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Abstract
The coupled-cluster method is applied to the spin-1/2 antiferromagnetic XXZ model on a
square lattice by employing an approximation which contains two-body long-range
correlations and high-order four-body local correlations. Improvement is found for the
ground-state energy, the sublattice magnetization and the critical anisotropy when comparing
with the approximation including the two-body correlations alone. We also obtain the full
excitation spectrum which is in good agreement with the quantum Monte Carlo results and the
high-order spin-wave theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The coupled-cluster method (CCM) is one of the most
precise microscopic formulations of quantum many-body
theories [1–9]. There have been a large number of successful
applications of the CCM to a wide range of physical and
chemical systems. In particular, the applications of the CCM
to spin systems on discrete spatial lattices have produced one
of the most accurate results [10–20]. Several approximation
schemes have been developed for the application of the CCM
to the spin–lattice systems. Two such successful schemes
are the so-called SUBn scheme in which all correlations of
any range for up to n spins are retained and the localized
LSUBm scheme in which m or fewer adjacent spin sites
over all distinct locales on the lattice are retained. Other
high-order localized approximation schemes such as DSUBm
[19] and LPSUBm [20] have also been employed. Up to now,
most recent studies have presented results for the high-order
calculations mainly based on the LSUBm scheme in which
the long-range-order correlations are ignored [13–20]. In this
paper we present results for the ground and excitation states
for an antiferromagnetic square lattice by combining the
SUB2 and LSUB4 approximation schemes (SUB2+LSUB4).
Due to inclusion of the two-body long-range correlations,
we are able to obtain improved results for the ground-state
properties, including the critical value of the anisotropy, as

well as the full excitation spectrum which is difficult to
calculate by using the localized approximation scheme alone.

The spin-1/2 antiferromagnetic XXZ Heisenberg Hamil-
tonian in terms of spin raising s+ and lowering s− operators
is given by

H = 1
2

∑
〈i,j〉

[s+i s−j + s−i s+j + 21sz
i s

z
j ], (1)

where 1 is the anisotropy and the sum on 〈i, j〉 runs over
all the nearest-neighbor pairs once. The isotropic Heisenberg
model is given by 1 = 1. Classically, the ground state of
equation (1) is ferromagnetic, with all spins aligned along
the z-axis for all lattices when 1 ≤ −1; for |1| ≤ 1 it is
antiferromagnetic for all bipartite lattices with all spins are
aligned along some arbitrary direction in the xy-plane; for
1 ≥ 1 it is antiferromagnetic with spins aligned along (±)
directions of the z-axis. The classical Néel ground state with
all up-spins on one sublattice and all down-spins on the other
is chosen to be the model state in our CCM calculation. In
this paper, as before, we use index i to label sites of the
down-spin sublattice and index j for the up-spin sublattice. It
is useful to introduce a transformation for the local spin axes
of one sublattice. This is achieved by rotating all up-spins
by 180◦ around the y-axis and hence every spin of the
system points down in the Néel model state with sz

= −1/2.
This transformation is given by, for all j-sublattice operators,
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s∓ = sx
∓ isy

→ −s± and sz
→ −sz. The Hamiltonian of

equation (1) after the rotation is rewritten as

H = − 1
2

∑
〈i,j〉

[s+i s+j + s−i s−j + 21sz
i s

z
j ]. (2)

The ket and bra ground states of the CCM are given in terms
of correlation operators S and S̃ respectively:

|9〉 = eS
|8〉, S =

∑
I

SIC
†
I , (3)

〈9̃| = 〈8|S̃e−S, S̃ = 1+
∑

I

S̃ICI, (4)

where the model state |8〉 is the rotated Néel state as
mentioned earlier with all the spins pointing down, C†

I and
CI are the so-called configurational creation and destruction
operators, respectively, with the nominal index I labeling the
multi-spin raising and lowering operators:

