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a b s t r a c t

In this work we study the Hubbard model on a bi-partite lattice
using the coupled-cluster method (CCM). We first investigate how
to implement this approach in order to reproduce the lack of
magnetic order in the 1D model, as predicted by the exact Bethe-
Ansatz solution. This result can only be reproduced if we include
an algebraic correlation in some of the coupled-cluster model
coefficients. Using the correspondence between the Heisenberg
model and the Hubbard model in the large-coupling limit, we use
very accurate results for the CCM applied to the Heisenberg and its
generalisation, the XXZ model, to determine CCM coefficients with
the correct properties. Using the same approach we then study the
2D Hubbard model on a square and a honeycomb lattice, both of
which can be thought of as simplified models of real 2D materials.
We analyse the charge and spin excitations, and show that with
care we can obtain good results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Hubbard model [1] and its variations have been widely applied to investigate the electronic
correlations of interacting electrons in low-dimensional systems. The simple form of the model not
only provides an excellent test ground for bench-marking theoretical tools, but also has important
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applications in describing experimental data. The model has played an important role in our
understanding of the high-Tc superconductors over the last few decades, see, e.g., Ref. [2], and has
been extensively studied using many microscopic methods, see, e.g., Refs. [3,4] for recent reviews.

The Hubbard model consists of only two terms: a nearest-neighbour electron hopping term with
strength t and an on-site electronic repulsion with strength U . In two dimensions on a square lattice
when half the available electronic states are filled, the on-site repulsion causes a Mott transition
from a paramagnetic conductor to an antiferromagnetic insulator for any non-zero value of U [2].
However, the model on a honeycomb lattice shows a different picture: the paramagnetic state is
stable for small U , and the Mott transition occurs at a non-zero value of the interaction U = Uc ,
which has a value of about Uc/t ≈ 4.5 (see e.g., Ref. [5]). This quantum phase transition has attracted
strong theoretical interests since the discovery of graphene and other two-dimensional materials
such as silicene and Boron Nitride [6] due to their hexagonal structures. Of course, the application
of the Hubbard model to graphene and sister materials may be questioned and is a subject of ongoing
debate;most theoretical studies of interaction effects in graphene employ the full long-range Coulomb
interaction [7]. Nevertheless, the Hubbard model with local interactions (the on-site and nearest
neighbour interactions) has been used to investigate the electronic correlations in graphene such
as the possible edge magnetism of narrow ribbons and formation of local magnetic moments (see
references in [7]). Furthermore, there is also some theoretical discussion of possible spin-liquid phase
between the metallic phase and the ordered antiferromagnetic insulating phase on a honeycomb
lattice. Sorella et al. [8] report, using a numerically exact Monte Carlo method, that there is little or
no indication of such a phase transition to a spin liquid in clusters of 2592 atoms. Both Sorella et al.
and He et al. [5] argue for a spin-liquid state below Uc , with a semi-metallic state only at U = 0,
with evidence for a first order Mott phase transition. Yang et al. [9] apply an effective Hamiltonian
approach, and also find weak or no evidence for a quantum spin liquid. In the work of Lin et al. [10], a
slightly modified version of the Hubbard model is studied.

One of the important methods to systematically study electronic correlations of interacting
electron systems is the coupled-cluster method (CCM) [11]. The key advantages of the CCM are its
avoidance of unphysical divergences in the thermodynamic limit and its ability to be taken to high
accuracy through systematic inclusion of high-order correlations. The price to pay is that the method
does not provide a variational bound to the ground state energy, and that the wave function is not
Hermitian. Nevertheless, convergence of CCM calculation has been found to be rapid. Therefore, the
CCM is the method of choice for state-of-the-art calculations for atomic and molecular systems in
quantum chemistry, where it is used, amongst others, to calculate correlation energies, to an accuracy
of less than one millihartree (1 mH) [12]. The CCM has been successfully applied to a wide range of
other physical systems, including problems in nuclear physics, both for finite and infinite nuclear
matter, the electron gas and liquids, as well as various integrable and nonintegrable models, and
various relativistic quantum field theories. Inmost such cases the numerical results are either the best
or among the best available. A classical example is the electron gas, where the coupled cluster results
for the correlation energy agree over the entiremetallic density range towithin less than1millihartree
(or less than 1%) with the essentially exact Green’s function Monte Carlo results [11]. Most relevant
to our present work, over the last two decades the CCM has also been successfully applied to describe
quantum spin lattice systems accurately, providing some of the best numerical results for the ground
state energy, the sub-lattice magnetisation, and spin-wave excitation spectra (for a recent example
see, e.g., Ref. [13]). In such applications, the power of the systematic improvements attainable by the
inclusion of higher order calculations through the use of computer algebra has helped understanding
of the physical properties of the quantum phase transitions in spin systems.

The CCM shares quite a few of its roots with classic many-body techniques based on many-body
perturbation theory, see Refs. [3,4] for some modern examples. The result of CCM calculations look
much like a resummation of the perturbation series, and indeed do not diverge where perturbation
theory fails to converge. It is a pure method: normally one works directly with the full complement of
quasi-particles relative to a generalised vacuum – usually called reference – state. There is a similarity
with dynamical mean-field theory. The lowest order of CCM is like mean-field theory, and one can
include higher order RPA-like correlations. In the standard formulation applied here it lacks the full
power of the normalmean-field, which is included in the dynamicalmean-fieldmethod, but including
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higher order correlations is much more systematic in CCM. Clearly the CCM is one of the family of
cluster approximations. In its calculations all independent cluster excitations on the reference wave
function are taken into account in the ket state—but not in the bra state to make the calculations
practical. There is a variational formulation of the CCM, but with an independent bra and ket state
variation, there is no variational upper bound for the energy, and excited states are solutions to a
non-Hermitian eigenvalue problem. On the other hand, one can show that the Hellmann–Feynman
theorem is satisfied. It also means that we can easily evaluate expectation values of any observable.
Thus using CCM has both advantages and disadvantages relative to other many-body methods, and
deserves to be studied in more detail for the Hubbard model.

There are a few CCM calculations using very simple approximations for the Hubbard model on
a square lattice [14,15]. The nature of these calculations involves a systematic cluster truncation of
the wave function; here we include higher-order correlations than in previous work, and extend the
calculations to the honeycomb lattice. We take advantage of the fact that the Hubbard model reduces
to a spin model in the large-U limit and employ the existing CCM results for lattice spin models to
obtain better numerical results for the ground-state energy and the sub-lattice magnetisation. These
ideas show some similarity with the work by Zheng, Paiva and collaborators [16,17], who study the
Hubbardmodel for largeU using a series expansion technique, andmake use of the Heisenbergmodel
results as well.

This paper is organised as follows. In Section 2 we introduce the Hubbard model and discuss its
relation to the spin models. In Section 3 we provide a brief description of the CCM and the detail
of its application to the Hubbard model for the ground state and excited states, including both the
charge and spin-flip excitations. A particular high-order approximation scheme employing the earlier
CCM results is introduced and applied. We also give the consistent results for the Hubbard model
in the large-U limit with the spin models. In the results section of Section 4, we summarise all the
results for the 1D chain, and the 2D square and honeycomb models. We emphasise the significant
improvement for a wide range of values of U in the numerical results for the ground state energies
and the magnetic order parameter (sub-lattice magnetisation) when the high-order correlations are
included. We include a discussion of the indication of a phase transition for the honeycomb lattice. In
the last section we provide a summary of our results and a discussion on the technical difference
between the CCM calculations for the Hubbard and spin models. Some of the details of the CCM
calculations can be found in Appendix A. Since our work relies on the correspondence between
the Hubbard and Heisenberg models, we discuss some pertinent details of that correspondence in
Appendix B.

