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While the deviation of the edge on-site potential from the bulk values in a magnonic topological
honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case
for a zig-zag termination where no edge state is found. In a semi-infinite lattice, the intrinsic on-site
interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like
edge states. If a non-trivial gap is induced, both Tamm-like and topologically protected edge states
appear in the band structure. The effective defect can be strengthened by an external on-site
potential and the dispersion relation, velocity and magnon-density of the edge states all become
tunable.

I. INTRODUCTION

Many important phenomena in condensed matter
physics are related to the formation of edge or surface
states along the boundary of finite-sized materials. Their
existence has been commonly explained as the manifes-
tation of Tamm1 or Shockley2 mechanisms. In recent
years it has been revealed that the edge states in the
so-called topological insulators3 are related to the bulk
properties4,5. One such property is characterized by an
insulating bulk gap and conducting gapless topologically
protected edge states that are robust against internal and
external perturbations6,7.

Edge states in topological magnon insulators have also
attracted a lot of attention recently8–11. The magnons
are the quantized version of spin-waves12,13, which are
collective propagation of precessional motion of the mag-
netic moments in magnets. Since there is no particle
movement, magnons can propagate over a long distance
without dissipation by Joule heating14,15. Similar to
spintronics16, the study of the edge magnons will enrich
the potential of magnonics, exploiting spin-waves for in-
formation processing17–20. For this purpose the complete
understanding of the edge magnon behavior in different
lattice structures and the precise control of their proper-
ties are urgently called for.

The magnon hall effect was observed in the ferromag-
netic insulator Lu2V2O7

21, in the Kágome ferromagnetic
lattice22, in Y3Fe5O3 (YIG) ferromagnetic crystals23,24,
and have also been studied in the Lieb25 and the hon-
eycomb ferromagnetic lattices26. Interestingly, it has
been shown that a ferromagnetic Heisenberg model with
a Dzialozinskii-Moriya interaction (DMI) on the honey-
comb lattice realizes magnon edge states similar to the
Haldane model for spinless fermions26 and the Kane-Mele
model for electrons27. By a topological approach, it has
been shown that a non-zero DMI makes the band struc-
ture topologically non-trivial and by the winding number
of the bulk Hamiltonian, gapless edge states which cross
the gap connecting the regions near the Dirac points has
been predicted26. The thermal Hall effect28 and spin
Nernst effect27 have also been predicted for this mag-
netic system. By a direct tight binding formulation in

an strip geometry, it was shown that the edge states in a
lattice with a zigzag termination closely resembles their
fermionic counterpart only if an external on-site poten-
tial is introduced at the outermost sites29. Furthermore,
the lattice with armchair termination has additional edge
states to those predicted by a topological approach. Such
edge states were found to be strongly dependent to edge
on-site potentials30. On the other hand, in a semi-
infinite ferromagnetic square lattice, a renormalization
of the on-site contribution along the boundary gives rise
to spin-wave surface states31–33 and most recent experi-
ments in photonic lattices have observed unconventional
edge states in a honeycomb lattice with bearded34, zigzag
and armchair35 boundaries, which are not present in the
fermionic graphene. In addition, Tamm-like edge states
were also observed in a Kágome acoustic lattice36. These
unconventional edge states are found to be related to the
bosonic nature of the quasi-particles in the lattice whose
model hamiltonians contains on-site interaction terms.

In this work, we explore in more detail the magnon
edge states in a honeycomb lattice with a DMI and an
external on-site potential along the outermost sites. Ex-
tending our previous work29,30, we develop a general ap-
proach applied to a zig-zag and bearded terminations and
we derive analytical expressions for both energy spectrum
and wavefunctions. In a lattice with a boundary, the in-
teraction terms along the outermost sites differ from the
bulk values. Such a difference plays the role of an effec-
tive defect and gives rise to Tamm-like edge states34
the type of edge states generated by an strong pertur-
bation due to an asymmetric termination of a periodical
potential1. In similar fashion, the on-site potential along
the boundary plays an important role in the appearance
of edge states in bosonic lattices. We found that the ef-
fective defect can be strengthened by an external on-site
potential and this can be used to tune up the dispersion
and velocity of the edge states present in the system.
For both boundaries under consideration, we present a
simple diagram with which the number of magnon edge
states can be predicted. In addition, if a non-trivial gap
is induced, the edge state band structure is found to be
strongly dependent to the on-site interactions. The tight
binding formulation which we have implemented in this
work facilitates extraction of analytical solutions of both
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energy spectrum and wavefunctions for better physical
understanding. All our analytical results are in agree-
ment with direct numerical calculations.

II. TIGHT-BINDING MODEL ON THE
HONEYCOMB LATTICE

In this section, we briefly present the general approach
for the study of the edge states with an arbitrary external
on-site potential and with a DMI.