∑
I

SIC
†
I =

1

(n!)2

N/2∑
n=1

∑
i1,i2···in,j1,j2···jn

Si1,i2···in,j1,j2···jn

× s+i1 s+i2 · · · s
+

in s+j1 s+j2 · · · s
+

jn , (5)∑
I

S̃ICI =
1

(n!)2

N/2∑
n=1

∑
i1,i2···in,j1,j2···jn

S̃i1,i2···in,j1,j2···jn

× s−i1 s−i2 · · · s
−

in s−j1 s−j2 ...s
−

jn , (6)

with the ket- and bra-state correlation coefficients SI and S̃I

to be determined variationally as shown below. We note that
the bra-state 〈9̃| and the ket-state |9〉 are not manifestly
Hermitian conjugate to one another. The normalization
condition 〈9̃|9〉 ≡ 〈8|9〉 ≡ 〈8|8〉 ≡ 1 is satisfied by
construction. The ground-state Schrödinger equation, H|9〉 =
Eg|9〉, can now be written as

Ĥ|8〉 = Eg|8〉, (7)

where the similarity-transformed Hamiltonian Ĥ can be
written in terms of a series of nested commutations as

Ĥ = e−SHeS
= H + [H, S] +

1
2!
[[H, S], S] + · · · . (8)

The expectation value of an arbitrary operator O can be
written as

Ō = 〈9̃|O|9〉 = 〈8|S̃e−S OeS
|8〉 = Ō({SI, S̃I}). (9)

The correlation coefficients {SI, S̃I} are determined
variationally by the following equations:

δH̄

δS̃I
= 0⇒ 〈8|CIe−SHeS

|8〉 = 0, (10)

δH̄

δSI
= 0⇒ 〈8|S̃e−S

[H,C†
I ]e

S
|8〉 = 0. (11)

In the following we will consider a specific approximation,
namely the SUB2 + LSUB4 scheme as defined earlier, by
similar truncations in S and S̃.

2. The ground-state energy for the SUB2+ LSUB4
approximation scheme

As mentioned in section 1, the SUB2 approximation retains
two-spin-flip configurations of all orders. In the SUB4
scheme, additional four-spin correlations are also included.
We hence write the SUB4 ket-state operators as

S =
N/2∑
i,j

bi,js
+

i s+j +
1
4

N/2∑
i1,i2,j1,j2

gi1,i2;j1,j2s+i1 s+i2 s+j1 s+j2 , (12)

where bi,j and gi1,i2;j1,j2 are the two-spin-flip and four-spin-flip
correlation coefficients, respectively. The full SUB4 scheme
equations were obtained before [11], but they are difficult
to solve. Here we consider the SUB2 + LSUB4 scheme
which retains ten local configurations as shown in figure 1,
in additional to the other two-body high-order coefficients of
the SUB2 scheme.

As described in general by equation (10), the SUB4
approximation consists of two sets of equations, the two-spin-
flip and four-spin-flip equations. The two-spin-flip equations
are given by

〈8|s−i s−j e−SSUB4 HeSSUB4 |8〉 = 0, (13)

from which we obtain the subset of the SUB2 + LSUB4
approximation as∑
ρ

[
(1+ 21b1 + 2b2

1 + G1)δr,ρ + 2(1+ 2b1)br

+ G2δr,ρ3a + G3δr,ρ3b +

∑
r′

br′+ρ+ρ0br−r′−ρ0

]
= 0,

(14)

where ρ is the nearest-neighbor index vector with four
possible values for a square lattice, ρ0 is any one of them,
the Gα with α = 1, 2, 3 are defined as

G1 = 2ga
4 + 2gb

4 + 4gc
4 + 8gd

4, G2 = gb
4,

G3 = gc
4 + 2gd

4,
(15)

and the ρ3 are 2D vectors containing ρ with ρ3a = (3ρx, 0)
and ρ3b = (2ρx, ρy). The four-spin-flip equations are similarly
given by

〈8|s−i s−i′ s
−

j s−j′ e
−SSUB4HeSSUB4 |8〉 = 0, (16)

from which we obtain the following four coupled equations:

41ga
4 − 41b2

1 + 4b1gc
4 + 8b1ga

4 + 8b2
1bb

3

− 4ba
3gc

4 − 8bb
3gc

4 − 8bb
3gd

4 = 0, (17)