2. The Hubbard model

We start from the Hubbardmodel defined on a bi-partite lattice, consisting of a hopping termwith
strength t and an on-site potential V with strength U in terms of electron-creation operators cĎmσ ,

H = −t

⟨ij⟩σ


cĎiσ cjσ + cĎjσ ciσ


+ U


m


nm↑ −

1
2


nm↓ −

1
2


+

NU
4

(1)

≡ −tT + UV , (2)

where the indexm runs allN lattice sites. The notation ⟨ij⟩ denotes a sumover nearest-neighbour sites
(which are by definition on opposite sub-lattices), and we shall use indices i and j exclusively for one
of the two sub-lattices, called A and B, respectively. The spin index σ =↑, ↓. Finally, the parameters
t and U are the hopping and on-site interaction strengths, respectively. We subtract 1/2 from the
number operators nmσ = cĎmσ cmσ in order for the excitations to have a maximally symmetric form.

In the large-U/t limit, the Hamiltonian of Eq. (1) has been shown, after a unitary transformation,
to be equivalent to the Heisenberg model in the subspace where ⟨V ⟩ = 0, which is the space with
exactly one electron occupying each lattice site [18–20]

H = J

⟨ij⟩


Si · Sj −

1
4


, (3)
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where J is given by

J = 4t2/U . (4)

The objects Sm are the spin-1/2 vector operators at lattice site m. The Hamiltonian Eq. (3) can be
derived using perturbation theory in the unitary transformation that links the two Hamiltonians, see
Appendix B for a short discussion.

The Heisenberg model has been studied extensively by the coupled-cluster method (CCM) since
the pioneeringwork of Ref. [14]. These studies have also been generalised to theXXZ model in Ref. [21],

H = J

⟨ij⟩


Sxi S

x
j + Syi S

y
j + 1Szi S

z
j


(5)

where the anisotropy parameter ∆ distinguishes the various forms of the XXZ model (∆ > 0). The
CCM analysis starts from the classical Ising limit (∆ → ∞) and includes quantum correlations in the
ground state, which of course depend on the anisotropy. In particular, the analysis shows that the
spin–spin correlations show algebraic decay as the anisotropy decreases to a critical value ∆ = ∆c .
For example, on a square lattice at the critical anisotropy the spin-wave excitations become gapless
with a value of spin-wave velocity in agreement with that of the second order spin-wave theory of
Anderson [22–24] at the isotropic point∆ = 1; for the one-dimensionalmodel, one finds the expected
value zero for the sub-lattice magnetisation at the critical anisotropy, in contrast to the divergent
result from spin-wave theory [22]. There are good theoretical arguments that∆c converges to 1 as we
increase the order of the CCM calculation.

In this paper, we apply a similar CCM analysis. We start from a Néel state and include quantum
many-body correlations by considering correlations caused by excitations (both charge and spin)
on top of this state. As expected, our results for the ground-state energies of the Hubbard model of
Eq. (1) reduce to those of the spinmodels in the large-U/t limit using corresponding CCM truncations.
As we shall discuss in more detail below, this correspondence requires a very subtle incorporation
of the Heisenberg model results into the Hubbard model, including the incorporation of the unitary
transformation.

Therefore, for general values of U/t , we take the advantage of the results from the solution of
the XXZ model with the anisotropy as a parameter. We shall show that it makes sense to use the
critical value, and directly employ the resulting algebraic two-body spin–spin correlations at the
critical anisotropy in our study of the Hubbard model. Indeed, as we will demonstrate, the ground-
state energies are at minimum at the critical anisotropy.

3. Coupled-cluster method and the super-SUBn approximation

In the normal coupled-cluster method (NCCM) we describe the ground state of an interacting
system as the exponential of a generalised creation operator acting on a generalised vacuum state
(in a more group-theoretical setting, an extremal weight state) [25,11],

|Ψ ⟩ = eS |Φ0⟩. (6)

The key idea of the CCM, is that we do not assume the bra state to be the Hermitian conjugate of
the ket state. Effectively this corresponds to using a bi-orthogonal basis, where the dual states are
not the Hermitian conjugates of the ket states. The advantage will be that all expressions are finite
polynomials in the correlations, but the disadvantage can be that we no longer have a variational
upper bound to the energy. We use the parametrisation

⟨Ψ̃ | = ⟨Φ0|(1 + S̃)e−S . (7)

The operators S and S̃ are then expanded in generalised (multi-particle) creation and annihilation
operators,

CI |Φ0⟩ = 0 if I > 0,

S =


I≠0

sIC
Ď
I , S̃ =


I≠0

s̃ICI , (8)
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with many-body correlation coefficients sI and s̃I to be determined. Here we conventionally choose
C0 as the identity operator, and thus the inequality in the summations in Eq. (8) excludes a constant
term.

The expansion (8) together with Eqs. (6) and (7) can give an in principle exact description for
the ground state, by applying the variational principle to the energy. The ground state solution for
the set of coefficients sI is then given by the non-linear equations obtained from the variation of the
expectation value of the Hamiltonian, ⟨H⟩ =


Ψ̃ |H|Ψ


, with respect to s̃I ,

∀I>0 : ⟨Φ0| CIe−SHeS |Φ0⟩ = 0. (9)

Using this equation, and the fact that the general energy expression is linear in s̃, we see that s̃ does
not contribute to the ground-state energy,

E0 = ⟨Φ0| e−SHeS |Φ0⟩ . (10)

The coefficients s̃I , sometimes called bra-state coefficients, are thus not required for the evaluation
of the ground state energy, but they do enter the expectation value of other observables through
Eq. (7). They can be determined from the linear equations, which follow from the variation of the
general expression for the energy with respect to sJ ,

I>0

s̃I ⟨Φ0| CIe−S
[H, CĎ

J ]e
S
|Φ0⟩ = 0, (11)

once we have determined the values of sI from Eq. (9).
Since there are only a finite-typically small-number of possible contractions, Eq. (10) expresses

the ground-state energy in terms of a small subset of the CCM coefficients sI . Normally the CCM
equations (9) involve all of the coefficients, due to the presence of the operators CI . In many cases we
can identify a hierarchy in these equations—that is commonly based on the number of basic (single-
particle) operators that make up the operator CĎ

I . We then label successive terms in this hierarchy
with an index n, andwe denote the SUBn approximation as the case where we use all the creation and
annihilation operators up to level n in the hierarchy. In principle we can systematically improve on
these calculations by simply increasing n—though the complications increase rapidly with n.