A. Harper’s equation

The bosonic tight-binding Hamiltonian on the honey-
comb lattice, derived from a linear spin-wave approxima-
tion to the Heisenberg model, is given by

H = −JS
∑
〈i,j〉

(
aib
†
j + a†i bj − a

†
iai − b

†
jbj

)
+HD, (1)

where ai and bj are bosonic operators of the two sub-
lattices, 〈i, j〉 indicates a nearest-neighbor (NN) coupling
with isotropic ferromagnetic coupling constant J (> 0), S
is the spin quantum number from the original Heisenberg
model29 and HD = HD,A + HD,B is the DMI contribu-
tion. In particular, HD,A is given by

HD,A = iDS
∑
〈〈i,j〉〉

%i,j

(
aia
†
j − a

†
iaj

)
, (2)

where D is the DMI strength, 〈〈i, j〉〉 runs over the next-
nearest-neighbor (NNN) sites, the hopping term %ij = ±1
depending of the orientation of the two NNN sites37 and
HD,B is similar for the B-sublattice. The Hamiltonian in
Eq. (1) is the bosonic equivalent to the Haldane model38,
where the NNN complex hopping in Eq. (2) breaks the
lattice inversion symmetry and makes the band struc-
ture topologically non-trivial. To analyze the edge states
we consider a lattice with an open boundary along the
x direction and semi-infinite in the y direction as shown
in Fig. (1). In the linear spin-wave approximation, by
denoting wavefunctions on two sub-lattices of the honey-
comb lattice as ψA,n and ψB,n, respectively, the Harper’s
equation provided by the Hamiltonian in Eq. (1) can be
written as

3ψA,n − J1ψB,n − J2ψB,n−1 + fA,n = εψA,n,

−J1ψA.n − J2ψA,n+1 + 3ψB,n − fB,n = εψB,n, (3)

where n is a row index in the y direction perpendicu-
lar to the boundary. In the above equation, the DMI
is given by fl,n = J3ψl,n − J4 (ψl,n+1 + ψl,n−1), with
l (= A,B) a sublattice index. Furthermore, if k is
the momentum in the x direction, the hopping ampli-
tudes for the lattice with a zig-zag boundary are given
by: J1 = 2 cos

(√
3k/2

)
, J2 = 1, J3 = 2D′ sin

(√
3 k
)
,

J4 = 2D′ sin
(√

3k/2
)
and D′ = D/J . In addition, the

FIG. 1. (Color online) Schematics of the a) zig-zag and
b) bearded boundaries on the honeycomb lattice. The sub-
lattices are labeled by A and B. The external on-site potential
δ1 is applied at the outermost sites. Here, n is a index row
along the y direction perpendicular to the boundary.

simple replacements of J1 → J2 and J2 → J1 in Eq.
(3) provide the corresponding Harper’s equation for the
lattice with a bearded boundary.

B. Effective Hamiltonian for the edge states

The Harper’s equation of Eq. (3) can be simplified if we
assume a decaying Bloch wavefunction in the y direction
of the form, ψl,n = znψl, where l labels each sublattice
and the Bloch phase factor z is a complex number39. The
eigenequation for the effective Hamiltonian of the edge
state can be written with the decaying wavefunction as
Hefψl,n = εψl,n, where

Hef =

[
3 + J3 − J4∆ −w

(
J1 + J2z

−1)
−w−1 (J1 + J2z) 3− J3 + J4∆

]
, (4)

and ∆ = z + z−1. In the above equation, the factor
w takes into account the bearded (w = z) and zig-zag
(w = 1) boundaries. The non-trivial solution for the
eigenstates of Hef gives rise to the secular equation

J2
4∆2 − (2J3J4 − J1J2) ∆− ε2r + J2

1 + J2
2 + J2

3 = 0, (5)

where εr = ε− 3. Note that such polynomial in ∆ is the
same for the both considered boundaries. For a given
momentum k and energy ε, the solutions of Eq. (5) are
the Bloch phase factors zν with ν = 1, .., 4. In particular,
for the infinite system, the Fourier transform in the y
direction is the solution z = e±

3
2 iky which corresponds

to Bloch extended states. In the case of a lattice with
a boundary, the solutions of Eq. (5) satisfying |zν | = 1
determine the bulk band structure [See. Fig. (2)]. The
states with |zν | 6= 1 decay or grow exponentially in space,
and they can be used to describe the edge states with the
appropriate boundary conditions.

