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Abstract
By extending our recently proposed magnon-density waves to low dimensions, we investigate,
using a microscopic many-body approach, the longitudinal excitations of the
quasi-one-dimensional (quasi-1d) and quasi-2d Heisenberg antiferromagnetic systems on a
bipartite lattice with a general spin quantum number. We obtain the full energy spectrum of the
longitudinal mode as a function of the coupling constants in the original lattice Hamiltonian
and find that it always has a nonzero energy gap if the ground state has a long-range order and
becomes gapless for the pure isotropic 1d model. The numerical value of the minimum gap in
our approximation agrees with that of a longitudinal mode observed in the quasi-1d
antiferromagnetic compound KCuF3 at low temperature. It will be interesting to compare
values of the energy spectrum at other momenta if their experimental results are available.

1. Introduction

The low temperature properties of many two-dimensional
(2d) and three-dimensional (3d) quantum antiferromagnetic
systems can be understood by Anderson’s spin-wave theory
(SWT) and its extensions [1], which provide a correct
description of the quantum corrections to the classical Néel
states of the systems. For many purposes, the dynamics of
these systems at low temperature can be considered as that
of a dilute gas of weakly interacting spin-wave quasiparticles
(magnons) with its density corresponding to the quantum
correction to the classical Néel order; also present in these
systems are the longitudinal fluctuations consisting of the
multi-magnon continuum [2].

On the other hand, due to the strong quantum fluctuations,
the isotropic 1d antiferromagnets with low quantum spin
numbers exhibit different low temperature properties, such
as no Néel-like long-range order in the ground state and
quite different low-lying excitation states from 2d and 3d
counterparts. According to the exact solutions by the Bethe
ansatz, the natural low-lying excitation states of the 1d
spin-1/2 Heisenberg model have been shown corresponding
to the spin-1/2 objects (spinons) which always appear in pairs,
and the spin-wave-like excited states are actually the triplet
states of a spinon pair [3], in contrast to the doublet states from
SWT. For the spin-1 Heisenberg chain, however, the triplet
excitation states have a nonzero energy gap, first predicted

by Haldane [4]. These theoretical predictions have been
confirmed by the experimental results in the antiferromagnetic
compound KCuF3 for the spin-1/2 chains [5] and CsNiCl3 for
the spin-1 chains [6].

Strictly, all real systems are 3d when the temperature
is low enough. The antiferromagnetic compounds KCuF3
or CsNiCl3 are actually quasi-1d systems with very weak
inter-chain couplings. In particular, the spin–spin couplings
are ferromagnetic in the tetragonal basal planes of KCuF3 and
antiferromagnetic in the hexagonal planes of CsNiCl3. Many
parent compounds of the high-Tc superconducting cuprates or
the ion-based pnictides are also quasi-2d antiferromagnetic
systems with very weak inter-plane couplings [7, 8].
Therefore, there is a 3d magnetic long-range order with
a nonzero Néel temperature TN for all these systems and
one expects SWT should provide a qualitatively correct
description for some, if not all, the low temperature dynamics
of these quasi-1d or quasi-2d systems. One interesting
question is whether or not some 1d-type excitations, such
as the longitudinal part of the triplet spin-wave excitations
of the pure 1d systems, can survive in the ordered phase
when the inter-chain couplings are present. In fact, there is
now ample evidence of the longitudinal excitation states in
various quasi-1d structures with Néel-like long-range order
at low temperature, including the hexagonal ABX3-type
antiferromagnets with both spin quantum number s = 1
(CsNiCl3 and RbNiCl3) [9, 10] and s = 5/2 (CsMnI3) [11,
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12] and the tetragonal structure of KCuF3 with s = 1/2 [13].
More recently, a longitudinal mode was also observed
in the dimerized antiferromagnetic compound TlCuCl3
under pressure with a long-range Néel order [14]. To our
knowledge, no observation of any longitudinal mode in the
quasi-2d antiferromagnets has been reported yet. Clearly, such
longitudinal modes, which correspond to the oscillations in
the magnitude of the magnetic order parameter, are beyond
the usual SWT which only predicts the transverse spin-wave
excitations (magnons). There have been several theoretical
investigations in these longitudinal modes, all using the field
theory approach, such as a simplified version of Haldane’s
theory for the spin-1 systems [15] or the sine-Gordon theory
for the spin-1/2 systems [16, 17], and both treating the
inter-chain couplings as perturbation. A phenomenological
field theory approach focusing on the spin frustrations of
the hexagonal lattice of the ABX3-type antiferromagnetic
systems has also been proposed [18]. Common to all these
field theory approaches is the need to take the continuum limit
with a number of fitting parameters. By proper choice for
the values of the fitting parameters, general agreements with
the experiments mentioned earlier have been found, although
there are still some disagreements particularly for the data
away from the minimum energy gap at the antiferromagnetic
wavevector [12].

