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Based on our recently proposed magnon-density-waves using the microscopic many-body approach, we in-
vestigate the longitudinal excitations in quantum antiferromagnets by including the second order corrections in
the large-s expansion. The longitudinal excitation spectra for a general spin quantum number using the antifer-
romagnetic Heisenberg Hamiltonian are obtained for various spin lattice models. For bipartite lattice models,
we find that the numerical results for the energy gaps for the longitudinal modes at q → 0 and the magnetic
ordering wavevector Q are reduced by about 40-50 % after including the second order corrections. Thus, our
estimate of the energy gaps for the quasi-one-dimensional (quasi-1D) antiferromagnetic compound KCuF3 is
in better agreement with the experimental result. For the quasi-1D antiferromagnets on hexagonal lattices, the
full excitation spectra of both the transverse modes (i.e., magnons) and the longitudinal modes are obtained as
functions of the nearest-neighbor coupling and the anisotropy constants. We find two longitudinal modes due to
the non-collinear nature of the triangular antiferromagnetic order, similar to that of the phenomenological field
theory approach by Affleck. We compare our results for the longitudinal energy gaps at the magnetic wavevec-
tors with the experimental results for several antiferromagnetic compounds with both integer and non-integer
spin quantum numbers, and also find good agreement after the higher-order contributions are included in our
calculations.

I. INTRODUCTION

The dynamics of the two-dimensional (2D) and three-
dimensional (3D) quantum antiferromagnetic systems with
long-ranged order at low temperature can be considered as
that of a dilute gas of weakly interacting spin-wave quasipar-
ticles (magnons) with its density given by the quantum cor-
rection to the classical Néel order [1–3]. These magons are
transverse modes with spin S = ±1. The longitudinal fluc-
tuations with spin S = 0 present in these systems consist of
the multi-magnon continuum [4]. The question concerning
long-lived, well-defined longitudinal modes in quantum anti-
ferromagnetic systems with long-ranged order remains open.
This is our main focus in this paper.

In case of the quantum antiferromagnetic systems with-
out long-ranged order, the triplet excitation states (two trans-
verse and one longitudinal) of the spin-1 Heisenberg chain
with non-zero gap, first predicted by Haldane [5], are well
known. This theoretical prediction of an energy gap separat-
ing the singlet ground state from the triplet excitation states
has been confirmed experimentally in the quasi-1D antifer-
romagnetic compounds such as CsNiCl3 and RbNiCl3 of the
spin-1 [6]. Some subsequent experimental investigations [6–
10] and theoretical calculations [3, 11–14] also support Hal-
dane’s conjecture. In these experiments, the temperature is
high enough so the quasi-1D systems have no long-ranged
magnetic order and the dynamics can be described by the
1D models. At lower temperatures, these quasi-1D antifer-
romagnets behave as 3D systems with long-ranged magnetic
orders. The key question is whether or not the longitudinal
modes survive in present of the long-ranged order and, if the
answer is yes, how we describe them in general terms. In
this regard, the observation of an energy gap for the quasi-
1D compound CsNiCl3 at low temperature in 1986 gener-
ated much theoretical interest [6]. This energy gap was ini-
tially explained by a uniaxial single-ion anisotropy but now

it is widely accepted that the gapped excited state belongs to
longitudinal excitation modes, first proposed by Affleck [in
the quasi-1D hexagonal antiferromagnetic compounds of the
ABX3-type with both spin quantum number s = 1 CsNiCl3
and RbNiCl3 [15, 16]. A field theory approach focusing on
the spin frustrations of the hexagonal antiferromagnetic sys-
tems has also been proposed [17]. Clearly, such longitudinal
modes are beyond the usual spin-wave theory (SWT) which
only predicts the transverse spin-wave excitations (magnons).
There have been several theoretical investigations in these lon-
gitudinal modes, all using the field theory approach, such as
the sine-Gordon theory for the spin-1/2 systems in bipartite
quasi-1D antiferromagnetic systems treating the inter-chain
couplings as perturbation [18, 19]. The theoretical estimate
for the energy gap of the longitudinal mode is in good agree-
ment with the experimental results for the compound KCuF3

[20]. More recently, a longitudinal mode was also observed
in the dimerized antiferromagnetic compound TlCuCl3 un-
der pressure with a long-range Néel order [21] and tetrahedral
spin system Cu2Te2O5Br2 using Raman scattering [22] . To
our knowledge, no observation of longitudinal modes in 2D
or quasi-2D antiferromagnets has been reported yet.