The factors zν and z−1ν in Eq. (5) always appear in
pairs. Since we require a decaying (evanescent) wave
from the boundary, setting the condition |zν | < 1 im-
plies that the general solution for the edge states can be
written as a linear combination of the form,

ψl,n = c1z
n
1ψ

(1)
l + c2z

n
2ψ

(2)
l , (6)
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where the coefficients ci, with i = 1, 2, are determined
by the boundary conditions. In the above equation, ψ(ν)

l
with ν = 1, 2 is an eigenvector of Hef corresponding to
the ν-th decaying solution of Eq. (5). To obtain the
edge state energy spectrum, the wavefunctions given by
Eq. (6) must satisfy the boundary conditions. This will
be described in the following sections.

III. BOUNDARY CONDITIONS AND THE
EDGE STATES

In this section, the boundary conditions for both zig-
zag and bearded boundaries are obtained. By the secular
Eq. (4) and the boundary conditions, we derive the an-
alytical expressions for the edge state energy spectrum
and wavefunctions for non-zero DMI. The analytical so-
lutions with zero DMI are obtained in the appendix A.

A. Zig-zag boundary

In our previous work29, we have derived the equations
for the energy and the wavefunctions considering a fixed
on-site potential δ1 = 1, where the edge state energy
spectrum and the wavefunctions closely resembles the
fermionic graphene. Here, we first summarize, then ex-
tend the formalism to arbitrary values of the external

on-site potential.
Due to the open zig-zag boundary, the on-site potential

along the boundary is different from that in the bulk. The
Harper’s equation of Eq. (3) at n = 1 must be modified.
Considering the missing bonds along the outermost A
site, the coupled Harper’s equation at n = 1 is written
as,

(2− δ1)ψA,1 − J1ψB,1 + fA,1 = εψA,1,

3ψB,1 − (J1ψA.1 + J2ψA,2)− fB,1 = εψB,1, (7)

where the external on-site potential δ1 is introduced and
fl,1 = J3ψl,1 − J4ψl,2. In the the above equation, the
total energy at each sublattice is given by the on-site
contribution (first term), the NN contribution (second
term) and the DMI (third term). From Eqs. (3) and (7),
we obtain the zig-zag boundary conditions

(1− δ1)ψA,1 − J4ψA,0 = 0, (8)
ψB,0 = 0,

for the edge state wavefunctions in Eq. (6). Unlike the
equivalent fermionic model40 where the wavefunctions of
both sub-lattices vanish at n = 0, Eq. (8) contains the
on-site contribution at n = 1. As we will shown in the
following sections, such contribution have important ef-
fects in the band structure of the edge states. From Eqs.
(6) and (8) the non-trivial solution for the coefficients
ci provides the following self-consistent equation for the
edge state energy spectrum,

ε = 3 + J3 − J4
{

[(δ1 − 1) J1 − J2J4] (z1 + z2) + [J2 (δ1 − 1) + J1J4] (1− z1z2)

(δ1 − 1) J1z1z2 − J2J4

}
. (9)

In the above equation, z1 and z2 are two decaying solu-
tions of Eq. (5). The corresponding edge state wavefunc-
tions are given by

ψA,n = c1 (zn1 − αzn2 )ψ
(1)
A ,

ψB,n = c1 (zn1 − zn2 )ψ
(1)
B , (10)

where c1 is a normalization term, and

α =
(1− δ1) z1 − J4
(1− δ1) z2 − J4

, (11)

contains the contribution of the external on-site potential
in the wavefunction. For a given momentum k, external
potential δ1 and non-zero DMI, Eq. (9) is an implicit
equation for the energy ε and can be solved numerically.
Equations (5), (9) and (10) provide a full description for
the edge state energy spectra and their corresponding
wavefunctions, which will be described in the Sec. IV.

B. Bearded boundary

Similar to the zig-zag case, by modifying the Harper’s
equation at n = 1 to take into account the missing sites,
the boundary conditions for the wavefunctions in Eq. (6)
are given by

(2− δ1)ψB,1 + J4ψB,0 = 0, (12)
ψA,0 = 0.

From Eqs. (6) and (12) the non-trivial solution for the
coefficients ci can also be obtained. We find that the
simple replacements: J1 → J2, J2 → J1, J3 → −J3,
J4 → −J4 and δ1 → δ1 + 1 in Eq. (9), provide the self-
consistent equation for the edge state energy spectrum.
The wavefunctions satisfying the boundary conditions of
Eq. (12) are given by

ψA,n = c1 (zn1 − zn2 )ψ
(1)
A ,

ψB,n = c1 (zn1 − α′zn2 )ψ
(1)
B , (13)
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FIG. 2. (Color online) a) Edge state dispersion relations
induced by δ1 at the zig-zag open boundary are shown for
δ1 = 0.2, 0.6, 0.8 and 1.0 (from the curved to the flat band).
For δ1 = 0 there are not edge states. The blue region is the
bulk continuum where all the factors |zυ| = 1 in Eq. (5). b)
Modulus of the decaying factors for the corresponding edge
states, here ±1 is the sign of z1.

where c1 is a normalization term and

α′ =
(2− δ1) z1 + J4
(2− δ1) z2 + J4

. (14)

Equations (5) and (12) together with Eq. (13) provide a
full description for the edge state energy spectrum and
wavefunctions. For an arbitrary external on-site poten-
tial and zero DMI, the k-dependence of ε(k) and the ex-
plicit solutions for the decaying z factors are obtained in
the appendix A.