We recently proposed a microscopic many-body the-
ory for the longitudinal excitations of spin-s quantum
antiferromagnetic systems, using the original spin lattice
Hamiltonians [19]. The basic physics in our analysis is
simple: by analogy to Feynman’s theory on the low-lying
excited states of the helium-4 superfluid [20], we identify the
longitudinal excitation states in a quantum antiferromagnet
with a Néel-like order as the collective modes of the
magnon-density waves, which represent the fluctuations in
the long-range order and are supported by the interactions
between magnons. These longitudinal excitation states are
constructed by the sz spin operators, in contrast to the
transverse spin operators s± of the magnon states in
Anderson’s SWT. These modes are referred to as the
collective modes of the magnon-density waves because of
the fact that sz is the magnon-density operator in these
systems. The energy spectra of these collective modes can be
easily derived by a formula first employed by Feynman for
the famous phonon–roton spectrum of the helium superfluid
involving the structure factor of its ground state. Nevertheless,
we now realize that the precise form for the definition of
the longitudinal state in our earlier work is not quite correct
and we have now slightly modified the definition and, indeed,
we find the corresponding values of the energy spectra in an
approximation using the SWT ground state are, in general,
much lower than before. We extend our analysis to the 1d
model and find that in the isotropic limit the longitudinal mode
has a gapless spectrum. Interestingly, this gapless spectrum in
our approximation is degenerate with the doublet spin-wave
spectrum of SWT, hence making it triplet, in good agreement
with the exact triplet spin-wave spectrum of the spin-1/2
Heisenberg model [3]. The application of our analysis to
the quasi-1d and quasi-2d systems is straightforward and

hence a more detailed comparison with the experiments
is now possible. Our numerical results for the spin-1/2
quasi-1d compound KCuF3 show the minimum gap value
of the longitudinal energy spectrum in agreement with the
value obtained from the experiments [13]. This is particularly
satisfactory since our analysis has no fitting parameters except
the coupling constants in the original lattice Hamiltonian.
As our microscopic approach allows us to obtain the full
spectrum of the longitudinal mode, it will be interesting to
compare the values at other regions if their experimental
results are available.

We present our general theory of the magnon-density
waves briefly in section 2, with numerical results calculated
in an approximation using the SWT ground state for the
simple cubic and square lattices and its extension to the
1d models in section 3. We then discuss its application to
quasi-1d and quasi-2d systems in section 4, including the
quasi-1d compound KCuF3. We summarize our work and
discuss possible observations of the longitudinal modes in
some quasi-2d systems in section 5. We also discuss the
approximations employed in our analysis and their possible
improvements in section 5.

2. Magnon-density waves in antiferromagnets

We consider an antiferromagnetic system as described by an
N-spin Hamiltonian H on a bipartite lattice. The classical
ground state is given by the Néel state with two alternating
sublattices a and b, where we assume the spins on the a
sublattice all point up in the z direction of the spin space
and the spins on the b sublattice all point down. This Néel
state describes the perfect two-sublattice long-range order.
In this paper, we shall exclusively use index i for the sites
of the a sublattice, index j for the sites of the b sublattice,
and index l for both sublattices. The excited states are given
by the spin-flipped states with respect to the Néel state and
are commonly referred to as magnons, the quasiparticles of
magnetic systems in general.

The quantum ground state |9g〉 of H in general differs
from the classical Néel state by a correction, the long-range
order is hence reduced. For many purposes, as described by
the SWT [1], this quantum correction in most 2d and 3d
models is well represented by a gas of magnons whose density
ρ directly gives the correction as

〈sz
i 〉g = s− ρ, (1)

where s is the spin quantum number, sz
i is the z component

of the spin operator on the lattice site i and the expectation
〈· · ·〉g is with respect to the ground state |9g〉. Similarly,
〈sz

j 〉g
= −s + ρ for the b sublattice with the same density

ρ. Therefore, operators sz correspond to the magnon-density
operators, in contrast to the spin-flip operators s± which
correspond to the magnon creation/destruction operators.
Clearly, there are two types of magnons due to the two
sublattice structures. Anderson’s SWT can be most simply
formulated by bosonizing the two sets of these three spin
operators, sz and s±, on the two sublattices, respectively. For
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example, the quantum correction to the classical Néel state
by the linear SWT gives the magnon density of ρ = 0.078
per lattice site for the spin-1/2 Heisenberg model on a simple
cubic lattice, and of ρ = 0.197 per lattice site for the same
model but on a square lattice.