3.1. CCM for the Hubbard model

The most comprehensive application of the coupled-cluster method to the Hubbard model can be
found in Ref. [15], see also the earlier work [14]. As is discussed in those papers, the common choice
of reference state is the Néel state

|Φ0⟩ =


i,j

cĎi↑c
Ď
j↓|0⟩, (12)

i.e., an antiferromagnetic state where the A sub-lattice is magnetised upwards, and the B one
downwards—so all nearest neighbours are in the classically optimal position of having their spins
pointing in opposite directions. For this particular choice of reference state, it is easier to work with
quasi-particle operators that are the single particle creation and annihilation operators relative to the
Néel state (an extreme case of a Bogoliubov transformation)

ai↑ = cĎi↑, ai↓ = ci↓,

bj↑ = cĎj↓, bj↓ = cj↑. (13)

In terms of these new operators we have [26]

H = −t

⟨ij⟩


bj↑ai↓ − bj↓ai↑ + aĎi↓b

Ď
j↑ − aĎi↑b

Ď
j↓


− U


i

aĎi↓a
Ď
i↑ai↑ai↓ − U


j

bĎj↓b
Ď
j↑bj↑bj↓ +

U
2

(na + nb). (14)
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Wenow expand the CCM correlations in terms of powers of the creation operators aĎ and bĎ, the SUBn
expansion, as

S =

n
k=1

Sk, S̃ =

n
k=1

S̃k. (15)

Since the total spin projection quantum number is conserved, we always find an equal number of spin
up and spin down operators in each Sn, and thus an equal number of a and b operators. The lowest
order term takes the form

S1 =


ij

sij

aĎi↑b

Ď
j↓ − aĎi↓b

Ď
j↑


, (16)

i.e., where the CCM operators CI are an antisymmetric combination of one a and one b creation
operator.

It may be interesting here to comment on the choice of antisymmetry under spin exchange of the
operator in Eq. (16), which is not immediately obvious from the discussion above. It is actually more
restrictive than one would expect, but additional analysis shows that it is an operator that adds a
spin-zero pair of quasi-particles to the Néel state. That explains why this is the correct structure: it
is due to the fact that the Hamiltonian (14) is actually a quasi-particle spin 0 operator, and the Néel
state, which is the quasi-particle vacuum state, has spin zero as well. Thus any correlated state build
upon this must also have this symmetry. Alternatively, this structure can be shown to be correct for
the ground state due to its symmetry under exchange of aĎiσ ↔ bĎjσ̄ (where the bar denotes a spin-flip,
↑̄ =↓, ↓̄ =↑) together with the anticommutation of the fermion operators.

The most general S2 operator can be decomposed in three components,

S2 =


ii′jj′


s(1)ii′jj′a

Ď
i↑a

Ď
i′↓b

Ď
j↓b

Ď
j′↑ + s(2)ii′jj′a

Ď
i↑a

Ď
i′↑b

Ď
j↓b

Ď
j′↓ + s(3)ii′jj′a

Ď
i↓a

Ď
i′↓b

Ď
j↑b

Ď
j′↑


. (17)

We have a similar form for S̃, but now in terms of annihilation operators,

S̃1 =


ij

s̃ij

bj↓ai↑ − bj↑ai↓


, (18)

and similar for S̃2. Explicit investigation of the SUB2 truncation, retaining only S1 and S2, shows that the
coefficients s(2) and s(3) are solutions to a homogeneous linear problem, and are thus zero in the ground
state [27]. Since the ground state is translationally invariant, we find that independent of truncation
the coefficients s (16) are also translationally invariant, sij = sj−i ≡ sr .

Here, and in the remainder of this paperwe shall use the symbol r to denote a vector pointing from
a point on the A sublattice to a point on the B sublattice. We shall also use the symbol ρ to denote the
values of r that connect nearest neighbours. Solving the CCM equations, we find that all sρ are the
same, sρ = s1, since the lattice symmetries assure that these parameters are direction independent
in the ground state.

The exact expression for the energy in the CCM approach is given by (here z is the lattice
coordination number, the number of nearest neighbours of every lattice point)

E0/N = t


ρ

sρ ≡ zts1, (19)

which only depends on the value of s1. By selecting those equations from Eq. (9) where CI consists of
one a and one b annihilation operator, we find the one-body equation

2t


ρ


δrρ −


r ′

sr ′sr−r ′+ρ


+ 2Usr + t


i1


ρ


s(1)i1i2i1+ρ,i2+r + s(1)i2i1i2+r,i1+ρ


= 0. (20)

The second order coefficient s(1) appears in this equation due to contraction with the Hamiltonian in
the evaluation of e−SHeS . This equation is exact for any SUBn truncation with n ≥ 2. Similarly, the
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two-body equations (obtained for CI ’s consisting of two a and two b operators) will involve higher-
order coefficients as well. This leads to an infinite hierarchy of equations, which require a closure
approximation or even a truncation, in order to make the equations tractable.

3.1.1. SUB1 approximation
The simplest truncation to make is the SUB1 approximation, by which we denote a calculation

where we only include the S1 operator. It is quite illustrative to work through the derivation of these
results in some detail to illustrate the methodology; for the more complicated calculations in the
following sections the derivation is given in Appendix A.

From Eq. (20) we find the one-body equation

t


ρ


δrρ −


r ′

sr ′sr−r ′+ρ


+ Usr = 0. (21)

This can be solved by a sublattice Fourier transform, see, e.g., [21], by writing

sq =


r

eiq·r sr , (22)

sr =
1

|A|


A

e−iq·r sq dq, (23)

and, when required (note the complex conjugate Fourier transform),

s̃r =
1

|A|


A

eiq·r s̃q dq. (24)

HereAdenotes the first Brillouin zone (FBZ) of the B sub-lattice, and |A| is its area. Using the sublattice
Fourier transform gives the equation

tz

γq − γ−qs2q


+ Usq = 0, (25)

where

γq ≡
1
z


ρ

eiq·ρ. (26)

On a general bi-partite lattice, γ−q = γ ∗
q . Eq. (25) can now be solved as a quadratic equation. Choosing

the physical root, one finds

s1 =
1
k

1
|A|


A


1 −


1 + k2|γq|

2


dq, (27)

where k is the coordination-weighted ratio of coupling constants,

k = 2zt/U, (28)

as in Eq. (18) of Ref. [15].

3.1.2. SUB2 on-site approximation
In the SUB2 approximation, where we include also the S2 operator, the energy Eq. (19) is

unchanged, butweneed to include the exact one-body CCMequation (20) andmake an approximation
to the two-body one,

− U


s(1)i1i2j1j1 + sj1−i2sj1−i1


δj1j2 +


s(1)i1i1j1j2 + sj1−i1sj2−i1


δi1i2 − 2s(1)i1i2j1j2


−t


ρ


i3


si3+ρ−i1s

(1)
i3i2j1j2 +si3+ρ−i2s

(1)
i1i3j1j2


+


j3


sj1−j3+ρs

(1)
i1i2j3j2 + sj2−j3+ρs

(1)
i1i2j1j3


=0.

(29)
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The lattice symmetries require that for the ground state s(1) is symmetric under interchange of the
i and j indices. The two-body equation (29) is very hard to solve, as it contains objects with four
independent indices; a simple first approximation is to choose a subset of coefficients, those with
i1 = i2 and j1 = j2, and require those to be the only non-zero ones. In this on-site (OS) approximation,
we thus have

s(1)i1i2j1j2 = δi1i2δj1j2s
(1)
j1−i1 , (30)

and a similar relation for the coefficients s̃(1).
This makes it straightforward to derive the CCM equations, see Appendix A.1 for details.