Our theoretical investigation of the longitudinal modes in
quantum antiferromagnets is based on a microscopic theory
for a generic spin-s Hamiltonian system [23]. We identify the
longitudinal excitation states in a quantum antiferromagnet
with a Néel-like order as the collective modes of the magnon-
density waves, which represent the fluctuations in the magni-
tude of the long-range order and are supported by the interac-
tions between magnons. The basic idea in our analysis is sim-
ilar to Feynmann’s theory on the low-lying excited states of
the helium-4 superfluid [24], thereby employing the magnon-
density operator Sz for the antiferromagnets in place of the
particle density operator for the helium-4 superfluid. Hence,
the longitudinal excitation states in antiferromagnets are con-
structed by the Sz spin operators, contrast to the transverse
spin operators S± of the magnon states in Anderson’s SWT
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[1]. Our preliminary calculation for the two dimensional trian-
gular model [25] have been extended to the quasi-1D Hexag-
onal structures of CsNiCl3 and RbNiCl3 , where we find that
our numerical results for the energy gap values at the magnetic
wavevector are in good agreement with experimental results
after inclusion of the high-order contributions in the large-s
expansion [26]. In this article, we extend similar high-order
calculations to the bipartite antiferromagnetic systems where
the long-ranged order is collinear [27].

We organize this article as follows. Sec. II-V cover var-
ious bipartite systems with new results from the high-order
calculations. In particular, Sec. V focuses on the tetragonal
quasi-1D compound KCuF3 with spin-1/2 and we find that
our estimate of the minimum energy gap for the longitudinal
mode after inclusion of the high-order contributions is in good
agreement with the experimental result. For completeness, in
Sec. VI we include our earlier analysis [26] for the quasi-1D
hexagonal systems where there are a number of experimental
results for comparison. In Sec. VII we conclude this article by
a summary and a discussion of a possible longitudinal mode
in a 2D square lattice model, relevant to the parent compound
La2CuO4 of the high-Tc superconductors.

II. LONGITUDINAL EXCITATION IN BIPARTITE
QUANTUM ANTIFERROMAGNETS

The longitudinal excitations in a quantum antiferromag-
netic system with a Néel-like long range order correspond to
the fluctuations in the order parameter. Since the quantum
correction in the order parameter is given by the magnon den-
sity [1], we identify the longitudinal modes as the magnon-
density waves (MDW), supported by the interactions between
the magnons. It is clear that the states of MDW may not be
well defined in the high-order dimensional systems where the
magnon density is very dilute and the long-range order is near
the classical value with little quantum correction. However,
the magnon density may be high enough in the low dimen-
sional systems to support the longitudinal waves. In terms of
microscopic many-body language, the MDW states are con-
structed by applying the magnon density operator Sz on the
ground state in a form as Sz|Ψg〉, similar to Feynmann’s the-
ory of the phonon-roton excitation state of the helium super-
fluid, where the density operator is the usual particle density
operator [24, 28].

We consider a general spin-s XXZ Heisenberg model on
a bipartite lattice with Hamiltonian given by

H = J
∑
〈i,j〉

[
1

2
(S+
i S
−
j + S−i S

+
j ) +ASzi S

z
j

]
, (1)

where the notation 〈i, j〉 indicates the nearest-neighbor cou-
plings only and A is the anisotropy parameter A (≥ 1). The
usual isotropic Heisenberg Hamiltonian is given by A = 1.
The classical ground state of Eq. (1) is given by the Néel
state with two alternating sublattices, one with all spin-up and
the other with all spin-down. We leave the discussion of the
hexagonal systems to Sec. VI. We perform spin rotation on the

spin-up sublattice by 180◦ so that all spins align in the same
down direction. This is equivalent to the transformation

S∓i → −S
±
i , Szi → −Szi , (2)

for all sites of the spin-up sublattice. The Hamiltonian (1)
after this transformations is given as

H = −1

4
J
∑
l%

[
(S+
l S

+
l+% + S−l S

−
l+%) + 2ASzl S

z
l+%

]
, (3)

where l runs through all N sites, % is the nearest neighbor
index vector with coordination number z = 2, 4 and 6 for
linear chain, square lattice and cubic lattice respectively. The
quantum ground-state of the Hamiltonian H is different from
the the classical Néel state. This difference can be quantify by
a correction in the sublattice magnetization M as,

M =
1

N

∑
l

〈Szl 〉g = s− ρ, (4)

where 〈Szl 〉g indicated the ground-state expectation, s is the
classical value, and ρ is the quantum correction with the phys-
ical meaning of the magnon density. Therefore, the operator
Sz corresponds to the magnon-density operator, contrast to
the spin-flip operators S± which creates or destroys magnons.
In this article, we employ Anderson’s SWT for our approxi-
mation of the ground state |Ψg〉. Anderson’s SWT can be
most simply formulated by expressing Sz and S± for all sites
in terms of boson operators a† and a, as