IV. ENERGY SPECTRUM AND
WAVEFUNCTIONS

A. Zero DMI

In a fermionic honeycomb lattice with a boundary, it
is well known that there are flat edge states connect-
ing the two Dirac points, K → K′, in a lattice with a
zig-zag boundary41, whereas in a lattice with a bearded
boundary42, the flat edge state is connecting the com-
plementary region, K′ → K. In the equivalent bosonic
models, we expect different situations due to the con-
tribution of the on-site interactions along the boundary
sites.

1. Zig-zag boundary

For a zig-zag boundary, in absence of external on-site
potentials and zero DMI, the solutions of Eq. (5) and (7)
provide bulk states with z2 = 1 and energy ε = 2 ± |J1|
and no edge state is found. However, a Tamm-like edge
state can be induced if the effective defect is strengthened
by turning on the external on-site potential, δ1. In Fig.
(2) the energy spectra and the decaying factors of the
induced edge states are shown for different values of δ1.
As the external on-site potential is increasing (δ1 → 1),

FIG. 3. (Color online) Spin density profile for k = 1.41 and
external on-site potential a) δ1 = 0.2 and b) δ1 = 0.4. For
clarity, the magnitudes on the edge are held constant. The
magnitudes of the spin density are proportional to the radius
of each circle with a phase given by einθl = ±1.

the branch becomes flatter [Fig. (2a)] and from the edge
state wavefunctions,(

ψA,n
ψB,n

)
= zn

(
z−1
1−δ1
J2

)
, (15)

the magnon density is found to be more localized in a
single lattice [See Fig. (3)]. In the above equation, the
decaying factor z is a real number. For a wide ribbon4,5,
the edge state energy spectra is double degenerated and
since the magnon velocity is the slope of the energy spec-
trum, the magnons are moving in the same direction at
opposite edges, as illustrated in Fig. (4a). As shown
in Fig. (2), as δ1 is increased the slope (and the edge
magnon velocity) is reduced until δ1 = 1 where the edge
state becomes non-dispersive.

If the external on-site potential is increased, the num-
ber of edge states changes as well as their shape. Depend-
ing on the external on-site potential strength, a zig-zag
termination can have two edge states at each boundary.
In the decaying factor diagram of the Fig. (5a), each
edge state has a corresponding z1 or z′1 decaying factor.
For 0 < δ1 < 2, there is a single decaying factor between
the Dirac points [see also Fig. (2)] and from Eq. (15) it
is straightforward to show that the edge state in this re-
gion is mainly localized at the A sublattice. As is shown
in the Fig. (5a), for δ1 > 2 there are two edge states,
the first one, corresponding to z′1, is defined over all the
Brillouin zone with energy spectra over the bulk bands
(due to the strong external on-site potential). The second
edge state, corresponding to z1, is defined in the region
K > k >K′ as in the bearded graphene. Such edge state
has a magnon density mainly localized at the B sublat-
tice with energy spectrum between the bulk bands. If the
external on-site potential is even stronger, δ1 � 2, the
system effectively shows the band structure of a bearded
termination plus a high energy Tamm-like edge state.
Moreover, as we mentioned before, in absence of external
on-site potential (δ1 = 0) there are not edge states. At
δ1 = 2, there are not edge states either. This can be
observed in the diagram of the Fig. (5a), where at such
value, |z1| = |z′1| = 1 for all values of k. At the transi-
tion lines (dashed) the modulus of the decaying factors
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FIG. 4. (Color online) Schematic illustrations of the edge
states propagation with the same momentum k. The arrows
represent the edge magnon velocity. At each boundary we
can have, a) a single edge magnon, b) two edge magnons with
opposite and different velocities, c) two edge magnons moving
in the same direction at different velocity and d) chiral edge
states.

reaches the unity and the edge states are indistinguish-
able from the bulk bands.