3.1.3. Super-SUB1 approximation
As we shall show below, the solution of the truncated CCM equations in the OS approximation

only gives a slight improvement on the simple SUB1 truncation. We believe that this is due to the
fact that this approximation does not contain some important correlations. In other words, we may
need to consider the SUB3 truncation for the Hubbard model. This may come as a surprise since for
the Heisenberg model the SUB2 scheme is highly accurate. Due to the fact that we need to perform
a unitary transformation to link the two models, in the Hubbard model, we can only describe similar
correlations in the SUB3 approximation. This would be a very challenging calculation, and therefore
we investigate an alternative closure approximation which includes themost important effects of the
SUB3 truncation, but does not require a direct evaluation.We take advantage of the fact that the exact
one-body equation (20) only contains S1 and S2 coefficients, andwe take the SUB2 coefficients s(1)r and
s̃(1)r from a related calculation. A natural choice would be the CCM solution of the Heisenberg model,
but as discussed before we shall use the more general spin-1/2 XXZ model. Thus we choose s(1)r = α∆

r
and s̃(1)r = α̃∆

r , where we use α∆
r and α̃∆

r to refer to the ket and bra SUB2 coefficients for the XXZ
model with anisotropy factor ∆ [28]. Strictly speaking, the parameter ∆ should be 1, since, as stated
before, the Hubbard model goes to the ∆ = 1 Heisenberg model in the large U/t limit. We prefer to
find the optimal choice of ∆ for finite U/t . We shall show that the energy is minimal for the critical
value of ∆, where the CCM coefficients generate power-law decay of the correlation functions [28].
This critical behaviour is crucial in describing the one-dimensional model, and we shall argue that
the critical value of ∆ is the optimal choice. Explicit expressions for the CCM parameters are given in
Appendix A.2.

3.1.4. Link to the Heisenberg model
If we want to exploit the link to the Heisenberg model more fully, we first need to investigate

the behaviour of our results in the limit U → ∞. It is straightforward to show that in the SUB2
on-site approximation, the s(1) coefficients collapse to the double-flip coefficients of the SUB2-1
approximation for the XXZ model at ∆ = 1. Here one retains the full set of SUB1 coefficients and only
the nearest neighbour SUB2 coefficient s(1)1 . One finds that, for any bipartite lattice with coordination
number z,

s(1)1


U→∞

=
1

(2z − 1)
. (31)

The non-zero limit of the nearest-neighbour coefficients reflects the fact that the Néel state is not the
quantum ground state in the large U/t limit. This approximation also reproduces an approximation
to the ground-state energy of the Heisenberg model. We find, neglecting the constant term,

E0
N


U→∞

= −z
t2

U


1 + s(1)1


. (32)

If we compare this to the XXZ-model ground-state energy in the SUB2-1 approximation,

E0
N

= −J
z
8


1 + 2α∆

1


− J

z
8
, (33)

and use the relation (4), we see that these two indeed agree.
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3.2. Excitation energies

There are two equivalent ways to derive the excitation energy from the CCM. The first is the
bi-variational method, where we derive the excitation energies from the variations about stable
equilibrium in the time-dependent variational method (sometimes called ‘‘generalised RPA’’ or
‘‘Harmonic Approximation’’),

δ

Ψ̃ |i∂t − H|Ψ


= 0, (34)

whereweuse the CCMstates (6) and (7), but nowwith all the CCMcoefficients depending on time. This
shows the fundamental connectivity of the excitations to the ground state calculation. The disadvan-
tage of this method is that we need to write the CCM variational functional ignoring the symmetries
of the ground state, since the excited states do not share the symmetries of the ground state.

There is an alternative but completely equivalent method due to Emrich [29–31] based on a
linearisation of the time-dependent Schrödinger equation in terms of the excitation operator X =

J χJC
′Ď
J , which acts on the correlated CCM state to give the excited state X |Ψ ⟩. From the Schrödinger

equation for this state, using the fact that S and X commute, we derive

e−SHeSX |Φ0⟩ = EX |Φ0⟩ , (35)

we can, by using projection on the states ⟨Φ0| C ′

I , subtracting the ground state energy, and using
Eqs. (6)–(8), obtain the equations

J

⟨Φ0| C ′

I e
−S

[H, C ′Ď
J ]eS |Φ0⟩ χJ = ωχI , (36)

This is a linear eigenvalue problem for the excitation energies ω. One should keep in mind that
in principle we are not guaranteed that the eigenvalues are real, since CCM does not guarantee
Hermiticity—the fact that all physical eigenvalues have to be real can be used as an important check
on the quality of the approximations made to obtain the results. The reason we label the operators C
by a prime is that we usually consider creation operators that do not have the symmetry of the ground
state, and they are thus not the same as the operators C that occur in the ground-state calculation.

In this paper we shall consider both charge excitations and spin-flip modes. We shall label the
energy spectrum by the ‘‘good quantum numbers’’, particle number n and total quasi-particle spin
Stot, and spin projection Stotz

E = E(n, Stot, Stotz). (37)

3.2.1. Charge excitations
We first look at single-particle and single-hole (charge) excitations.We associate the operatorsXh,p

with coefficients χ
h,p
I , where the set of indices {I} differs for electrons/particles (p) and holes (h). In

the simplest approximation, we consider excitation operators that contain only a single quasi-particle
operator,

Xh
=

N/2
i

χh
i aĎi↑, (38)

Xp
=

N/2
i

χ
p
i aĎi↓. (39)

The energy or both particle and hole states are identical, and are the same for the SUB1 and the super-
SUB1 approximations. They are given by

ωc
q = −ztsq γ−q +

1
2
U . (40)
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By substituting Eq. (A.16) into Eq. (40) we get the explicit form

ωc
q =

U
2


1 + k2(1 + α∆

1 ) |γq|
2. (41)

Again, at α∆
1 = 0 the super-SUB1 solution collapses to the SUB1 one.

3.2.2. Spin-flip excitations
The spin-excitation equation is obtained within the NCCM framework by using spin-flip operators

for C ′Ď
J . These generate states with a non-zero total spin Stot without affecting the total number of

electrons,

X s
=


I

χ s
I Ĉ

′Ď
I . (42)

The spin-excitation energy is the difference between the energy of the spin-flipped state, E(N, Stot ≠

0), and the ground-state energy E0(N, Stot = 0) at half filling,

ωs
= E(N, Stot, Stotz) − E0(N, 0, 0). (43)

In this paper we shall consider the case of pure spin-flip,

⟨Φ0|ai′↓ai↑e−S
[H, X s

]eS |ϕ0⟩ = ωsχ s
i,i′ , (44)

where

ωs
= E(N, 1, −1) − E0(N, 0, 0), (45)

and the single spin-flip operator is defined as

X s
=

N/2
i1,i2

χ s
i1,i2 a

Ď
i1↑a

Ď
i2↓, (46)

where χi1,i2 are the excitation correlation coefficients, which as the indices show both act on the A
sublattice. The operator X S removes a spin-up electron from the A sublattice, and adds an electron
with the opposite spin projection elsewhere on the same lattice.