51gb
4 −1b2

1 − 21b1ba
3 + 8b1gb

4 + ba
3gb

4

+ 2ba
3gd

4 + 2b1 (b
a
3)

2
+4b2

1bb
3 + 4b1ba

3bb
3 − 6bb

3gd
4

− 2bc
5gd

4 − 2bb
5gd

4 − 2bb
5gb

4 − ba
5gb

4 = 0, (18)

51gc
4 −1b2

1 + 2b3
1 − 21b1bb

3 + 4b2
1bb

3 + 4b1 (b
b
3)

2

+ b1ga
4 − ba

3ga
4 + 8b1gc

4 + 2b1gd
4 − ba

3gd
4

− 3bb
3gd

4 − bb
5gd

4 − bc
5gd

4 − 2bc
5gc

4 = 0, (19)

2
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Figure 1. A graphical representation of the ten local configurations in equations (17)–(20) for the short-range part of the SUB2+ LSUB4
scheme. The flipped spins with respect to the Néel state are indicated by crosses.

51gd
4 −1b2

1 − 21b1bb
3 + b3

1 + b2
1ba

3 + 3b2
1bb

3

+ 4b1 (b
b
3)

2
+b1bb

3ba
3 + b1gc

4 + 8b1gd
4 − ba

3gd
4 − bb

3gd
4

− 2bc
5gd

4 −
1
2 (b

a
3gc

4 + 3bb
3gc

4 + bb
3gb

4 + ba
3gb

4

+ bc
5gc

4 + bb
5gc

4 + bc
5gb

4 + bb
5gb

4) = 0. (20)

These nonlinear equations for the SUB2+LSUB4 scheme are
solved firstly by Fourier transformation of equation (14) and
then by an iteration method for equations (17)–(20). In partic-
ular, equation (14) becomes, after Fourier transformation,

γ (q)02(q)− 2K0(q)+ G2γ3a(q)+ G3γ3b(q)

+ (G1 + 2b2
1 + 21b1 + 1)γ (q) = 0, (21)

which is easily solved with the physical solution,

0(q) =
K

γ (q)
[1− E(q)], (22)

where the constant K and the function E(q) are given by,
respectively,

K = 1+ 2b1, (23)

E(q) =
√

1− k2
1γ

2(q )− k2
2γ3a(q )γ (q )− k2

3γ3b(q )γ (q ),

(24)

and where γ (q), γ3a(q) and γ3b(q) are defined, respectively,
by

γ (q) = 1
2 (cos qx + cos qy), (25)

γ3a(q) = 1
2 (cos 3qx + 1), (26)

γ3b(q) = 1
2 (cos 2qx + cos qy), (27)

with the constants k2
1, k2

2 and k2
3 defined by

k2
1 =

1+ 21b1 + 2b2
1 + G1

(1+ 2b1)
2 , k2

2 =
G2

(1+ 2b1)
2 ,

k2
3 =

G3

(1+ 2b1)
2 .

(28)

In any approximation scheme of the CCM, the ground-state
energy for the Hamiltonian of equation (2) is always given
by [11]

Eg = 〈8|Ĥ|8〉 = −
z

8
N(2b1 +1), (29)

where z is the coordination number. In figure 2 and table 1,
we present numerical results for the ground-state energy as a
function of the anisotropy parameter1 in our SUB2+LSUB4
scheme, together with those for the SUB2, SUB2 + ga

4 and
LSUB4 schemes obtained earlier [11] for comparison. As can
be seen, the SUB2 + LSUB4 results are lower than those
of all of the other schemes. Furthermore, the critical value
of the anisotropy 1c = 0.847 beyond which the solution
of equation (22) becomes imaginary is also improved and
closer to the expected value of 1 than that of the SUB2
scheme (0.798) or that of the SUB2 + ga

4 scheme (0.818).
In the high-order LSUBm scheme [16], the critical values
are obtained as 1c = 0.763 and 0.843 for m = 6 and 8,
respectively, and 1c = 1 after the extrapolation to m =
∞ is carried out. The corresponding values of 1c in the

3
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Table 1. The ground-state energy per spin for the 2D spin-1/2 XXZ model in the SUB2+ LSUB4 scheme for some values of 1, together
with those for the full SUB2, SUB2+ ga

4 and LSUB4 schemes [11].