Due to the interactions between the magnons, it may
be necessary to consider the states of the magnon-density
waves (MDW). These states may not be well defined in the
3d systems where the magnon density is very dilute and the
long-range order is near perfect with little fluctuations. In
the low-dimensional systems. However, the magnon density
may be high enough to support these longitudinal waves. In
terms of microscopic many-body theory, these MDW states
are the longitudinal excitation states constructed by applying
the density operator sz on the ground state in a form such
as sz
|9g〉, similar to Feynman’s theory of the phonon–roton

excitation state of the helium superfluid, where the density
operator is the usual particle-density operator [20]. These
longitudinal states may be compared to the quasiparticle
magnon states which are constructed by the transverse
spin-flip operators as s±|9g〉. The above discussion underlines
the main idea in our earlier papers [19], whose main purpose is
to outline a general framework for the excitation states of both
quasiparticles and quasiparticle-density waves for a general
quantum many-body system in our variational coupled-cluster
method [22].

In more detail, following Feynman, the MDW excitation
state with momentum q in an antiferromagnet is given by

|9a
q 〉 = Xa

q |9g〉, (2)

where excitation operator Xa
q , in the linear approximation, is

the sublattice Fourier transformation of the magnon-density
operators sz

i of the a sublattice:

Xa
q =

√
2
N

∑
i

eiq·risz
i , q > 0, (3)

with condition q > 0 required because of its orthogonality
to the ground state |9g〉 in which sz

total = 0. The excitation
energy spectrum in this linear approximation can be derived
as

Ea(q) =
Na(q)

Sa(q)
, (4)

where Na(q) is given by a double commutator:

Na(q) = 1
2 〈[X

a
−q, [H,Xa

q]]〉g
, (5)

and the state normalization integral Sa(q) is, in fact, the
structure factor of the a sublattice:

Sa(q) = 〈Xa
−qXa

q〉g
=

2
N

∑
i,i′

eiq·(ri−ri′ ) 〈sz
i s

z
i′〉g . (6)

Similarly, we have the MDW excitation state Xb
q |9g〉 with the

operator

Xb
q =

√
2
N

∑
j

eiq·rjsz
j , q > 0, (7)

and the corresponding energy spectrum Eb(q) for the b
sublattice. Due to the lattice symmetry, the spectra Ea

q and Eb
q

are degenerate. However, these two excitation states are not
orthogonal to each other because of the couplings between
the spins on the a sublattice and the spins on the b sublattice.
We therefore need to consider their linear combinations as

|9±q 〉 = X±q |9g〉 =
1
√

2
(Xa

q ± Xb
q)|9g〉, (8)

for the coupled MDW states. The corresponding energy
spectra is similarly given by E±(q) = N±(q)/S±(q) with
N±(q) and S±(q) given by similar equations to equations (5)
and (6), respectively, using excitation operators X±q instead
of Xa

q . It seems that we have two longitudinal modes. But
these two states |9±q 〉 with the energy spectra E±(q) are
actually the same state, with one equal to another by a
substitution for the wavevector q→ q + Q, where Q is the
antiferromagnetic wavevector of the system (e.g. Q = (π, π)
for the 2d square lattice model). This can be easily seen
as the excitation operator X±q are, in fact, nothing but the
Fourier transformations of the (staggered) magnon-density
operators sz

l or (−1)lsz
l , respectively. We therefore only need

to consider one of them. We choose |9−q 〉 = |9q〉 with its
energy spectrum E−(q) = E(q), and write

E(q) =
N(q)

S(q)
, (9)

where N(q) and S(q) are calculated by using X−q = Xq of
equation (8). We notice the slight difference between this
definition of the MDW states of equation (8) and that in our
earlier paper [19], where we used the total density operator
as n̂i =

1
2 (2s − sz

i +
1
z

∑
nsz

i+n) with z as the coordination
number and n as the nearest-neighbor index. We now realize
the use of the operator n̂i (or its equivalent form, sz

i−
1
z

∑
nsz

i+n)
is not quite correct. Our current definition of equation (8)
seems more natural as discussed in detail above. Indeed, as
we will see later, the values of the energy spectrum of the
states defined by equation (8) in our approximation are, in
general, much lower than before, with the maximum energy
values about half of those of the earlier results [19].