The spin-flip equation in both SUB1 and super-SUB1 approximations reduces to

− t
N/2
⟨i,j⟩


χ s
i,i1 si2,j + χ s

i2,i si1,j


+ U χ s
i1,i2


1 − δi1,i2


= ωs χ s

i1,i2 . (47)

As is common, see e.g. Ref. [21], a sublattice plane wave solution is considered for the solution of
Eq. (47),

χi,i′s =
1

|A|2


dq


dq′ χq,q′s e−iq·i e−iq′
·i′ , (48)

where both q and q′ are defined on the Brillouin zone of the A sublattice. This leads to the simple
eigenvalue problem

ωc
q1/t + ωc

q2/t

χq1q2 −

U
t

2
N


q′
1q

′
2

δlatt
q′
1+q′

2,q1+q2
χq′

1q
′
2

= ωs/t χq1q2 , (49)

where ωc
q is the energy of the charge excitations (40), effectively the single particle-contribution to

the excitation energy, and the interaction term contains the lattice delta δlatt, which has ‘‘Umklapp’’
equivalence, i.e., vectors are taken equal after being transformed back into the first Brillouin zone. It is
thus natural to label these excitations by their totalmomentumQ = q1+q2, transformedback into the
FBZ. Since the diagonal matrix


ωc

q1 + ωc
q2


δq1q′

1
δq2q′

2
does not commute with the matrix δlatt

q′
1+q′

2,q1+q2
,

this is actually an interesting and non-trivial eigenvalue problem.
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Fortunately, it is simple to analyse the large U/t limit: Hereωc/t →
1
2U/t , so the first term in (49)

becomes U/t times the identity matrix, and now commutes with the second term. The second term
has a block-diagonal form: each block (for fixed Q ) in the matrix has dimension N/2 by N/2. Within
each block this matrix has one eigenvalue−U/t and the remaining N/2−1 eigenvalues are 0. Within
these blocks the eigenvalues ωs/t are thus N/2 − 1 times U/t , and one eigenvalue zero, for every

value of Q . This zero eigenvalue has eigenvector


2
N (1, 1, . . . , 1). Such a fully-delocalised eigenstate

in Fourier space corresponds to a local state in coordinate space (i1 = i2 in Eq. (47)), which is the usual
local (on-site) spin flip excitation that describes the magnon states in the Heisenberg model.

Following a similar analysis for the Stot = 1, Stotz = 1 state we find exactly the same excitation
spectrum. The third member of the multiplet, the states with Stot = 1 and Stotz = 0 have a
noninteracting spectrum, ω = ωc

q1 + ωc
q2 , and are thus of little interest at this level of approximation.

3.2.3. Link to the Heisenberg model and improved spectra
The result has a clear link to the Heisenbergmodel. At largeU/t we find a clear separation between

a single state a low energy, and a continuum at much higher energy. The low energy state is in the
space with ⟨V ⟩ = 0, which is isomorphic to the space of spin states [19]. This can thus be interpreted
as the spin-wave excitation of the Heisenbergmodel. The high energy continuum states havemultiple
occupation on a single site, and thus occur at a much higher energy.

In the large U/t limit we can again use a perturbation argument to find the energy of the lowest
state; we find that the energy of the lowest-energy local spin-flip excitations goes like

ωs/t →
U/t→∞

U/t
1
2
k2(1 + α∆

1 )
2
N


q

|γq|
2

=
t
U
2z(1 + α∆

1 ), (50)

which is a flat (momentum-independent) energy spectrum with a magnitude equal to the amplitude
of the spin-wave spectrum as found in the CCM approximation for the Heisenberg model [21].

As discussed in Appendix B, a more detailed analysis shows that the only difference between this
answer and the spin-wave spectrum found in Ref. [21] is the additional term proportional to s(1) in
the excitation energy in this reference. Using the fact that the correspondence between Hubbard and
Heisenbergmodels involves both a unitary transformation and a perturbation expansion, the simplest
way to take the additional contribution into account is just to add this term into our equation, in the
spirit of the super-SUB1 approximation for the ground state. Thus, in coordinate space, we have to
solve

−

N/2
⟨i,j⟩


χ s
i,i1 si2,j + χ s

i2,i si1,j


− 2
t
U


r,ρ

s(1)r χi1,i1δi1,r−ρ +
U
t

χ s
i1,i2


1 − δi1,i2


=

ωs

t
χ s
i1,i2 .

(51)

As discussed in more detail in Appendix B, as an expansion to first order in t/U this expression is
strictly speaking only valid for small t/U . It seems a reasonable approximation for intermediateU , but
it definitely failswhenU is close to zero. Aswe shall see later, one of the issueswith this approximation
is that the excitation energies go below zero for small U .

The effect of this additional term is most easily written in Fourier space, where the only
modification to the results above is an additional Q -dependent shift −2z(t2/U)s(1)(Q )γ (Q ) of the
energy of each mode. In the large U limit, the low-energy spectrum thus collapses to

ωs/t =
t
U
2z

1 + α∆

1 − α∆
Q γ (Q )


which agrees with the known result for the Heisenberg model [21].
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(a) The ground state energy. (b) The sub-lattice magnetisation.

Fig. 1. Ground state energy and magnetic order parameter of the 1D Hubbard model in the super-SUB1 approximation for
∆ = ∆c and ∆ = 1 compared to the exact result. We also show the results of mean-field theory and the CCM SUB2-OS
approximation. The red points (with error bars) show the Monte Carlo data from Ref. [32].

4. Results

4.1. Ground state and sublattice magnetisation

We first look at the ground state energy and the magnetic order parameter (the sub-lattice
magnetisation) for theHubbardmodel.We startwith the exactly solvable one-dimensionalmodel.We
compare the exact result to the super-SUB1 calculations, for the critical value of∆ (∆c ≈ 0.372755 in
1 dimension), the SUB2-OS approximation and the mean-field results in Fig. 1. The calculation for the
critical ∆ gives the lowest energy results. These are actually below the exact results for all values of
U/t , but the difference is larger for small U/t . For the super-SUB1 calculation for the critical value of
∆, we find the correct value of zero for the sub-latticemagnetisation. The energy does not converge to
the exact value for U/t → ∞, that would require ∆ = 1. On the other hand, both the mean-field and
SUB2-OS approximations converge to the exact result for the energy and sub-lattice magnetisation in
the limit U/t ↓ 0, but they produce poor results for the ground-state energy and the order parameter
for even moderate values of U/t . The fact that the magnetisation is described correctly is a simple
effect of the algebraic nature of the correlations for ∆ = ∆c , and gives us substantial confidence in
applying the same approximations for 2D models. Henceforth we shall only look at the critical value
of ∆.

Our results for the 2D models are shown in Figs. 2 and 3. The ground state energy in the super-
SUB1 approximation shows only a weak dependence on ∆, which is why we only show the critical
value results. The values of ∆c (0.7985 for the square and 0.709826 for the hexagonal lattice [33]) are
rather close to 1, so that in those figures we only probe a small range of parameters, which explains
the similarity of the energies. Again, using ∆ = ∆c gives the lowest ground state energy, and leads
to a substantial reduction in the sub-lattice magnetisation for large U/t which is likely to be relevant
and correct, as in the 1D case. Note that the point where the magnetisation goes through zero, is well
outside the range of validity of the super-SUB1 approximation.