Sz = −s+ a†a, S+ =
√

2sfa,
√

2sa†f, (5)

with f =
√

1− a†a/2s. For example, the linear SWT by set-
ting f = 1 produces the values of ρ = 0.078 per lattice site
for the spin-1/2 isotropic Heisenberg model on a simple cu-
bic lattice, and ρ = 0.198 per lattice site for the same model
but on a square lattice. For the same model on 1D, however,
SWT fails to produce the exact result of ρ = 1/2, which rep-
resents the maximum, saturated value of the magnon density.
We consider the longitudinal modes of the quantum antiferro-
magnetic systems in terms of the fluctuations in these magnon
densities as described below.

Following Feynman as mentioned earlier, the longitudinal
excitation state is approximated by applying the magnon den-
sity fluctuation operator Xq to the ground state |Ψg〉 as

|Ψe〉 = Xq|Ψg〉, (6)

where Xq is given by the Fourier transformation of Sz opera-
tors,

Xq =
1√
N

∑
l

eiq·rlSzl , q > 0, (7)

with index l running over all lattice sites. The condition q > 0
in Eq. (7) ensures the orthogonality to the ground state. The
energy spectrum for the trial excitation state of Eq. (6) can be
written as

E(q) =
〈Ψg|X̃q[H, Xq]|Ψg〉

〈Ψe|Ψe〉
,
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where X̃q is the Hermitian of Xq and where we have used
the ground state equation, H|Ψg〉 = Eg|Ψg〉. We notice
that operator Szl in Xq of Eq. (7) is a Hermitian operator,
hence X̃q = X−q . By considering the similar excitation
state X−q|Ψg〉 with the energy spectrum E(−q) = E(q), it is
straightforward to derive [29],

E(q) =
N(q)

S(q)
, (8)

where N(q) is given by the ground-state expectation value of
a double commutator as

N(q) =
1

2
〈[X−q, [H,Xq]]〉g, (9)

and the state normalization integral S(q) is the structure factor
of the lattice model

S(q) = 〈Ψe|Ψe〉 =
1

N

∑
l,l′

eiq.(rl−rl′ )〈Szl Szl′〉g. (10)

In the following sections, we apply the SWT for the approxi-
mation of the ground state |Ψg〉 to evaluate these expectation
values.

III. MAGNON-DENSITY WAVES IN SIMPLE LATTICES

Using the Hamiltonian (1) and the usual spin commutation
relations, it is straightforward to derive the following result
for N(q)

N(q) = zsJ(1 + γq) g̃%, (11)

where γq is defined as usual as

γq =
1

z

∑
%

eiq·r% . (12)

In Eq. (11) g̃% is the transverse spin correlation functions de-
fined as

g̃% = 〈S+
l S

+
l+%〉 = ∆% −

2ρ∆% + µ% δ

2s
, (13)

where

ρ = 〈a†l al〉 =
1

N

∑
q

ρq, µ% = 〈a†l al+%〉 =
1

N

∑
q

eiq·%ρq,

∆% = 〈alal+%〉 =
1

N

∑
q

eiq·%∆q, δ = 〈alal〉 =
1

N

∑
q

∆q,

(14)

and where

∆q =
1

2

γq/A√
1− γ2/A2

, ρq =
1

2

( 1√
1− γ2/A2

− 1
)
. (15)

In evaluating the correlation function g̃% of Eq. (13), we
keep up to second order in the large-s expansions. The

double commutator in general behaves as near the magnetic
wavevector: N(q + Q) ∝ q2, q → 0, similar to that of the
helium superfluid [24, 28].

The structure factor is thus given by

S(q) = ρ+
1

N

∑
q′

ρq′ρq+q′ +
1

N

∑
q′

∆q′∆q+q′ . (16)

We notice that the integral in the structure factor involving the
function γq′γq−q′ indicate the couplings between magnons,
with the summation over q is given by the integration∑

q

=
1

(2π)D

∫ π

−π
dDq, (17)

whereD is the dimensionality of the system. The longitudinal
excitation E(q) of Eq. (8) is hence obtained by evaluating the
the double commutator and the structure factor of Eqs. (11)-
(16). We can compare the longitudinal spectrum E(q) with
the transverse spin-wave spectrum given by

E(q) = szJA
√

1− γ2q/A2. (18)