1 0.89 1 2 3 4 5

SUB2 −0.6118 −0.6508 −1.0807 −1.5547 −2.0413 −2.5331
SUB2+ ga

4 −0.6189 −0.6561 −1.0816 −1.5550 −2.0414 −2.5332
LSUB4 −0.6162 −0.6636 −1.0831 −1.5555 −2.0418 −2.5333
SUB2 + LSUB4 −0.6289 −0.6641 −1.0832 −1.5555 −2.0416 −2.5333

Figure 2. The ground-state energy per spin as a function of 1 for
the spin-1/2 XXZ model in the full SUB2, SUB2+ ga

4 and
SUB2+ LSUB4 schemes. The critical terminating points for each
scheme are also indicated.

localized schemes are 0.637 in DSUB10 [19] and 0.766 in
LPSUB5 [20]. The physics of this critical point was discussed
in detail in [11].

3. Staggered magnetization

The staggered magnetization for a general spin quantum
number s can be defined as

M = −
1

Ns
〈9̃|

N∑
l

sz
l |9〉, (30)

where l runs over all the lattice sites for our rotated
Hamiltonian of equation (2).

In the SUB2+ LSUB4 scheme we obtain

M = 1− 2
∑

r
b̃rbr − 2(g̃a

4ga
4 + g̃b

4gb
4 + g̃c

4gc
4 + g̃d

4gd
4), (31)

where two-body and four-body bra-state coefficients b̃r and
g̃4 are determined by the second variational equation (11).
We solve these equations for the bra-state in similar fashion
to those for the ket-state, namely by Fourier transformation
for the two-body coefficients and by iteration methods for the
four-body coefficients. We leave the details to the appendix
and show the results in figure 3.

We find that at the critical 1c, Mc = 0.649 in our
SUB2 + LSUB4 scheme, compared with Mc = 0.663 in the
SUB2 + ga

4 scheme and Mc = 0.682 in the SUB2 obtained

Figure 3. The staggered magnetization for the 2D spin-1/2 XXZ
model for the full SUB2, SUB2+ ga

4 and SUB2+LSUB4 schemes.

earlier [11]. Our SUB2+ LSUB4 result is in good agreement
with M = 0.6138 from third-order spin-wave results [21],
M = 0.614 from series expansion calculations [22] and M =
0.615 from quantum Monte Carlo calculations [23] at1c = 1.
The higher-order LSUBm scheme with m = 8 produces M =
0.705 at 1 = 1 before extrapolation and M = 0.616 after an
extrapolation has been carried out [16]. The corresponding
values of M at 1 = 1 are 0.712 in the DSUB11 scheme [19]
and 0.708 in the LPSUB6 scheme [20].

4. Spin-wave excitation spectra

The excited state in the CCM is given by applying an
excitation operator Xe to the ket-state wavefunction,

|9e〉 = Xe
|9g〉 = XeeS

|8〉, (32)

where Xe in general is written in terms of the configurational
creation operators C†

I only as

Xe
=

∑
I

χe
I C†

I , (33)

with the excitation coefficient χe
I . From the Schrödinger

equation H|9e〉 = Ee|9e〉, it is straightforward to derive the
following equation for the excitation coefficient:

εeχ
e
I = 〈8|CIe−S

[H,Xe
]eS
|8〉, (34)

4
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Figure 4. The excitation energy gap ε(0) for the 2D spin-1/2 XXZ
Heisenberg model as a function of 1, for the full SUB2, SUB2+ ga

4
and SUB2+ LSUB4 schemes. The two gap values at 1 = 1 are
given by the LSUB4 scheme (•) and the LSUB8 scheme (♦) of [16]
where the high-order excitation correlations are included as
discussed in the text.