When we compare our results for the most sensitive parameter, the sub-lattice magnetisation, to
some recent results in the literature, see Fig. 4, we note first of all the similarity between the literature
results. The results from Ref. [36] are still subject to substantial finite size corrections; and the results
from Ref. [36] agree on the transition point, but not on the nature of the transition and the size of
the magnetisation above the transition point. In the area where we can rely on our results, which we
estimate to beU/t & 6−8, we find values of themagnetisation entirely consistent with the literature.

4.2. Excited states

We now apply the method for excited states discussed in Sections 3.2.1 and 3.2.2 to the Hubbard
model. We label the high symmetry points in the first Brillouin zone as in Fig. 5.
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(a) The ground state energy. (b) The sub-lattice magnetisation.

Fig. 2. Ground state energy and magnetic order parameter for the 2D Hubbard model on a square lattice in the super-SUB1
approximation for ∆ = ∆c compared to mean field theory and the SUB2-OS calculation.

(a) The ground state energy. (b) The sub-lattice magnetisation.

Fig. 3. Ground state energy andmagnetic order parameter for the 2DHubbardmodel on a honeycomb lattice in the super-SUB1
approximation for ∆ = ∆c compared to mean field theory and the SUB2-OS calculation.

Fig. 4. Comparison of our results (dashed and dotted line) to results presented in the literature: circles (a) Ref. [34], squares (b)
Ref. [8], lozenges (c) Ref. [35] (for a small magnetic field, the case h0 = 1), triangles up (d) Ref. [5], and triangles down (e) from
Ref. [36]. All results are scaled so that complete sub-lattice magnetisation corresponds to a value of ⟨Mz⟩ = 1/2. (see Fig. 3(b)
for details of our work).

4.2.1. Charge excitations
The charge excitations, within the approximation made here, are rather similar to earlier

results [14,15], and thus also to those obtained with the mean-field method. The spectra show a large
energy gap at large values ofU/t: Since such excitations are suppressed in that limit, they scale asU/t .
In Fig. 6 one can see an example of the results. In the square lattice the frequency is constant along
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(a) Square lattice. (b) Honeycomb lattice.

Fig. 5. The paths within the first Brillouin zone used in the presentation of excitation energies in the remainder of this paper.

(a) Square lattice. (b) Honeycomb lattice.

Fig. 6. Charge excitations in the 2D Hubbard model for U/t = 0.1 (solid red), U/t = 1 (dashed blue) and U/t = 10 (dotted
green) for calculations in the super-SUB1 approximation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the boundary of the first Brillouin zone (here represented as the line M − X) with a value of U/2. In
the honeycomb lattice we see the dip around the K point, which disappears as U/t increases.

4.2.2. Spin-flip excitations
In the 1D case the spin-flip spectra can be calculated by solving the relevant eigenvalue problem

on a lattice in q space. These show a striking similarity to the pictures for two-magnon excitations
in gapped 1D antiferromagnetic systems developed by Barnes [37]. This is due to the great similarity
in the mathematical structure of the problems, but the physics is very different! Our results are for
what is essentially a non-local singlemagnon excitation in the Hubbard model. The bound state at the
bottom of the spectrum corresponds to the local single magnon excitation in the Hubbard model (in
the large U/t limit). As we can see the description of themagnonmode is not completely satisfactory;
even though the continuummoves far away in this limit, the single bound state has a constant energy
t2
U 2z(1 + α∆

1 ), as specified by Eq. (50). On rather general grounds we do expect a gapless magnon in
this limit [38]; without the Heisenberg corrections our result is only equal to the amplitude of the
magnon spectrum for the Heisenberg model.

We have already discussed how we can correct for some of these shortcomings when we analyse
the Heisenberg model; if we add the corrections discussed in Section 3.2.3 we should get much better
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(a) U/t = 2.5. (b) U/t = 5.

(c) U/t = 10. (d) U/t = 20.

(e) U/t = 100.

Fig. 7. The spin-excitation spectrum for Sz = 1 in the 1D Hubbard model for several values of U/t . In each case we show the
uncorrected approximation (dotted magenta line) and the Heisenberg corrected results for ∆ = ∆c (red solid line). The grey
area is the continuum of states visible for small U/t . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

answers for small t/U . As we can see in Fig. 7, this is indeed the case. These corrections give a sensible
magnon spectrum up to U/t ≃ 5 − 10, after which things break down. Interestingly, this is also
roughly the range of parameters where the separation between continuum and bound state becomes
comparable to the bound state energy.

Clearly in applying the super-SUB1 approximation, which is designed to improve results at large
U/t , we pay a price at smaller values of U/t . As can be seen in Fig. 1(a), we find a slight overbinding
for large U/t , but this becomes a large effect for small U/t . The exact solution is bracketed between
the ∆ = 1 and the ∆ = ∆c results down to U/t ≈ 2, suggesting that the approximation we make
gives a substantial improvement when we take U/t above that value.
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(a) U/t = 3. (b) U/t = 5.

(c) U/t = 10. (d) U/t = 20.

(e) U/t = 100.

Fig. 8. The spin-excitation spectrum for Sz = 1 for the 2D Hubbard model on the square lattice for several values of U/t . In
each case we show the uncorrected approximation (dotted magenta line) and the Heisenberg corrected results for ∆ = ∆c
(red solid line). The grey area is the continuum of states visible for small U/t . The data points for U/t = 10 are from the series
expansion of Ref. [17] for U/t = 10.5. We have suppressed the error bars on the series expansion results. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Since the structure of the approximation schemes is so similar, even though the results for the
magnetisation looks rather different, it seems reasonable to assume that we obtain reliable results for
the 2D problems for similar values of U/t , maybe slightly large to be on the conservative side.We first
look at the square lattice, Fig. 8. As in the 1Dmodelwe see a continuum, and a bound state thatmerges
with the continuum for small U/t . The continuum is flat at the lower end of the spectrum-actually
since this caused by the combination of states at the edge of the Brillouin zone, the energy is exactly
U/t . If we compare to the series expansion results from Ref. [17], who seem to have taken a similar
approach to incorporating the Heisenberg model, we see that our results are very close to theirs—the
difference is however larger than the quoted error-bars. Also, our spectrum is substantially flatter



296 W.A. Ameen et al. / Annals of Physics 378 (2017) 280–302

(a) U/t = 3. (b) U/t = 5.

(c) U/t = 10. (d) U/t = 20.

(e) U/t = 100.

Fig. 9. The spin-excitation spectrum for Sz = 1 for the 2D Hubbard model on the honeycomb lattice for several values of U/t .
In each case we show the uncorrected approximation (dotted magenta line) and the Heisenberg corrected results for ∆ = ∆c
(red solid line). The grey area is the continuum of states visible for small U/t . The data points for U/t = 10 are from the series
expansion of Ref. [16] for the same value of U/t . We have suppressed the substantial error bars on the series expansion results.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

on the zone boundary between M and X; this can be traced to the flatness of the charge excitation
spectrum in the CCM approximation: the series expansion has more structure on that boundary. It
maywell be that if we include higher order operators in the charge-state calculations this resultwould
improve substantially.

