE3 = − z2 J 2s

16N

∑

q,k

F2(q,k)2

Eq + Ek + Eq+k
. (16)

The quartic anharmonic term in Eq. (5) reads

H4 = 1

4
J

∑

〈i, j〉

[
− nin j + 1

4
(1 + 2ξ)(ni + n j )aia j

+ (1 − 2ξ){a†j (ni + n j )ai + H.c.
]
. (17)

For simplicity, we define the following Hartree–Fock averages (the LSWT ground-
state expectation values) of the triangular lattice

ρ = 〈a†l al〉 = 1

N

∑

q

ρq, μ	 = 〈a†l al+	〉 = 1

N

∑

q

eiq·	ρq,

Δ	 = 〈alal+	〉 = 1

N

∑

q

eiq·	Δq, δ = 〈alal〉 = 1

N

∑

q

Δq,

(18)

with Δq and ρq defined as

Δq = 1

2

Bq√
A2
q − B2

q

, ρq = 1

2

⎛

⎝ Aq√
A2
q − B2

q

− 1

⎞

⎠ . (19)

The ground-state expectation value of the quartic H4 of Eq. (17) can be calculated first
by applying Fourier transformation and then Bogoliubov transformation usingWick’s
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theorem. The ground-state energy correction in terms of the Hartree–Fock averages is
given by

δE4 = − 1

4
J Nz

[
ρ2 + μ2

	 + Δ2
	 − (1 + 2ξ)

(
ρΔ	 + 1

2
μ	δ

)

− (1 − 2ξ)

(
ρμ	 + 1

2
Δ	δ

) ]
. (20)

Thus, the total ground-state energy can be calculated from all these contributions for
the isotropic case ξ = 1 as

E = −1

4
J Nzs2

[
1 + I2

s
+ (I3 + I4)

(2s)2

]
, (21)

where I2 is related to harmonic part H2 with numerical value given by

I2 = 1 − 1

N

∑

q

ωq = 0.218412, (22)

and the other constants I3 and I4 are related to δE3 and δE4, respectively, with numer-
ical values calculated at ξ = 1

I3 = 2

N 2

∑

q,k

F2(q,k)2

ωq + ωk + ωq+k
= 0.2756(2), (23)

I4 = 4
(
ρ2 + μ2

	 + Δ2
	 − 3(ρΔ	 + 1

2
μ	δ)

+
(

ρμ	 + 1

2
Δ	δ

) )
= −0.25429. (24)

These numerical results have been obtained by Miyake [22]. The integration of I3 is
a four-dimensional integral and has been calculated by Monte Carlo integration using
Mathematica software.

The sublattice magnetization M in general can be written in terms of the magnon-
density ρ as

M = s − ρ. (25)

Within the linear spin-wave approximation, ρ is given by ρ0 = 0.261303. The higher-
order correction to the sublattice magnetization can be expressed as M = s − ρ0 +
δs2
2s . Miyake first calculated δs2 = 0.0110 [22], later confirmed by Chernyshev and
Zhitomirsky [44] using a different method. But Chubukov [26] obtained δs2 = 0.027,
perhaps because of an integration problem.
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3 Longitudinal Excitations Formalism

In antiferromagnetic quantum systems with a Néel-like long-range order, the longi-
tudinal excitations correspond to the fluctuations in the order parameter. We identify
the longitudinal modes as the magnon-density waves (MDW), well defined only in
the systems where the interactions between the transverse magnons are significant.
In the low-dimensional systems, the magnon density is high enough to support the
longitudinal waves, such as the cases of the quasi-1D systems mentioned in Sect. 1. It
remains questionable whether or not the interaction between magnons in pure 2D sys-
tems such as the triangle antiferromagnet is strong enough to support the longitudinal
modes, although there is some indication this may be so [32].