where εe ≡ Ee − Eg is the excitation energy. Here, we
consider the spin-wave excitations by including only a single
spin-flip operator, C†

I ' s+i , like in the SUB2 scheme, as
before [11]. After the Fourier transformation we obtain the
energy spectrum in this linear approximation as

εe = ε(q) = 1
2 zKE(q), (35)

where K and E(q) are as defined before in equations (23)
and (24), and z is the coordination number. We present
the excitation gap, ε(q) at q = 0, as a function of 1 in
figure 4. As can be seen from the figure, the energy gap in
the SUB2+ LSUB4 scheme is smaller than that of the SUB2
and SUB2 + ga

4 schemes, implying that the energy gap is
reduced in the higher-order approximations. For all these three
schemes, the energy gap disappears at their corresponding
critical anisotropy 1c. It is interesting to compare our results
for the energy gap with those from the high-order LSUBm
scheme [16]. At 1 = 1 our SUB2 + LSUB4 gap value is
ε(0) = 1.05 while the LSUB4 and LSUB8 values are much
lower at ε(0) = 0.851 and 0.473 respectively. By employing
an extrapolation, the LSUBm scheme produces an energy
gap close to zero, corresponding to the SUB2 + LSUB4
result at the critical 1c. The much lower energy gap values
away from the critical region from the higher-order LSUBm
scheme are clearly due to the inclusion of higher-order
correlations in the excitation operators, whereas we only
include linear excitation operators in our calculations as given
by equation (33) with C†

I ' s+i . However, our SUB2+LSUB4
scheme has the advantage of being capable of producing
the full energy spectra due to inclusion of the long-range
two-body correlations as discussed below.

In figure 5, we present our SUB2 + LSUB4 results
for the spin-wave energy spectrum of equation (35) at 1c

Figure 5. The spin-wave excitation spectra for the 2D spin-1/2
XXZ Heisenberg model at 1c for the CCM (SUB2 and
SUB2+ LSUB4) results, and at 1 = 1 for the linear spin-wave
theory (LSWT), the series expansion (SE) [24] and quantum Monte
Carlo calculations [25]. The energy spectra in (a) are for qy = 0 and
those in (b) are for qx = qy.

together with that from the SUB2 results [11], and at 1 =
1, the results from linear spin-wave theory (LSWT), series
expansion calculations (SE) [24] and quantum Monte Carlo
calculations (QMC) [25]. The spin-wave velocity correction
factor to the LSWT in our SUB2 + LSUB4 scheme is given
by Kc = 1.23, in good agreement with 1.18 ± 0.02 from the
SE and 1.21± 0.03 from the QMC calculations.

5. Summary and conclusion

In summary, we have obtained here numerical results for the
ground-state energy, sublattice magnetization and excitation
energy for the spin-half square-lattice antiferromagnetic XXZ
model using the SUB2+LSUB4 scheme of the CCM. We find
that our results for the ground-state properties in general are
improved when compared with those obtained using the SUB2
or LSUB4 scheme alone. In particular, due to inclusion of the
two-body long-range-order correlations, the SUB2+ LSUB4
scheme is capable of producing improved results around the

5
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critical regions of the anisotropy, the excitation gaps at q =
0 and the full spin-wave energy spectra. Good agreement
for the spin-wave spectra is found with the high-order SE
and the QMC calculations. This is in contrast to the case
for the recent state-of-the-art calculations using the LSUBm
scheme with computer algebra, where good results of the
critical properties are obtained after an extrapolation to the
limit m→∞ is carried out [16–20]. Away from the critical
points, the long-range correlations are less important and the
high-order LSUBm clearly provides better numerical results
due to the inclusion of the high-order local correlations. We
believe that the different approximation schemes in the CCM
complement each other, yielding a more complete description
of the physics of the spin–lattice Hamiltonian model, and
in particular the SUB2 + LSUBm scheme as presented here
has the advantage of producing the full excitation energy
spectrum. Further improvement for the excitation energies
away from the critical points can be obtained by including
the higher-order local correlations in the excitations operator
Xe as demonstrated in the LSUBm scheme of [16]. It will
be interesting to apply our SUB2 + LSUBm scheme to other
models such as the spin-1/2 XY model.
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Appendix. The ground bra-state in the
SUB2+ LSUB4 scheme