The magnon excitations in a ferromagnetic lattice can
be viewed as a synchronic precession of the spin vectors.
The sign of the wavefunctions in Eq. (15) can be re-
lated to the spin precession in successive n rows and the
wavefunction modulus to the radius of precession which
decrease as n increases. If we write the phase of the
wavefunction as einθl = sgn(ψl,n), then, for a given k
and 0 < δ1 < 2, the synchronic precession of the spins
in successive n rows is in anti-phase (θl = π, optic-like)
if k < k0(= π/

√
3) and in-phase (θl = 0, acoustic-like)

if k > k0. Furthermore, at the same n, the spins at dif-
ferent sub-lattices are precessing in anti-phase for k < k0
and in-phase for k > k0 [See Fig. (3a)]. At the transition
point k0, the edge state energy is ε0 = 2 + δ1 and the
decaying factor is zero as shown in Fig. (2b). Hence, for
δ1 6= 0, 2, and by Eq. (15), the magnon is completely
localized at the edge site.

2. Bearded boundary

We now consider a bearded termination. As shown in
Fig. (1b), the outermost site has two missing bonds and
the effective defect is stronger than the corresponding to
a zig-zag boundary. Contrary to the fermionic equiva-
lent, the on-site terms provided by Eq. (1) change sub-
stantially the edge state band structure. This is shown
in Fig. (6a), where for δ1 = 0 there are two edge state
energy bands as given by Eq. (A6), the first one between
the Dirac points (dot-dashed, black line) and the sec-
ond one below the lower bulk bands (dashed, black line).
Such edge states are defined in a region in k completely
different to their fermionic equivalent42,43. As shown in
Fig. (6b), the edge state below the bulk bands is defined
over all the Brillouin zone, except at k = 0, 2π

√
3, where

the decaying factor reaches the unity and the edge state
is indistinguishable from the bulk bands. As is shown in
the Appendix A, the edge state wavefunctions are given
by, (

ψA,n
ψB,n

)
= zn

(
2−δ1
J1
z−1

)
, (16)
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FIG. 5. (Color online) Decaying factor diagram for the edge
states in a honeycomb lattice with a) zig-zag and b) bearded
termination for zero DMI. The number of decaying factors
with |z| < 1 is the number of edge states in the corresponding
region. The (dashed) lines dividing each region are the points
where both decaying factors reach the unity.

where z is a real number. In the above equation z = z′1 for
the edge state below the lower bulk bands and z = z1 for
the edge state between the Dirac points [see Fig. (5)]. In
Figs. (6c) and (6d), we plot the magnon density, |ψl,n|2,
for both edge states at different momentum. Note that
the edge states are localized in different sub-lattices.

Discussion of some interesting features about these
edge states are in order here. From Fig. (6a), for δ1 = 0
the slope the edge state energy spectra is positive if
k < k0 and negative if k > k0. For a wide ribbon, each
edge band is doubly degenerated, hence, the magnons are
moving in the same direction (with different energy) at
each boundary, as illustrate in Fig. (4c). The fact that
both edge states are strongly localized in different sub-
lattices can be explained if we consider the edge by itself
a defect. By a closer inspection of the wavefunctions
in Eq. (16), the edge state below the lower bulk bands
is mainly localized along the boundary B sites due to
the strong attractive potential generated by the missing
bonds. The edge state between the bulk bands is mainly
localized along the A sublattice due to the presence of
the outermost B site. In consequence, the outermost B
site plays a double role acting as an effective defect to
host an edge state and contributing to the formation of
the edge state between the Dirac points.

The number of edge states is determined by the num-
ber of solutions of Eq. (A3) with modulus lower than
one and the edge state dispersion can be tuned in all the
Brillouin zone with small changes of the external on-site
potential. This is shown in the decaying factor diagram
in Fig. (5b), where the dashed lines separate the re-
gions in which each edge state is defined. In the region,
0 ≤ δ1 < 1, there are always two edge states (for z′1 and
z1). If δ1 = 0, the first edge state is defined over all the
Brillouin zone with |z′1| < 1, and the second one between
the Dirac points with |z1| < 1. As δ1 is increased both
edge states gradually merge with the bulk bands. For
δ1 = 2, there is a single edge state with a momentum
in the region, K > k > K′. This edge state is the flat
band in Fig. (6a), (dotted, green line) where the energy
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FIG. 6. (Color online) a) Bulk (blue region) and edge state
energy spectra for δ1 = 0, (black, dashed and dot-dashed
lines), δ1 = 1.8 (red, continuous lines) and δ1 = 2 (green,
dotted lines). In b) we show their corresponding decaying
factors. The magnon density profile is shown for the edge
states with δ1 = 0 at c) k = 1.40 and d) k = 0.96. Here, the
magnitudes of the spin density are proportional to the radius
of each circle with a phase given by einθl = ±1.

spectra closely resembles the fermionic graphene. If the
external on-site potential is increased further, δ1 � 2,
the hopping between sites at n = 1 is almost suppressed
and the system effectively shows the band structure of
a zig-zag termination plus and a high energy Tamm-like
edge state along the boundary sites.