So far, in the above general analysis for the longitudinal
excited states, the exact ground state |9g〉 is used for the
ground state expectation values. The only approximation
comes from the choice of the linear form in the excitation
operators of equations (3) and (7), and is often referred
to as the single-mode approximation as viewed from the
general expression of the dynamic structure factor. In the
case of the helium superfluid, the double commutator can be
simply evaluated as N(q) ∝ q2, and Feynman [20] used the
experimental results for the structure factor with S(q) ∝ q
as q→ 0 and hence derived the low-lying phonon spectrum
E(q) ∝ q and the gapped roton spectrum around the peak of
S(q). Jackson and Feenberg, however, used the variational
results calculated from the Jastrow-type wavefunctions and
obtained similar results [21]. In our earlier papers [19], we
have demonstrated that these equations remain valid when the
exact ground state |9g〉 is replaced by a variational state |90〉

and furthermore, in the case of the quantum antiferromagnets
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as discussed here, our variational ground state |90〉 by the
so-called variational coupled-cluster method in a first-order
approximation reduces to that of Anderson’s SWT [22].
Therefore, to this first-order approximation which is what we
focus on here, we apply the SWT ground state |9sw

〉 in all
of our following calculations. We like to emphasize that SWT
itself in its usual form cannot produce the longitudinal MDW
excitations discussed here. We will discuss this approximation
and its possible improvement in section 5. We present our
numerical results of the MDW spectra E(q) for several models
in the following two sections: section 3 contains the results
for the antiferromagnetic models on the simple lattices, while
section 4 contains results for the more physical quasi-1d and
quasi-2d systems.

3. Results of magnon-density wave spectra in simple
lattices

3.1. The spin-s XXZ Heisenberg model

In this section, we present the numerical results for the energy
spectra of the MDW states as discussed in the earlier section
for the spin-s XXZ Heisenberg model on a simple cubic lattice
and a square lattice. We then present the results for the 1d
model and discuss the convergent results in its isotropic limit.

The spin-s XXZ Heisenberg model on a bipartite lattice
is given by

H = J
∑
i,n

[
1
2 (s
+

i s−i+n + s−i s+i+n)+ Asz
i s

z
i+n], (10)

where the coupling parameter J > 0, index i runs over all
a sublattice only, index n runs over the z nearest-neighbor
sites and A (≥1) is the anisotropy parameter. The usual
isotropic Heisenberg model is given by A = 1. The purpose
of introducing the anisotropy is twofold: it is interesting in
its own right and it also provides a way to obtain convergent
results for the 1d case in the isotropic limit as we will see later.

Using the usual spin commutation relations, it is
straightforward to derive the following double commutator as

N(q) =
1
2
〈[X−q, [H,Xq]]〉g = −

zJ

2
(1+ γq) 〈s

+

i s−i+1〉g
,

(11)

where γq is defined as usual:

γq =
1
z

∑
n

eiq·rn , (12)

with the coordination number z and 〈s+i s−i+1〉g
is independent

of the index i due to the lattice translational symmetry. The
general expression for the structure factor S(q) contains an
additional cross-term compared to the sublattice counterpart
Sa(q) as

S(q) = 〈X−qXq〉g = Sa(q)+
2
N

∑
i,j

eiq·(ri−rj) 〈sz
i s

z
j 〉g
. (13)

Before we discuss any approximation, we notice that
the double commutator in general behaves as, near the

antiferromagnetic wavevector Q:

N(|q+Q|) ∝ q2, q→ 0, (14)

similar to that of the helium superfluid [20].
Now we need a specific approximation for the ground

state |9g〉 in order to evaluate the spin correlation functions
〈s+i s−j 〉g, 〈sz

i s
z
i′〉g and 〈sz

i s
z
j 〉g

. As mentioned earlier, in this

paper we use as our first-order approximation the spin-wave
ground state, |9sw

〉, for these calculations. After defining the
transverse spin correlation function g̃(r):

g̃r =
1
2s
〈s+i s−i+r〉g, (15)

we derive the following results for its Fourier transformation:

g̃q = −
1
2

γq/A√
1− γ 2

q /A2
, (16)

and the sublattice structure factor:

Sa(q) = ρ +
∑

q′
ρq′ρq−q′ ,

ρq =
1
2

1√
1− γ 2

q /A2
−

1
2

(17)

with magnon density ρ =
∑

qρq. And, finally, the full-lattice
(staggered) structure factor is given by

S(q) = Sa(q)+
∑

q′
g̃q′ g̃q−q′ . (18)