A. Results for linear chain (1D) Model

The SWT breaks down for the isotropic 1D case as most
integrals involving the ground-state expectation diverge. For
example, ρ → ∞ as A → 1 in the linear SWT. Furthermore,
we notice that the spin-wave spectrum of Eq. (18) is doublet
while the exact result by Bethe ansatz [30] is triplet for the
spin-1/2 model. Nevertheless, the value of Eq. (18), J sin q, is
not far off the exact triplet spectrum derived as [31]

Eexact(q) =
π

2
J sin q. (19)

For the longitudinal mode, we have examined the be-
haviors of in N(q) and S(q) in the isotropic limit (A →
1) in our earlier paper [27] and found that both have the
same divergence as g̃1 ∝ − 1

2π ln(A − 1), and S(q) →
− 1

2π ln(A− 1)/
√
A− 1, as q → 0. Therefore, the lon-

gitudinal excitation sectrum in the isotropic limit, E(q) →
J sin q, coincides precisely with spin-wave spectrum of
Eq. (18). Thus, together they form the triplet excitation states,
in agreement with the exact result of Bethe ansatz [31]. For
A > 1, the longitudinal excitation spectrum E(q) is higher
than those of the doublet spin-wave spectrum as shown in
Fig. 1, where we plot E(q) for A = 1.1. The gaps for the
longitudinal mode E(q) are about 1.16szJ and 1.64szJ at
q → 0 and q = π respectively in the first order approximation
of Eq. (13) [27]. After including the second-order terms, the
gap values are 0.61szJ and 0.86szJ at q → 0 and q = π
respectively, comparing with 0.46szJ of the spin-wave spec-
trum at the both points. We notice that the longitudinal spec-
trum is reduced by about half after including the second order
correction, and is even lower than that of the spin-wave spec-
trum around q = π/2.
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FIG. 1. The longitudinal excitation spectrum of Eq. (8) for the linear
chain (1D), together with the spin-wave spectrum of Eqs. (18) both
with anisotropy A = 1.1. The longitudinal spectra calculated from
the first-order and second-order approximations are indicated by the
dash and solid lines respectively.

B. Results for the square (2D) and cubic (3D) lattices

For the square lattice model at the isotropic pointA = 1, we
obtain, for all %, g̃% ≈ 0.28 and 0.17 for the first-order and the
second-order approximations respectively. In both cases, the
longitudinal excitation spectrum E(q) becomes gapless due
to the divergence of the structure factor in logarithmic man-
ner, i.e. S(q) → − ln q at q → 0 and the magnetic ordering
wavevector Q = (π, π) as discussed in our previous paper
[23, 27]. We also confirmed this logarithmic behaviour of
E(q) in the triangular lattice model at q → 0 and the trian-
gular magnetic ordering wave vector ±[Q = (4π/3, 0)] [25].
We have referred this behavior in the spectrum as ”quasi-
gapped” since any tiny anisotropy or finite-size effect will
produce a significant gap. For example, we consider a tiny
anisotropy with a value A − 1 = 1.5 × 10−4, which in fact
is a typical value for the high-Tc compound La2CuO4 [32],
the gap values at q → 0 and the magnetic ordering wavevec-
tor Q increase to E(q) ∼ 0.44szJ and E(Q) ∼ 0.76szJ
in the first order approximation, and E(q) ∼ 0.27szJ and
E(Q) ∼ 0.47szJ in the second-order approximation, as
shown in Fig. 2. We notice that these gap values at both
points are much larger than the corresponding spin-wave gap
of 0.02szJ . At the two particular momenta (π/2, π/2) and
(π, 0), where γq = 0 and the spin-wave spectrum of Eq. (18)
gives the same value of szJ , the longitudinal spectrum E(q)
has slightly different values, 1.36szJ and 1.40szJ in the first-
order approximation, and 0.84szJ and 0.87szJ in the second-
order approximation.

For the simple cubic lattice model (3D), the numerical re-
sults for g̃% of Eq. (13) are about 0.13 and 0.11 in the first-
order and second-order approximations respectively. The gap
values at q → 0 and the magnetic ordering wavevector Q are
E(q) ∼ 0.99szJ and E(Q) ∼ 1.40szJ in the first-order ap-
proximation, and E(q) ∼ 0.84szJ and E(Q) ∼ 1.19szJ in
the second-order approximation.
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(π/2,π/2) (0,0)(π,π) (π/2, 0) (π, 0)

E(q)

E(q)

FIG. 2. (Color online) The longitudinal excitation spectrum of
Eq. (8) for square lattice (2D) , together with the spin-wave spectrum
of Eqs. (18) both with anisotropy A = 1.00015. The longitudinal
spectra calculated from the first-order and second-order approxima-
tions are indicated by the dash and solid lines respectively.