Similar to the ket-state equations, the bra-state ones in the
SUB2 + LSUB4 scheme retain the two-body and four-body
bra-state correlation coefficients defined as b̃r, and g̃a

4, g̃b
4, g̃c

4
and g̃d

4, respectively. From equation (11), there are also two
sets of equation for the bra-state coefficients. The first set is
obtained by taking the partial derivatives of the Hamiltonian
expectation H̄ with respect to br, thus:

∂H̄

∂br
=

∑
ρ

[(
1+ a1 + 2(1+ 2b1)b̃1 − 4

∑
r′

b̃r′br′

)
δr,ρ

+ aa
3δr,ρ3a + ab

3δr,ρ3b + aa
5δr,ρ5a + ab

5δr,ρ5b + ac
5δr,ρ5c

− 2(1+ 2b1)b̃r + 2
∑

r′
b̃r′br−r′−ρ

]
= 0, (36)

where the constants a1, aa
3, ab

3, aa
5, ab

5 and ac
5 are given as

a1 = g̃b
4(−21b1 − 21ba

3 + 2 (ba
3)

2
+8b1bb

3

+ 4ba
3bb

3 + 8gb
4)+ g̃a

4(−81b1 + 16b1bb
3 + 8ga

4 + 4gc
4)

+ g̃c
4(−21b1 + 6b2

1 − 21bb
3 + 8b1bb

3 + 4 (bb
3)

2

+ ga
4 + 8gc

4 + 2gd
4)+ g̃d

4(−21b1 + 3b2
1 + 2b1ba

3

− 21bb
3 + 6b1bb

3 + ba
3bb

3 + 4 (bb
3)

2
+gc

4 + 8gd
4), (37)

aa
3 = −4g̃a

4gc
4 +

1
2 g̃d

4(2b2
1 + 2b1bb

3 − gb
4 − gc

4 − 2gd
4)

− g̃c
4(g

a
4 + gd

4)+ g̃b
4(−21b1 + 4b1ba

3

+ 4b1bb
3 + gb

4 + 2gd
4), (38)

ab
3 = g̃a

4(8b2
1 − 8gc

4 − 8gd
4)+ g̃b

4(4b2
1 + 4b1ba

3 − 6gd
4)

+ g̃c
4(−21b1 + 4b2

1 + 8b1bb
3 − 3gd

4)+
1
2 g̃d

4(−41b1

+6b2
1 + 2b1ba

3 + 16b1bb
3 − gb

4 − 3gc
4 − 2gd

4), (39)

aa
5 = −g̃b

4gb
4, (40)

ab
5 = −

1
2 g̃d

4(g
b
4 + gc

4)− g̃b
4(2gb

4 + 2gd
4)− g̃c

4gd
4, (41)

ac
5 = −

1
2 g̃d

4(g
b
4 + gc

4 + 4gd
4)− g̃c

4(2gc
4 + gd

4)− 2g̃b
4gd

4 (42)

and where the 2D vectors are ρ5a = (5ρx, 0), ρ5b = (4ρx, ρy)

and ρ5c = (3ρx, 2ρy) with the nearest-neighbor vector index
ρ = (ρx, ρy).

The second set of equations for the bra-state are obtained
by taking the partial derivatives for H̄ with respect to the
four-body ket-state coefficients; hence,

∂H̄

∂ga
4
= 2b̃1 + g̃a

4(41+ 8b1)+ g̃c
4(b1 − ba

3) = 0, (43)

∂H̄

∂gb
4

= 2b̃1 + b̃a
3 + g̃b

4(−ba
5 − 2bb

5 + 51

+ 8b1 + ba
3)−

1
2 g̃d

4(b
b
5 + bc

5 + ba
3 + bb

3) = 0, (44)