We notice that, in deriving the expressions of equations (17)
and (18) for the structure factors, the values for q = 0 are
excluded due to the condition q > 0 in the definition of
Xq from equations (3) and (7). Furthermore, the integrals
in the structure factor involving the function γq′γq−q′

clearly indicate the couplings between magnons. In all these
formulae, the summation over q is given by

∑
q
=

1
(2π)d

π∫
−π

ddq, (19)

where d is the dimensionality of the system. The energy
spectrum E(q) of equation (9) is obtained by calculating
the values for N(q) and S(q) from the approximations of
equations (16)–(18). This longitudinal spectrum E(q) can be
compared with the following transverse spin-wave spectra of
the linear SWT [1]:

Esw(q) = szJA
√

1− γ 2
q /A2. (20)

In the following subsections, we present numerical results
using the above approximations.

3.2. Results for the simple cubic and square lattices

We first consider the isotropic case A = 1 for the simple
cubic lattice model for which g̃1 is calculated as g̃1 =

〈s+i s−i+1〉g
≈−0.13. The numerical values for E(q) near q→ 0
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are similar to those given in [19], with a large energy gap
of about 0.99szJ at q = 0. But at other values of q, the
energies are much smaller than before due to the different
definitions of the density operator of equation (8).1 At the
antiferromagnetic wavevector (AFWV) Q = (π, π, π), the
spectrum has a larger gap of 1.40szJ. As discussed before, this
high energy 3d longitudinal mode may not be well defined and
distinguishable from the multi-magnon continuum.

For the square lattice model at the isotropic point A = 1,
g̃1 ≈ −0.28. Similar to the earlier results [19], E(q) becomes
gapless at both AFWV Q = (π, π) and q → 0, due to
the logarithmic behaviors from the structure factors (e.g.
S(q)→ − ln q, hence E(q) ∝ −1/ ln q as q→ 0). However,
as discussed earlier, this logarithmic gapless spectrum of the
square lattice model, in fact, is quite ‘hard’ in the sense that
any finite-size effect, anisotropy or inter-plane coupling to
be discussed later, however small, will make a nonzero gap.
For example, we consider a tiny anisotropy here with a value
A − 1 = 1.5 × 10−4, which in fact is a typical value for
the parent compound of the high-Tc superconducting cuprate,
La2CuO4 [23]. We obtain in our approximation the gap values
at E(Q) ∼ 0.76szJ and E(q) ∼ 0.44szJ as q→ 0, both much
larger than the corresponding magnon gap value of 0.02szJ
from equation (20). We plot part of the spectrum with this
anisotropy in figure 1, together with the spin-wave spectrum
for comparison. The energy values at the two particular
momenta (π/2, π/2) and (π, 0) deserve attention, where
γq = 0 and the spin-wave spectrum gives the same value of
szJ. The longitudinal spectrum E(q) at these two point has
slightly different values, 1.36szJ and 1.40szJ, respectively.
The energy difference at these two momenta has been used to
indicate nonlinear effects due to magnon–magnon interactions
in the more accurate calculations for the isotropic Heisenberg
model [24]. It is interesting to note that our longitudinal mode
also shows this difference.

3.3. Results for the 1d model

We next consider the 1d case. The SWT results in general for
the isotropic 1d case are not reliable as most integrals suffer
from the well-known infrared divergence, e.g. the magnon
density ρ→∞ as A→ 1, an unphysical result. Nevertheless,
the value of the spin-wave spectrum of equation (20) is not
far off that of the exact result by the Bethe ansatz [3] for
the spin-1/2 model despite the different degeneracies (i.e.
the spin-wave spectrum is doublet while the exact spectrum
is triplet). Infrared divergence of the spin-wave results also
occurs for the parameter g̃1 in the numerator of the energy
spectra in equation (9). We examine the behaviors of each
integral in N(q) and S(q) in the isotropic limit A→ 1 and find
that they all have similar infrared divergence. For example, by
numerical calculations, we find that

g̃1 ∝ −
1

2π
ln(A− 1), as A→ 1, (21)

1 The integrals over momentum space have bounds between (−π, π) as
given by equation (19). In [19], the bounds of (0, π) were used by mistake
which makes no difference for most integrals but a small difference for
integrals involving γq′γq−q′ .

Figure 1. The energy spectrum E(q) for the longitudinal mode of
equation (9) for the square lattice Heisenberg model of
equation (10) with an anisotropy A− 1 = 1.5× 10−4, together with
the linear spin-wave spectrum Esw(q) of equation (20) for
comparison. This tiny anisotropy is a typical value for the parent
compound of the high-Tc superconducting cuprate, La2CuO4.

agrees with the analytical results using the elliptical
formula [25]. Furthermore, in the limit q→ 0, both Sa(q) and
S(q) behave as

S(q)→−
1

2π
ln(A− 1)
√

A− 1
, as q→ 0 and A→ 1.