The magnon-density operator is given by spin operator Sz , and so Sz can be used
to construct the wave function of longitudinal excitation state in a similar fashion
as Feynman’s theory of the phonon–roton excitation state of the helium superfluid,
where the density operator is the usual particle density operator [40,45]. The longitu-
dinal excitation state is thus constructed by applying the magnon-density fluctuation
operator Xq on the ground-state |Ψg〉 as

|Ψe〉 = Xq|Ψg〉, (26)

where Xq is given in terms of the Fourier transformation of Sz operator as,

Xq = 1√
N

∑

l

eiq·rl Szl , q > 0, (27)

with index l running over all lattice sites. The condition q > 0 in Eq. (27) guarantees
the orthogonality to the ground state. The energy spectrum of longitudinal excitation
is given by [46]

E(q) = N (q)

S(q)
, (28)

where N (q) is the ground-state expectation value of a double commutator such that

N (q) = 1

2
〈[X−q, [H , Xq]]〉g, (29)

and S(q) is the normalization integral or the structure factor of the lattice model

S(q) = 〈Ψe|Ψe〉 = 1

N

∑

l,l ′
eiq.(rl−rl′ )〈Szl Szl ′ 〉g. (30)

We apply the SWT for the approximation of the ground-state |Ψg〉 in the following
sections to calculate these expectation values.
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4 Magnon-Density Waves in 2D Triangular Lattice

The one-sublattice Hamiltonian of Eq. (3) after the rotation for the triangular lattice
is used to obtain the double commutator of Eq. (29) as

N (q) = 1

4
s J

∑

	

[
(1 + 2ξ)(1 + γq)g̃	 + (1 − 2ξ)(1 − γq)g̃

′
	 + I3

8s

]
, (31)

where I3 contains cubic terms and is defined in Eq. (23), and the transverse correlation
functions g̃	 and g̃′

	 are defined as

g̃	 = 1

2s
〈S+

l S+
l+	〉g, g̃′

	 = 1

2s
〈S+

l S−
l+	〉g. (32)

Due to the lattice translational symmetry, both correlation functions are independent
of index l. These functions contain the contribution from quadratic and quartic terms
and both given in terms of the Hartree–Fock averages of Eq. (18) as

g̃	 = Δ	 − 2ρ Δ	 + μ	 δ

2s
,

g̃′
	 = μ	 − 2ρ μ	 + Δ	δ

2s
.

(33)

We obtain the numerical results at the isotropic point ξ = 1 as g̃	 = 0.12598 and
g̃′
	 = 0.03642 for all the six nearest neighbors. As it can be seen, N (q) is dominated

by g̃	. The structure factor is independent of s, and is given by

S(q) = ρ + 1

N

∑

q′
ρq′ρq+q′ + 1

N

∑

q′
Δq′Δq+q′ . (34)

We notice that the calculations of both Eqs. (33) and (34) involve up to four boson
operators of the quartic terms, but not the cubic term.We then calculate the longitudinal
excitation spectrum E(q) given by Eq. (28). From the numerical calculation, we found
that this spectrum of the longitudinal mode is gapless in the thermodynamic limit, as
E(q) → 0 at both q → 0 and q → ±Q. Two longitudinal modes for the triangular
lattice antiferromagnets due to the noncollinear nature of the Néel-like order can
be obtained by folding of the wavevector. We denote one as L+ with the spectrum
E(q + Q) and the other as L− with the spectrum E(q − Q). We plot both spectra at
isotropic case ξ = 1 inFigs. 2 and3.Wefind that the energyvalues of the spectra reduce
significantly by about 40% at the zone boundaries after the inclusion of the quartic
and cubic corrections, and that the two longitudinal modes are nearly degenerate, only
differ by a few percents on the zone boundaries. For example, the L+ energy value
at P is 0.6545zs J in the first-order calculation, reduces to 0.3829zs J after including
the higher-order corrections with the cubic contribution of 0.0933zs J and the quartic
contribution of −0.3648zs J . The spectrum for both modes is still gapless at Γ point,
where γq = 1, and at the points K and Q where γq = 1/2.
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Fig. 2 The excitation spectrum of the longitudinal mode L+ along (LMΓ K PQMO) of the BZ with
isotropic case ξ = 1. It is gapless at Γ , K and Q points. The longitudinal spectra calculated from the
first-order and higher-order approximations are indicated by the dash and solid lines, respectively (Color
figure online)
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Fig. 3 The excitation spectrum of the longitudinal mode L− along (LMΓ K PQMO) of the BZ with
isotropic case ξ = 1 . It is gapless at Γ , K and Q points. The longitudinal spectra calculated from the
first-order and higher-order approximations are indicated by the dash and solid lines, respectively (Color
figure online)

The numerical calculation demonstrates that the gapless spectra of L− and L+
modes are expected due to the slow logarithmic divergence in both the second and third
terms in the structure factor S(q) of Eq. (34). More precisely, near Γ , K and Q points,
we find that S(q) ∝ − ln q, and hence, the excitation spectrum E(q) ∝ −1/ ln q with
different coefficients.