∂H̄

∂gc
4
= 4b̃1 + b̃b

3 + g̃c
4(−2bc

5 + 51+ 8b1)+ g̃a
4(4b1 − 4ba

3

− 8bb
3)+

1
2 g̃d

4 (2b1 − bb
5 − bc

5 − ba
3 − 3bb

3) = 0, (45)

∂H̄

∂gd
4

= 8b̃1 + 2b̃b
3 + g̃b

4(−2bb
5 − 2bc

5 + 2ba
3 − 6bb

3)

+ g̃c
4(−bb

5 − bc
5 + 2b1 − ba

3 − 3bb
3)+ g̃d

4(−2bc
5 + 51

+ 8b1 − ba
3 − bb

3)− 8g̃a
4bb

3 = 0. (46)

Like in the solution of the ket-state coefficients, in order
to find the bra-state correlation coefficients, we obtain the
Fourier transformation of equation (36) which is solved
together with equations (43)–(46) self-consistently. We
rewrite equation (36) in the following simpler form:∑
ρ

[
(1+ a1 + 2Kb̃1 − 44)δr,ρ + aa

3δr,ρ3a

+ ab
3δr,ρ3b + aa

5δr,ρ5a + ab
5δr,ρ5b + ac

5δr,ρ5c

− 2Kb̃r + 2
∑

r′
b̃r′ br−r′−ρ

]
= 0, (47)

where K is again defined in equation (23) and the constant 4
is given by

4 =
∑

r′
b̃r′br′ . (48)

After Fourier transformation, equation (47) reduces to

(1+ a1 + 2Kb̃1 − 44)γ (q)+ A(q)− 2K0̃(q)

+ 2γ (q)0̃(q)0(q) = 0, (49)
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where 0(q) and 0̃(q) are the Fourier transformations of the
ket- and bra-state coefficients respectively, and the function
A(q) is given by

A(q) = aa
3γ3a(q)+ ab

3γ3b(q)+ aa
5γ5a(q)

+ ab
5γ5b(q)+ ac

5γ5c(q),

with γ3a(q) and γ3b(q) as given before in equations (26) and
(27) and new functions defined as

γ5a(q) = 1
2 (cos 5qx + 1),

γ5b(q) = 1
2 (cos 4qx + cos qy),

γ5c(q) = 1
2 (cos 3qx + cos 2qy).

Using the solution for 0(q) of equation (22) with the
definition for E(q) in equation (24), the physical solution of
equation (49) for the bra-state is

0̃(q) =
Dγ (q)+ 2A(q)

4KE(q)
, (50)

where the constant D is defined as

D = 2(1+ a1 + 2Kb̃1 − 44). (51)

The value of D can be determined self-consistently as follows.
We first rewrite equation (48) as an integral in Fourier space
as

4 =
1

π2

∫ π

0

1
4

[
D+

2A(q)
γ (q)

] [
1

E(q)
− 1

]
dq. (52)

The bra-state coefficient b̃r is obtained by inverse Fourier
transformation of 0̃(q):

b̃r =
1

π2

∫ π

0
e−ir·q Dγ (q)+ 2A(q)

4KE(q)
dq, (53)

and, in particular, b̃1 is given by

b̃1 =
1

π2

∫ π

0

Dγ 2(q)+ 2A(q)γ (q)
4KE(q)

dq. (54)

Combining equations (51), (52) and (54), we obtain the
following expression for D:

D−1
=

1
c

[
1

π2

∫ π

0

1− γ 2(q)/2
E(q)

dq−
1
2

]
, (55)

where the constant c is given by

c = I + a1 + 1,

with the integral I defined as

I =
1

π2

∫ π

0

[
A(q)γ (q)− 2A(q)/γ (q)

E(q)
+

2A(q)
γ (q)

]
dq. (56)

Using the above self-consistency equations for b̃1, b̃a
3, b̃b

3,
D and 4 and by the iteration method, we obtain the
numerical values for g̃a

4, g̃b
4, g̃c

4 and g̃d
4, the four-body bra-state

coefficients. The staggered magnetization is then calculated
by using equation (31).
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[3] Paldus J, Čı́žek J and Shavitt I 1972 Phys. Rev. A 5 50
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