(22)

Since the divergences in the numerator N(q) and the
denominators S(q) precisely cancel out, we obtain finite
results for the energy spectrum E(q) for the isotropic 1d
model. Interestingly, we find that these numerical values of
E(q) coincide precisely with those of the linear spin-wave
spectra of equation (20) for all values of q in the isotropic
limit A → 1. Therefore, our longitudinal spectrum and the
doublet transverse spin-wave spectrum constitute a triplet, in
good agreement with the following exact triplet spectrum for
the spin-1/2 model by the Bethe ansatz first derived by des
Cloizeaux and Pearson [3]:

E(q) =
πJ

2
sin q. (23)

The different factor πJ/2 of the above exact result compared
to the value of J by the linear SWT of equation (20) with
z = 2 clearly comes from the nonlinear effects beyond our
simple approximation employed here. We also notice that our
analysis here in the approximations employed is not able to
produce the Haldane gap for the isotropic spin-1 chain.

For the anisotropic 1d model (i.e. A > 1), the triplet
spectra split and the values of the longitudinal spectrum E(q)
are larger than those of the doublet spin-wave spectrum,
similar to the cases of the 2d and 3d models discussed earlier.
We plot this E(q) for A = 1.1 in figure 2 as an example.
The gaps for E(q) are about 1.16szJ and 1.64szJ at q = 0
and π , respectively, comparing with 0.46szJ of the spin-wave
spectrum at both points.
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Figure 2. Similar to figure 1 but for the 1d model with anisotropy
A = 1.1. In the isotropic limit of A = 1, E(q) approaches Esw(q),
forming a triplet spectrum as described in detail in the text.

4. Magnon-density waves in quasi-1d and quasi-2d
systems

4.1. Quasi-1d and quasi-2d antiferromagnets on bipartite
lattices

A generic quasi-1d and quasi-2d antiferromagnetic Hamilto-
nian on a bipartite lattice is given by

H = J
∑
i,n1

si · si+n1 + J⊥
∑
i,n2

si · si+n2 , (24)

where index i as before runs over all a-sublattice sites with
index n1 over the nearest-neighbor sites along the chains and
n2 over the nearest-neighbor sites on the basal planes, J is the
coupling constant along the chains and J⊥ is the counterpart
on the basal planes. We consider the model with both J
and J⊥ > 0. The quasi-1d model corresponds to the case of
J⊥/J � 1, the quasi-2d model to the case of J⊥/J � 1 and
the 3d model is given by J⊥ = J. This Hamiltonian has been
studied for the case of the quasi-1d systems with J⊥/J� 1 by
SWT [25, 26]. In particular, the SWT ground state was used
to evaluate the corrections due to the kinematic interactions
to the order parameter ρ. The longitudinal modes were not
discussed.

All of our earlier formulae for the longitudinal mode at
the isotropic point A = 1 remain the same after the following
replacements:

z→ z′ = 2(1+ 2ξ),

γq → γ ′q =
2
z′
[
cos qz + ξ(cos qx + cos qy)

]
,

(25)

where ξ = J⊥/J. This is true also for the spin-wave spectrum
Esw(q) of equation (20). We notice that the spin-wave
spectrum is gapless at zone boundaries. The longitudinal
mode E(q) of equation (9), however, has nonzero gaps for
any ξ > 0, at which there is a long-range order [25, 26]. In
figure 3, we present our results for the spectrum, denoted
as Eq1d(q), of the quasi-1d model with A = 1 and ξ =

1.05 as an example, together with the spin-wave spectrum
Esw(q). The gaps for Eq1d(q) at q→ 0 and Q = (π, π, π)

Figure 3. Similar to the earlier figures but for the quasi-1d and
quasi-2d systems of equation (24), with parameter ξ = J⊥/J = 0.01
for the quasi-1d spectrum Eq1d(q) and ξ = 103 for the quasi-2d
spectrum Eq2d(q). The spin-wave spectrum Esw(q) is for the
quasi-1d model.

are 0.78sz′J and 1.21sz′J, respectively. Figure 3 also includes
our results for a quasi-2d model with A = 1 and 1/ξ =
J/J⊥ = 10−3, denoted as Eq2d(q). The gap values for this
quasi-2d spectrum at q → 0 and Q = (π, π, π) are about
0.47sz′J and 0.80sz′J, respectively. We also notice that at the
particular two momenta (π/2, π/2, 0) and (π, 0, 0), where the
linear spin-wave spectrum has the same value of sz′J but the
longitudinal mode has slightly different values, 1.36sz′J and
1.41sz′J, respectively, due to magnon–magnon interactions
as discussed earlier. This quasi-2d model may be relevant
to the parent compounds of the high-Tc cuprates, where the
effective interlayer couplings J/J⊥ between the CuO2 planes
are estimated to be between 10−2 and 10−5 [27].