Another important characteristic provided by the ex-
plicit form of the wavefunction in Eq. (16) is given by
the phase of the spin precession in successive rows. As
discussed in the previous section, the sign of the decay-
ing factor determines whether the phase of the edge state
is optic-like or acoustic-like. As is described in the ap-
pendix A, there are two decaying factors and their sign
reveals that the behavior of the phase in successive rows
is different in both edge states. In particular for δ1 = 0,
the decaying factor of the edge state connecting the Dirac
points is negative if k < k0, the spin precession in succes-
sive lattice sites is hence in anti-phase (optic-like). How-
ever, the decaying factor of the edge state below the lower
bulk bands is positive if k < k0, and the spins in two suc-
cessive rows are in-phase (acoustic-like). This provides us
two ways to distinguish these edge states, either by their
energy or by their phase difference in successive rows.

Experimentally, the first observation of edge states in
a honeycomb lattice with bearded boundaries has been
achieved in optical lattices34. Apart from the typical
band structure, additional edge states have been ob-
served near the Van Hoove singularities. As is shown
in Fig. (6a) for our model, similar edge states are ob-
tained for an external on-site potential of δ1 = 1.8. Here
a nearly flat band plus two highly dispersive edge states
near the Van Hoove singularities (continuous, red lines)
are obtained. As pointed out in the reference34, the origin
of such edge states is also related to the effective defect
generated by the on-site potential along the boundary
sites.

B. Non-zero DMI

A non-zero DMI breaks the lattice inversion symme-
try and a non-trivial gap is induced in the spin-wave
excitation spectra. By a topological approach with the
wavefunctions for the infinite system, the Chern number
predicts a pair of counter propagating modes26 along the
boundary of the finite system. However, the topological
approach does not provide the detailed properties of the
edge states and also does not take into account the on-
site potential along the boundary sites, which, as we will
show in this section, has important effects in the band
structure of the edge states.

1. Zig-zag boundary

We first consider a zig-zag boundary. The energy
bands are obtained by the solutions of the self-consistent
Eq. (9) with the decaying factors provided by Eq. (5). In
Fig. (7a) we show the energy bands for a DMI strength of
D = 0.1J . The blue regions correspond to the bulk spec-
tra where all the factors |zν | = 1. The bands which trans-
verse the gap are the spectra of the edge states for dif-
ferent values of δ1. For completeness, we also include the
energy spectra for the edge state at the opposite edge (at
large n), without external on-site potential. Contrary to
the description by a topological approach26,27, the edge
state is not connecting the regions near the Dirac points.
As is shown in Fig. (7a), for δ1 = 0 (red, continuous line)
the intrinsic on-site potential along the boundary pull the
edge state within the bulk gap to a lower energy region,
just over the lower bulk bands. Furthermore, a new edge
state near the Van Hoove singularities is revealed in the
band structure. As is shown in the zoomed region of Fig.
(7b), around k0 there are two edge states (at each bound-
ary), over and below the lower bulk band. The edge state
over the bulk bands has a topological origin and the edge
state below is a Tamm-like edge state.

In general, the edge states depend on two decaying
factors, as described in Eq. (10). In Fig. (7c) their
typical behavior can be observed: if we move away from
k0, while one factor decreases to zero the another one
approaches to a critical value (merging point) where it
reaches the unity. In this situation, one component of
the edge state wavefunction becomes an extending wave
(bulk wave) and the edge state is indistinguishable from
the bulk bands. However, as is shown in Fig. (7d), in
the region k > k0, while one decaying factor reaches the
unity the second one has enough strength to modified
the bulk band structure [arrows in Fig. (7b) and Fig.
(7d)], in this situation the edge state has energy within
the continuum44,45. For δ1 = 0 (and D 6= 0), the edge
band within the bulk gap has a negative slope while the
novel edge band below the lower bulk band has a positive
slope. Therefore, the magnons are moving in opposite
directions at the same boundary, as shown in Fig. (4b).
If the external on-site potential is slightly increased the
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FIG. 7. (Color online) a) Energy spectrum of a zig-zag hon-
eycomb lattice for D = 0.1 J . The lines connecting the upper
and lower bulk bands are the edge states for different values
of δ1, the dashed (black) lines are the edge states at the op-
posite edge. As shown in b) for δ1 = 0 there are additional
edge states below the lower bulk bands [dashed square in a)].
In c) the decaying factors of the corresponding edge states in
a) is shown. d) Decaying factors (δ1 = 0) of the edge state
below the lower bulk band in a) and b). The energy spectra
in b) reveals an edge state with energy within the bulk bands
(black arrow), the magnitude of its corresponding decaying
factor is given by the arrow in d)

Tamm-like edge magnon merges with the bulk and the
magnon propagation is chiral, as is shown in Fig. (4d).