The logarithmic behavior of the structure factor and the energy spectrum of the
triangular lattice model is similar to that of the square lattice model investigated
earlier [39,42,46,47]. We have identified these gapless modes of the 2D models as
quasi-gapped modes because any finite size effect or anisotropy will induce a large
energy gapwhen comparedwith the counterparts of the spin-wave spectrum.The effect
of anisotropy can be investigated by considering the value of ξ parameter in Eq. (3)
differing from unity. For example, for a tiny anisotropy such as ξ = 1 − 1.5 × 10−4,
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Fig. 4 The longitudinal modes L− and L+ together with spin-wave excitation spectrum E(q) of the 2D
triangle lattice along (LMΓ K PQMO) of the BZ with an anisotropy ξ = 1−1.5×10−4. The longitudinal
gap values at Γ , K , and Q points for both modes, L− and L+, respectively, are 0.2030zs J in the first-order
approximation and 0.1242sz J after including the higher-order correction. The transverse spin-wave gap is
0.0075zs J (Color figure online)

at Γ point for both modes, we obtain the energy gap value of 0.2030zs J in the first-
order approximation and 0.1242sz J after including the higher-order corrections with
the cubic contribution of 0.0407zs J and quartic contribution of −0.1195zs J . The
gap value of the corresponding spin-wave spectrum at the same value of anisotropy is
0.0075zs J , much smaller. In particular, we find that the longitudinal energy gap value
is proportional to 1/[− ln(1 − ξ)], in comparison with the spin-wave gap which is
proportional to

√
1 − ξ , when ξ → 1. In order to make further comparisons between

the longitudinal mode and the transverse spin-waves mode, we plot both the spectra
with ξ = 1 − 1.5 × 10−4 in Fig. 4 along the path (LMΓ K PQMO) of the BZ. The
different gap values for the longitudinal and transverse mode at Γ , K and Q points
can be clearly seen. The spin-wave spectra at Γ point are still gapless where γq = 1,
whereas both longitudinal modes have the gap value of 0.1242sz J . The L+ mode
has the same gap at Q point, but it is gapless at K point, and vice versa for the L−
mode.

Before we turn to the quasi-1D systems in the next section, we like to mention that
although we do find the significant energy reduction in the two longitudinal modes
after the inclusion of the higher-order terms, we cannot at the moment directly relate
our values to the peak structures of dynamic structure calculated in Ref. [32] based on
SWT.

5 Magnon-Density Waves in Quasi-1D Triangular Lattices

We now turn to the longitudinal modes for the quasi-1D hexagonal antiferromagnetic
systems, modeled by the following Heisenberg Hamiltonian with a strong interaction
J along the chains and weak interaction J ′ on the hexagonal planes,
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Table 1 The numerical results
for the energy gap of the L−
mode with and without the cubic
term contribution at the
magnetic wavevector for the
three quasi-1D materials

Quasi-1D materials L− mode before L− mode after

CsNiCl3 (0.490721)2J (0.490837)2J

RbNiCl3 (0.718999)2J (0.719291)2J

CsMnI3 (1.19189)2J (1.19191)2J

H = 2J
chain∑

〈i, j〉
Si · S j + 2J ′

plane∑

〈i, j〉
Si · S j . (35)