4.2. Quasi-1d model with KCuF3 structure

In the experimentally well-studied quasi-1d compound
KCuF3, strong spin couplings along the chains are
antiferromagnetic but weak couplings on the basal plane
are ferromagnetic. This compound can be described by the
following Hamiltonian model:

H = J
∑
la,n1

sla · sla+n1

−
J⊥
2

(∑
la,n2

sla · sla+n2 +

∑
lb,n2

slb · slb+n2

)
, (26)

whose classical Néel state consists of two alternating planes,
with all the spins on the a plane pointing up and labeled by
index la and all the spins on the b plane pointing down and
labeled by index lb. In equation (26), the nearest-neighbor
indices n1 and n2 are as defined before with n1 along the
chains and n2 on the basal planes, and both J and J⊥ > 0.
The spin-wave spectrum is derived as

Esw(q) = 2sJ
√
12

q − cos2qz, (27)
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where 1q is defined as

1q = 1+ 2ξ(1− γ 2d
q ), ξ =

J⊥
J
, (28)

with γ 2d
q = (cos qx + cos qy)/2. It is easy to check that,

when J = 0, we recover the spin-wave spectrum of the 2d
ferromagnetic model and that, when J⊥ = 0, we recover the
spin-wave spectrum of the 1d antiferromagnetic model. For
the longitudinal energy spectrum E(q) of equation (9), the
double commutator is now given by a different form as

N(q) = −J(1+ cos qz) 〈s
+

la
s−la+n1

〉
g

+ 2J⊥(1− γ 2d
q ) 〈s+la s−la+n2

〉
g
, (29)

and the structure factor S(q) is as given before by equations (6)
and (13) in general forms and by equations (17) and (18)
in our approximation using the similar SWT ground state
with the anisotropy parameter A = 1. We notice that, in
equation (29), the two spin operators in the first correlation
function 〈s+la s−la+n1

〉
g

are from the two sublattices, respectively,

as before, but in the second correlation function 〈s+la s−la+n2
〉
g
,

they are from the same sublattice. So we still name the first
one as before by g̃1 = 〈s

+

la
s−la+n1

〉
g
/2s but the second one as

g̃′1 = 〈s
+

la
s−la+n2

〉
g
/2s. Using the similar SWT ground state, we

obtain for their Fourier transformations

g̃q = −
1
2

cos qz√
12

q − cos2qz

(30)

and

g̃′q = ρq =
1
2

1q√
12

q − cos2qq

−
1
2
, (31)

respectively. We notice the quite different expressions for g̃q
and g̃′q as expected. We present our numerical results for
E(q) in figure 4, together with Esw(q) of equation (27) for
comparison, using the experimental values for the coupling
constants, J ≈ 34 meV, J⊥ ≈ 1.6 meV and s = 1/2 [13].
Different to the longitudinal modes in other systems discussed
earlier, we find that E(q) has a smaller gap of about 0.63J ≈
21.4 meV at AFWV Q = (0, 0, π) and a larger gap of about
0.85J ≈ 28.9 meV at q → 0. This gap value of 21.4 meV
at AFWV is about 40% higher than the experimental value
of about 15 meV. The field theory by Essler et al produces
a gap value of about 17.4 meV [17]. However, there is
uncertainty in the estimated value of the inter-chain coupling
constant J⊥. Lake et al seem to have used the theoretical
formula (56) in [17] to obtain J⊥ = 1.6 meV = 0.047J.
By different methods [29, 30], J⊥ was estimated to be
0.01J ∼ 0.016J. Using this estimate of ξ = J⊥/J = 0.01, we
obtain the minimum gap value of 11.9 meV at AFWV and
16.8 meV at q = 0. Naively, if we choose about the midpoint
between the values of [13] and [29], J⊥ = 0.85 meV with
ξ ≈ 0.025, we obtain the minimum gap value of 0.49J =
16.8 meV at AFWV and 0.68J = 23.2 meV at q = 0, in good
agreement with the experiment for the minimum gap [13].
Furthermore, with this value of J⊥ = 0.85 meV, the linear