If we do the same thing for the model on the honeycomb lattice, Fig. 9, we see a slightly different
behaviour. There still is a continuum and a bound state, but the continuum band now has structure.
Once again, we see that the bound state converges to zero for large U/t . If we compare to the series
expansion results from Ref. [16], we see that our results are very close to theirs—the error bars on the
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series expansion are substantial. There may be a bit more structure in the series expansion results,
but we are not convinced all of this structure is real—it is not mirrored in the behaviour of the charge
excitations.

5. Outlook and conclusions

In this paperwe have investigated the ground and excitation state properties of Hubbardmodels in
one and two-dimensions using the CCM, in similar fashion as earlier CCM analysis for the spinmodels.
As expected, the analysis for theHubbardmodels ismuchmore involved than those of the spinmodels
due to inclusion of the charge fluctuations, in addition to the spin fluctuations. Even though there is
a close parallel between Hubbard and Heisenberg models for large U/t , we have concluded that the
SUB2 scheme for the ground states of the spinmodels corresponds to the SUB3 scheme in theHubbard
model. Similar conclusion can also be drawn for the CCM analysis for the spin-flip excitations.

For efficiency purpose, we have directly employed the results of the two-body spin–spin
correlations from our earlier calculations of the spin XXZ model with the critical anisotropy in our
evaluation of the ground state of the Hubbard models, avoiding explicit analysis of the complex SUB3
scheme, and have obtained reasonably good numerical results for the ground-state energies, the sub-
latticemagnetisation, and the charge excitation spectra forwide range values of the on-site interaction
parameter U/t , when comparing with the corresponding results by numerical Monte Carlo methods.
In the large-U/t limit, our results reduce to those of the spin models as expected.

For the spin-flip excitation states, however, we do not obtain the corresponding gapless spin-wave
spectrum as we would expect in the large-U/t limit. Instead, we have obtained gapped spectra which
becomes flat in the large-U/t limit. We have concluded that this problem of gapped spectra can be
solved by inclusion of the higher-order correlations in the excitation operators in a similar way as
for the ground state, again due to the presence of charge fluctuations in the Hubbard models. More
specifically, we need to consider mode–mode couplings as mentioned in Section 4.2.2. We have only
dealt with this problem for large U; nevertheless our results for the spin-flip excitation states show
well-defined bound states below a continuum for large values of U/t , with the amplitude equal to the
corresponding spin-wave velocity. The approximation breaks down as the energy of this bound state
drops below the ground state near the Γ point as U/t decreases.We expect that this effect disappears
when higher-order correlations in the excitation operator are included and we hope to report results
in the near future.

It is also interesting to apply the extended CCM (ECCM) analysis to the Hubbard model since
the lowest approximation of the ECCM will reproduce the mean-field results, to investigate in
particular the properties of the metal–insulator transition for the honeycomb lattice model. We are
also planning to extend our analysis to alternativemodelswithmany interesting phase structures. The
Kitaev–Heisenberg model [39] has been generalised to a Hubbard-type model in optical lattices [40]
and studied in detail by Hassan and collaborators [41,42]. The reason for the interest is the potential
for realising an algebraic spin liquid. The only modification we need to make to the Hubbard
model is to make the hopping term spin dependent, which could be, in principle, implemented as
a straightforward extension to the work reported here.
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Appendix A. Detailed derivation of CCM equations

A.1. SUB2 on-site approximation

The one- and two-body CCM equations now become much simpler, and we find

tz

γq


1 + s(1)1


− γ−qs2q


+ Usq = 0, (A.1)
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− U2


sj1−i1

2
− 4t


ρ

sρ


s(1)j1−i1 = 0 =⇒

s(1)r = −
1
k
1
s1

s2r , (A.2)

where we solve for s(1).
We can also derive a similar set of equations for the coefficients in S̃ which are needed to evaluate

expectation values, which we shall refer to as the one- and two-body bra-state equations,

kγ−q(1 − 2sqs̃q) + 2s̃q − 2kγ−q


r

s̃(1)r s(1)r − 4

r

e−iq·r sr s̃(1)r = 0, (A.3)

ks̃1
1
z


ρ

δr,ρ − 2ks1s̃(1)r = 0 =⇒

s̃(1)r =
s̃1

2zs1
δ|r|,1. (A.4)

The remaining coefficients can be solved easily; we find

sq =
1

kγ−q


1 −


1 + k2|γq|

2 [1 − s1/k]


, (A.5)

together with a self-consistency condition for s1,

s1 =
1

|A|


A

dq γ−qsq

=
1

k|A|


A

dq

1 −


1 + k2|γq|

2 [1 − s1/k]


. (A.6)

For the bra-state coefficients we have

s̃q = −
γ−q

2

1 + k2|γq|

2 [1 − s1/k]


k − s̃1


, (A.7)

where the value of s̃1 can be evaluated directly,

s̃1 =
1

|A|


A

dq γqs̃q = −
kI1

1 − I1
, (A.8)

I1 =
1

|A|


A

dq
|γq|

2

2

1 + k2|γq|

2 [1 − s1/k]
. (A.9)

The order parameter for the problem is the ‘‘sub-lattice magnetisation’’, the average z-component of
the magnetisation in one of the sub-lattices (the total magnetisation is zero), Mz =

2
N


i S

z
i . We use

the fact that the expectation value of an operator O in the CCM approximation is given by

⟨O⟩ =

Ψ̃ |O|Ψ


=


Φ0|(1 + S̃)e−SOeS |Φ0


. (A.10)

In the SUB1 approximation we find the simple expression

⟨Mz⟩B =
1
2


1 − 2

1
|A|


A

dq sqs̃q +
1
k
s̃1


. (A.11)
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A.2. Super-SUB1 approximation

Using the sublattice Fourier-transform, we can write the one-body equation as (with s(1)ρ ≡ s(1)1
using the lattice symmetry)

t

γq − γ−q s2q + s(1)1 γq


+

U
z
sq = 0, (A.12)

and the one-body bra-state equation is given by

t

1 − 2⟨s̃(1)s(1)⟩


γ−q − 2t γ−q s̃qsq +

U
z


s̃q − 2


s ∗ s̃(1)


q


= 0, (A.13)

where,

⟨s̃(1)s(1)⟩ =


r

s̃(1)r s(1)r =
1

|A|


A

s̃(1)q s(1)q dq, (A.14)


s ∗ s̃(1)


q =


r

s̃(1)r sr e−ir·q
=

1
|A|2


A


A

s̃(1)q2 sq1δ
latt
q1−q2,q dq1dq2. (A.15)

Here all q’s are vectors defined within this first Brillouin zone. The lattice delta function δlatt defines
equality when both its arguments are translated back into the first Brillouin zone.