An energy gap about 0.41(2J ) has been observed by the neutron scattering exper-
iments for CsNiCl3 [2] with spin s = 1, J = 0.345 and J ′ = 0.0054 THz. This
energy gap does not belong to the transverse spin-wave spectra, but belong to the
longitudinal modes, as first proposed by Affleck [12,13]. Following Affleck [12,13],
we earlier calculated the energy gap of the lower longitudinal mode L− at the point
Q = (4π/3, 0, π) usingEq. (28) but including only the quartic correction and obtained
a value of (0.4907)2J [41], in reasonable agreement with the experimental result. Now
after including the cubic contribution (as described by I3 of Eq. 31), we obtain a value
of (0.4908)2J for this gap, with a very small change. For RbNiCl3 also with s = 1
but J ′/J = 0.0295, the experimental result of the gap value is about 0.51 THz [48];
our result is 0.6974 THz with only quartic correction and 0.6977 after including cubic
correction. The compound CsMnI3 has spin quantum number s = 5/2 and the very
small ratio of couplings ε = J ′/J ≈ 0.005, for which the SWT approximation for
its ground state is very poor; our result for the gap value of 0.47199 THz with only
quartic correction and 0.47200 THz after including the cubic correction is in very poor
comparison with the experimental results of about 0.1 THz by Harrison et al. [49].
Clearly in the case of CsMnI3, we need better ground state in order to obtain better
results for the energy gap of the longitudinal modes as mentioned before.

In general, as we can see from Table1, the contribution from the cubic term is tiny
for the energy spectra of the longitudinal modes. This is mainly due to the small value
of ε = J ′/J in these systems, namely the coupling J ′ on the hexagonal plans with
non-vanishing cubic contribution is much smaller than the coupling J along the chains
for which the cubic term vanishes. The energy spectra of the longitudinal modes for
such quasi-1D systems of Eq. (35) can be expressed as sum of the chain and plane
parts as,

E± = Lchain± + Lplane
± . (36)

In Table2, we present the numerical results for the energy gap due to the planar
term of Eq. (36) before and after including cubic corrections for the three quasi-1D
materials, and where we define the cubic contribution as ΔL plane

− . We can see that
the cubic correction relative to the quartic contribution is similar in ratio to that of the
2D triangular lattice model discussed in Sect. 4.
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Table 2 The numerical results for the L−energy gap of the planar term of the Hamiltonian Eq. (35) with
and without the cubic term contribution at the magnetic wavevector for the three quasi-1D materials

Quasi-1D materials L
plane
− before L

plane
− after ΔL

plane
−

CsNiCl3 0.0309086 zs J ′ 0.0333744 zs J ′ 0.00246585 zs J ′
RbNiCl3 0.0544659 zs J ′ 0.0577724 zs J ′ 0.00330649 zs J ′
CsMnI3 0.0231435 zs J ′ 0.0237096 zs J ′ 0.00056611 zs J ′

6 Conclusion

In this paper, we have investigated the longitudinal excitations of the 2D triangu-
lar antiferromagnetic lattice and the quasi-1D hexagonal systems after including the
higher-order corrections. For the 2D triangular model, we find significant reduction of
about 40% in the energy spectra from the higher-order contributions of the cubic and
quartic terms. For the quasi-1D hexagonal materials, we find that the cubic correc-
tions are negligible when compared with the quartic corrections which was calculated
earlier [41]. This is mainly because of the weak coupling on the triangular planes.

Our numerical values for the energy gap of the longitudinal modes after includ-
ing the higher-order corrections are in reasonable agreement with the experimental
results for the spin-1 compounds CsNiCl3 and RbNiCl3, but are poor for the spin-5/2
compound CsMnI3 because the approximate ground state by SWT is poor for this
compound which is very close to a quantum critical point. Clearly, a better ground
state for this compound will be needed in our calculation of the longitudinal modes in
order to make reasonable comparison with the experiment.

Another point that needs addressing is the question of how well defined are the lon-
gitudinal modes in 2D triangular antiferromagnets since the magnon-density ρ in the
order parameter of Eq. (25) may not be high enough to support the longitudinal modes.
This is similar to the case of the 2D antiferromagnet on a square lattice. As we men-
tioned earlier, although there is no direct experimental evidence of these longitudinal
modes in 2D triangular antiferromagnet, theoretical investigation of dynamic structure
factors does find some broad peaks in the two-magnon continuum [32], indicating the
strong longitudinal collective fluctuations. It will also be desirable to investigate the
spontaneous decay of the longitudinal modes due to the coupling to the magnons as
represented by the cubic terms in the Hamiltonian [33], and we wish to report our
investigation in the future.
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