As is shown in Fig. (7a), as the external on-site poten-
tial increases, the slope of the energy spectra decreases.
In particular, for δ1 = 1 (uniform case) the energy spec-
trum closely resembles the fermionic graphene with merg-
ing points near the Dirac points and with the magnons
moving in opposite directions at different boundaries, as
illustrated in Fig. (4d). In Fig. (7c) the modulus of the
decaying factors is shown for different values of the exter-
nal on-site potential. Here, as δ1 increases, the merging
points approaches by the left to the K and K ′ points
and the asymmetry around k0 is reduced. In the finite
region [Fig. (7c)] around k0, we have |z1| = |z2| and
from Eq. (5) it is evident that the decaying factors are
complex conjugates to each other. At certain momen-
tum both decaying factors become real and they are not
longer identical and, as we mentioned before, while one
factor increases the another one decreases. The region
around k0, where the edge states are complex conjugates
to each other, is defined for a non-zero DMI and is lo-
cated within the bulk gap. Its boundaries in the k space
are given by the discriminant of Eq. (5) and is indepen-
dent of the boundary conditions. If the spectrum of an
edge state crosses this region, their corresponding wave-
function becomes complex.
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FIG. 8. (Color online) a) Energy spectrum of a bearded hon-
eycomb lattice. The blue region is the gapped bulk spectra
with D = 0.1J . For δ1 = 0, the continuous (red and purple)
lines are the edge states. By completeness, we also include
the edge states at the opposite edge, dot-dot-dashed (green)
lines. For δ1 = 2 there is a single edge state (black, dotted
line). In b) we plot the modulus of the two decaying factors
for the edge state connecting the bulk bands at different val-
ues of δ1. In c) the decaying factors for δ1 = 0 are shown for
the edge state below the lower bulk bands.

2. Bearded boundary

We now consider a bearded termination with a non-
zero DMI and arbitrary external on-site potential. The
solutions can be obtained by the self-consistent equation
provided by Eq. (12) and the wavefunctions by Eq. (13).
As is shown in Fig. (8) for δ1 = 0, there is an edge state
crossing the gap (red, continuous line) and an edge state
below the lower bulk bands (purple, continuous line).
Note that the non-zero DMI changes the shape of the
edge magnon spectrum. In fact, the edge state within
the gap has a negative slope except near the K point
where is almost flat. The edge state energy spectrum
below the lower bulk bands has a maximum point where
its slope changes. Before such point and out from the
almost flat region, the propagation is like in Fig. (4b)
where, for a fixed momentum and at the same boundary,
the magnons are moving in different directions. On the
other hand, as is shown in Fig. (8a), to the right of the
K ′ point, there are two edge bands with negative slope
(red and purple continuous lines) and a single edge band
with negative slope at the opposite boundary (green, dot-
dot-dashed line), hence the magnons are moving in the
same direction at both edges.

The effective defect due to the missing bonds is strong
in the bearded boundary, where the edge state energy
spectra are distinct to their fermionic equivalent. As
shown in Fig. (8b) the edge state within the bulk gap
(red, continuous line) is defined in a region to the right
of the K point. The edge state below the lower bulk
bands is defined over the whole Brillouin zone and since
its origin is due to the effective defect discussed in the
previous section, it is not sensitive to small changes in
the DMI strength. In Fig. (8c) the decaying factors for
this edge state are shown. The curves are almost sym-
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metric around k0 and since the decaying factors are real,
the wavefunction decays exponentially to the inner bulk
sites29,40. As discussed in the previous section, as we
move away from k0, one decaying factor approaches to
the unity while the another one decreases. Note that
Fig. (8b) is similar to Fig. (7b) except that the plots
are tilted to opposite sides. Here, as the external on-site
potential increases, the merging points approach to k0.
In particular for δ1 = 2, the edge state has an energy
spectrum connecting the Dirac points (black, dotted line
in Fig. (8a)). However, in contrast with their fermionic
equivalent, around k0 (Van Hoove singularity) there is a
small region in which a highly dispersive (and almost in-
distinguishable) edge state is also defined, (black-dotted
line in Fig. (8a) and (8b)). If δ1 � 2, as in the case
for D = 0, the system shows the band structure of a zig-
zag termination plus and a high energy Tamm-like edge
state.