Solving both ket and bra Eqs. (A.12) and (A.13) results in

sq =
1

kγ−q


1 −


1 + k2 (1 + s(1)1 ) |γq|

2

, (A.16)

and

s̃q =

4

s ∗ s̃(1)


q − k γ−q


1 − 2⟨s̃(1)s(1)⟩


2

1 − k γ−q sq


=

4

s ∗ s̃(1)


q − k γ−q


1 − 2⟨s̃(1)s(1)⟩


2

1 + k2 (1 + s(1)q ) |γq|

2
. (A.17)

In the super-SUB1 approximation, we do not solve for s(1)q and s̃(1)q , but replace themwith the solution
to the unrestricted SUB2 solution of the XXZ model,

α∆
q =

K
γ−q


1 −


1 − κ2 |γq|

2

, (A.18)

α̃∆
q =

D
4K

γ−q
1 − κ2 |γq|

2
. (A.19)

The coefficients κ , K and D all depend on α∆
1 ,

κ2
=

1 + 2∆ α∆
1 + 2


α∆
1

2
(∆ + 2∆ α∆

1 )2
, (A.20)

K = ∆ + 2α∆
1 , (A.21)

D−1
=

1
|A|


A

1 − |γq|
2/2

1 − κ2 |γq|
2
dq −

1
2
. (A.22)

We thus need to solve these equations self-consistently.
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Having found α, we approximate

s ∗ s̃(1)


q by

s ∗ α̃∆

q =

1
|A|


A

α̃∆
q′−q sq′ dq′ (A.23)

=
D

4Kk
1

|A|


A

γq−q′

γ−q′

1 −


1 + k2


1 + α∆

1


|γq′ |2

1 − κ2 |γq−q′ |2

 dq′. (A.24)

Since the full solution α̃∆ is a periodic function on the lattice, it already incorporates the lattice delta
function, and we can drop it in the calculation. The sublattice magnetisation of the Hubbard model is,
in this approximation, a function of the parameter ∆, and is given by [21]

⟨M∆⟩B =
1
2

−


r

s̃r sr −


r

α̃∆
r α∆

r . (A.25)

Now, we can employ our knowledge about the staggered magnetisation of the XXZ model,

MXXZ
∆ =

1
2

−


r

α̃∆
r α∆

r , (A.26)

to express the sub-lattice magnetisation of Hubbard model as

⟨M∆⟩B = −
D

2Kk2
1

|A|2


A


A

γq−q′

γqγ−q′

 1
1 + k2 (1 + α∆

1 ) |γq|
2

− 1


×

1 −


1 + k2 (1 + α∆

1 ) |γq′ |2
1 − κ2 |γq−q′ |2

dqdq′

+ MXXZ
∆

1
|A|


A

1
1 + k2 (1 + α∆

1 ) |γq|
2
dq. (A.27)

Appendix B. The super-SUB1 equation and excitation energies

As explained in Refs. [19,20] it is a subtle process to derive the Heisenberg limit of the Hubbard
model. To summarise their ideas succinctly, we disentangle the Hubbard-model Hamiltonian as
[please note, the operators Tm are not CCM operators, but are defined in Ref.]

H/t = T +
U
t
V , T = T0 + T1 + T−1, (B.1)

where the label on Tm denotes the number of potential quanta added by each operator,
[V , Tm] = mTm. (B.2)

We then perform a unitary transformation removing the coupling terms T±1 from the Hamiltonian.
This transformed Hamiltonian takes the form, to first order in t/U ,

H =
U
t
V + T0 +

t
U

[T−1, T1]. (B.3)

For half filling, the states satisfying V |φ⟩ = 0 are exactly those that map on spin states, with one
electron on each site. These states are also annihilated by T0 and T−1, and in the space of these states
only the term t

U T−1T1 contributes, which, as discussed in Ref. [19] is in the spin-state model space the
Heisenberg model Hamiltonian parametrised in terms of fermion operators.

So what is the importance of this? It means that if we wish to borrow the S(2) operator from the
Heisenberg model in the Hubbard model, we should in principle first perform the inverse unitary
transformation on the operator S(2).
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Let us be a bit more specific, which may help us understand the situation better. The T operators
take the form

T0 = −


⟨ij⟩


ai,↑bj↓(ni↓hj↑ + hi↓nj↑) − ai↓bj↑


ni↑hj↓ + hi↑nj↓


+ aĎi↓b

Ď
j↑(hi↑nj↓ + ni↑hj↓) − aĎi↑b

Ď
j↓


nj↑hi↓ + hj↑ni↓


, (B.4)

T1 = −


⟨ij⟩


ai↑bj↓ni↓nj↑ − ai↓bj↑ni↑nj↓ + aĎi↓b

Ď
j↑hi↑hj↓ − aĎi↑b

Ď
j↓hj↑hi↓


, (B.5)

T−1 = −


⟨ij⟩


ai↑bj↓hi↓hj↑ − ai↓bj↑hi↑hj↓ + aĎi↓b

Ď
j↑ni↑nj↓ − aĎi↑b

Ď
j↓nj↑ni↓


, (B.6)

where hα = 1 − nα , and nα is the fermion number operator for a given position and spin. The unitary
transformation on the Hubbard Hamiltonian takes the form

Hequiv = UHUĎ, (B.7)
with

U = exp


t
U

(T1 − T−1)


. (B.8)

To the dominant order in t/U , we find that the Hamiltonian takes the form

Hequiv = t

U
t
V + T0 +

t
U

[T−1, T1]


. (B.9)

Clearly we will have to consider the subspace of smallest V if U gets large. For half filling, this is the
subspace annihilated by V , which is exactly the subspace that maps onto spin states, i.e., which single
fermion occupancy at each site. States in this space are also annihilated by T0 and T−1, so that the only
term remaining is the Heisenberg Hamiltonian

Hhe = t


t
U
T−1T1


. (B.10)

If we now apply the CCMmethod to Eq. (B.10), we see that the equations are different than the ones
we get for the Hubbard model—there is some similarity, but there are additional terms if we compare
them within the spin-state subspace. That can be most easily understood in terms of inequivalent
operators: the S operators for the fermion-version of the Heisenberg model are related to those of the
Hubbard model by an inverse unitary transformation

SHubbard = UĎSHeisenbergU. (B.11)
We would like to take over these coefficients from the Heisenberg to the Hubbard model in a super-
SUB1 approximation; if we do not want to lose the Heisenberg model correspondence we have to
include more than the lowest order transformation of S(2). If wemake the approximation that the S(2)

of the Hubbard model equals that of the Heisenberg one, we miss the fact that we need the first order
corrections in the Hubbard version to reproduce the Heisenberg results. The idea is that we require
that the CCM equations of the Hubbard model go over into the equations for the Heisenberg model
in the limit t/U → 0. Any term that is absent in the Hubbard model calculation gets added in by
hand. For the ground-state calculations that corresponds exactly to the super-SUB1 approximation
employed in this paper; there is an effect on the equations for the coefficients, but not on the energy
expressions.

The situation is slightly more subtle for the excited state calculation. Rather than performing
a lengthy calculation, we extract the lowest corrections from the Heisenberg model result for the
magnon excitation energy,

ωq/t =
t
U
2z

1 + α1(2 − z|γq|

2)

. (B.12)
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As shown in themain text, we already get a term proportional 1+2α1z from themain evaluation; we
just need to add the missing term in perturbatively. We need to be careful since it acts on Q , not on
the relativemomentum, but comparing to the Heisenberg CCM equations shows that the right answer
is the equation

− t
N/2
⟨i,j⟩


χ s
i,i1 si2,j + χ s

i2,i si1,j


+ U χ s
i1,i2


1 − δi1,i2


1 +

t2

U2


r,ρ

a∆
r δi1,r−ρ


= ωs χ s

i1,i2 .

(B.13)

This of course means that this equation is no longer valid for small U/t—but that should not come as
a surprise since the super-SUB1 approximation also fails for such parameters.
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