Figure 4. Similar to figure 3 but for the quasi-1d structure of
KCuF3 as described by the Hamiltonian of equation (26), with
parameter ξ = J⊥/J = 1.6/34 from the experiment [13]. The
spin-wave spectrum Esw(q) is given by equation (27).

spin-wave spectrum gap at q = (π, 0, π) is Esw(q) ≈ 0.32J =
10.9 meV, very close to the gap value of 11 ± 0.5 meV by
the experiment [29]. The longitudinal mode E(q) is nearly
flat in the region (η, 0, π) ∼ (η, 0, π) with π ≤ η ≤ 0, with
the gap value about 0.59J = 20.1 meV at (π, 0, π). It will be
very interesting indeed to compare with experimental results
if available for the whole spectrum.

5. Summary and discussion

In summary, we have investigated the longitudinal excitations
of various quantum antiferromagnets based on our recently
proposed magnon-density waves. Our numerical results show
that the longitudinal mode always has a nonzero gap so long
as the system has a Néel-type long-range order and becomes
gapless in the limit of the 1d isotropic model. In particular,
the spectrum of the longitudinal mode in our approximation
is degenerate with the doublet spin-wave spectrum of SWT
in the limit of the isotropic 1d model, in agreement with the
triplet spin-wave spectrum of exact results for the spin-1/2
model by the Bethe ansatz [3]. In the case of the simple cubic
lattice model, the longitudinal mode with high energy values
may not be well defined since there is little fluctuation in the
nearly perfect classical long-range order. In the quasi-1d and
quasi-2d models, where the quantum correction is large and
the magnon density is significant, the magnon-density waves
may be observable. Indeed, there is now ample evidence of the
longitudinal modes in several quasi-1d systems as mentioned
earlier in section 1. In particular, for the quasi-1d compound
KCuF3, our value for the minimum gap is in agreement with
the experimental value [13]. It will be interesting if more
experimental results for the spectrum away from the minimum
are available for comparison.

It is also interesting to note that the longitudinal modes
were observed in the ABX3-type antiferromagnets with both
s = 1 [9, 10] and s = 5/2 [11, 12], clearly indicating that
the modes are more general in their physics, independent
of the mechanism which generates the Haldane gap of the
1d model. The phenomenological field theory model with
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five fitting parameters employed by Affleck is derived from
Haldane’s theory of the spin-1 chain [15]. It will be interesting
to apply our general microscopic analysis presented here
to the ABX3-type antiferromagnets where the basal plane
is hexagonal and the corresponding Néel-like state has
three sublattices rather than two sublattices discussed here.
Other systems where we can apply our analysis for the
magnon-density waves include the quasi-2d systems where
the next-nearest-neighbor antiferromagnetic couplings, in
addition to the usual nearest-neighbor couplings, are present.
These additional couplings cause quantum frustrations and
the Néel-like order is further reduced, hence the greater
the magnon density to support the magnon-density waves.
Of particular current interest is the parent compounds of
the newly discovered high-Tc superconducting iron-based
pnictides where such next-nearest couplings are believed to
be significant [28].

Finally, we want to point out that there are two major
approximations in our analysis here. The first is the linear
operators Xq employed in constructing the excitation states
and the second is the SWT ground state |9sw〉 employed in
evaluating all the correlation functions involved. In regard to
the first approximation, it is interesting to consider the case of
the phonon–roton spectrum of the helium superfluid, where
after inclusion of the nonlinear terms due to the couplings to
the low-lying phonons (i.e. the so-called backflow correction),
the values of the roton gap are reduced by about half to near
the experimental values [20, 21]. Clearly, the effects due to
the couplings between the longitudinal modes and the gapless
magnons in the antiferromagnetic systems also deserve further
investigation. In regard to the second approximation, i.e. the
SWT ground state employ in our calculations, improvement
can be obtained by using better ground state functions
available by more sophisticated microscopic many-body
theories such as the coupled-cluster method [22, 31] and,
particularly, its most recent extension where the strong
correlations are included by a Jastrow correlation factor [32].
We believe the quasi-1d and quasi-2d antiferromagnetic
systems as studied here are good theoretical models from
both the viewpoint of the field theory approach which
deal with the nonlinear effects of the 1d systems [15–17]
most effectively and of the microscopic many-body theory
approach which provides general, systematic techniques in
dealing with many-body correlations in a plethora of quantum
systems [33]. The two theoretical approaches complement one
another in the study of these models and we wish to report our
progress in these investigations in the near future.
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