V. CONCLUSIONS

We have studied the on-site potential effects in the
magnon edge states in a honeycomb ferromagnetic lat-
tice with zig-zag and bearded boundaries, extending our
earlier work on fixed value of the on-site potential29.
For zero DMI, the relation between the formation of
the Tamm-like edge states and the effective defect due
to the on-site potential along the outermost sites has
been demonstrated. For non-zero DMI, we have found
that the edge state energy spectra is modified due to the
missing bonds along the boundary sites and their distri-
bution in the momentum space is different to that pre-
dicted by a topological approach. For both zig-zag and
bearded boundaries and for zero and non-zero DMI, the
edge state properties have been discussed and Tamm-like
edge states have been revealed. We have found that the
Tamm-like and the topologically protected edge states
are tunable by modifying the external on-site potential
and the DMI. Furthermore, the analytical expressions
for the edge state energy spectrum and their correspond-
ing wavefunctions obtained have give us complete under-
standing of the edge state properties. We believe that
our results may explain the unconventional edge states
recently found in optical34,35 and acoustic36 lattices and
motivate new experiments in bosonic topological insula-
tors.

The interesting properties of the honeycomb lattice
may be experimentally accessible through engineered
spin structures on metallic surfaces46, using ultra-cold
bosonic atoms trapped in optical lattices47, photonic
lattices48,49, etc. Therefore, the distribution of the edge
magnons, the spin-density and their dependence with the
DMI strength and external on-site potentials as presented
in this paper could be useful for experiments in small
sized mono-layers, thin film magnets or artificial lattices.

Finally, we like to point out that a recent work on a sys-
tem of two-interacting bosons (doublon) in the Haldane

model on the honeycomb lattice has derived an effective
Hamiltonian similar to that of Eq. (1) and numerical
solutions of an edge state similar to that of Fig. (8),
have been found for a bearded boundary50. The dis-
persive edge states similar to that of Fig. (2) for Dirac
magnons in a honeycomb ferromagnet have also been pro-
duced in Ref.51. Both these works have confirmed the
results of our general approach with analytical solutions
for both the energy spectra and wavefunctions presented
here, which is an extension of our earlier work29,30.
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Appendix A: Analytical solutions for D = 0

In this appendix, we derive the edge state energy spec-
trum and wavefunctions for a semi-infinite ferromagnetic
honeycomb lattice with a bearded boundary, in absence
of DMI and with an arbitrary external on-site potential
δ1. From Eq. (5) for D = 0, the characteristic equation
of the Hamiltonian in Eq. (4 ) is given by,

(3− ε)2 − J2
1 − J2

2 − J1J2
(
z + z−1

)
= 0. (A1)

For a fixed value of k, the above equation relates the
decaying factor z with the energy ε. From the Harper’s
equation of Eq. (3) with the replacements J1 → J2,
J2 → J1 and taking into account the missing bonds, the
additional equation for the edge state at n = 1 is written
as,

(3− ε) (1 + δ1 − ε)− J1J2z + J2
2 = 0. (A2)

Here, both Eqs. (A1) and (A2) provide us a complete
set of equations for the decaying factor and the energy
spectrum. Therefore, for an arbitrary external on-site
potential, δ1, the decaying factor satisfy,

az2 + bz + c = 0, (A3)

where, a = (−2 + δ1)
2
J2, b = J1

[
(−2 + δ1)

2 − J2
1

]
and

c = −J2
1J2. Explicitly we obtain,

z
(′)
1 =

−
(
δ2b − J2

1

)2
J1 ± |J1|

√
(δ2b − J2

1 )
2

+ 4δ2b

2δ2b
, (A4)

where δb = −2 + δ1, J2 = 1 and z1(z′1) the solutions
corresponding to each sign. On the other hand, the edge
state energy spectrum satisfy,

a1ε
2
r + b1εr + c1 = 0, (A5)
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where, εr = (ε− 3)− (−2 + δ1), a1 = (−2 + δ1)J1, b1 = b
and c1 = −(−2 + δ1)J1J

2
2 . For the edge state energy

spectra the two solutions are given by,

ε± =
6δb + δ2b + J2

1 ± sgn (J1)

√
(δ2b − J2

1 )
2

+ 4δ2b

2δb
.

(A6)
From the above equation and by a closer inspection of the
decaying factors given by Eq. (A4) two edge states can
be defined. The wavefunction satisfying the boundary
condition,

(2− δ1)ψB,1 − J1ψA,0 = 0, (A7)

can be written as,

ψl,n = zn1

(
2−δ1
J1

z−11

)
, (A8)

where the decaying factor z1 is given by Eq. (A4). At
k0 = π/

√
3, the edge states are completely localized at

the boundary sites with energy,

ε±k0 =
1

2
(6 + δb)±

√
4 + δb. (A9)

In particular, as in graphene, for δ1 = 2 in Eq. (A3), a
single decaying factor, z1 = −J2/J1 with a correspond-
ing flat energy band ε = 3 in Eq. (A5), are obtained.
Following the same procedure, the analytical form of the
decaying factor and the edge state energy spectrum for
a zig-zag boundary can also be obtained.
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