IV. TETRAGONAL QUASI-1D AND QUASI-2D
ANTIFERROMAGNETS

The Hamiltonian for tetragonal quasi-1D and quasi-2D an-
tiferromagnets is given by

H =
1

2
J
( chain∑
l,%

Sl · Sl+% + ξ

plane∑
l,%′

Sl · Sl+%′
)
, (20)

where l runs over all the lattice sites, and % and %′ are the
nearest-neighbor vectors along the chain and on the basal
plane of the tetragonal structure respectively, and ξ = J⊥/J is
the ratio between the coupling constants on the basal plane J⊥
and along the chain J . Both these coupling constants are pos-
itive for antiferromagnetic systems. The quasi-1D and quasi-
2D models correspond to the cases of ξ � 1 and ξ � 1
respectively, whereas the simple cubic 3D model is given by
ξ = 1. The Hamiltonian operator of Eq. (20) can be expressed
in terms of the rotated coordinates of Eq. (2). The spin-wave
spectrums and all the previous formula for the longitudinal
mode with with anisotropy A remain the same after the fol-
lowing replacements:

z → z′ = 2(1 + 2ξ)A,

γq → γ′q =
2

z′
[cos qz + ξ(cos qx + cos qy)] ,

(21)

where z′ = 2(1+ξ). In Fig. 3 we present the results for quasi-
1D model at A = 1 together with the spin-wave spectrum of
Eq. (18) for ξ = 0.05 as an example. The gaps for E(q) at
q → 0 and Q = (π, π, π) are 0.78 Jsz′ and 1.20 Jsz′ in the
first-order approximation and 0.35Jsz′ and 0.54 Jsz′ in the
second-order approximation.

We also presented the result for the quasi-2D system with
A = 1 and ξ = 103 in Fig. 4. The gaps for E(q) at q → 0 and
Q = (π, π, π) are 0.47 Jsz′ and 0.80Jsz′ respectively in the
first-order approximation and 0.29Jsz′ and 0.50 Jsz′ respec-
tively in the second-order approximation. The longitudinal
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FIG. 3. (Color online) The longitudinal excitation spectra of Eq. (8)
for quasi-1D antiferromagnet with ξ = 0.05, together with the spin-
wave spectrum of Eqs. (18), both at A = 1. The longitudinal spectra
calculated from the first-order and second-order approximations are
indicated by the dash and solid lines respectively.

excitation spectrum at two particular momenta (π/2, π/2, 0)
and (π, 0, 0), has slightly different values of 1.36Jsz′ and
1.40Jsz′ respectively in the first-order approximation, and
0.85Jsz′ and 0.88Jsz′ respectively in the second-order ap-
proximation. The spin-wave spectra of Eq. (18) are the same
at these momentum points with the value of Jsz′.
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FIG. 4. (Color online) The longitudinal excitation spectra of Eq. (8)
for quasi-2D antiferromagnet with ξ = 103, together with the spin-
wave spectrum of Eqs. (18), both at A = 1. The longitudinal spectra
calculated from the first-order and second-order approximations are
indicated by the dash and solid lines respectively.

V. QUASI-1D ANTIFERROMAGNETIC KCUF3

STRUCTURE

The KCuF3 compound of the s = 1/2 chains is crystal-
lized in the tetragonal (Pnma) structure with a lattice pa-
rameter a = 4.126

◦
A and c = 3.914

◦
A at temperature of

10K. The magnetic moment of this compound is carried by
the Cu2+ ion. Some experimental studies on this material for

the magnetic excitation spectrum using inelastic neutron scat-
tering confirm the spinon picture [20, 33–35]. The magnetic
interaction is represented by the antiferromagnetic strong cou-
plings along the chain with coupling constant J and ferromag-
netic weak couplings on the basal plane with couplings con-
stant J⊥. The Heisenberg Hamiltonian in terms of the lower-
ing and raising operators with the rotated coordinates of the
chains is given by

H = −1

4
J
[ chain∑
l,%

(
S+
l S

+
l+% + S−l S

−
l+% + 2Szl S

z
l+%

)
− ξ

plane∑
l,%′

(
S+
l S
−
l+%′ + S−l S

+
l+%′ + 2Szl S

z
l+%′

)]
,

(22)

again where ξ = J⊥/J . The spin-wave spectrum Eq in the
linear SWT can then be obtained as

Eq = 2Js
√

Γ2
q − cos2 qz, (23)

where

Γq = 1 + 2ξ(1− γ2Dq ), (24)

and

γ2Dq =
1

2
(cos qx + cos qy). (25)

The spin wave spectrum for the ferromagnetic square lattice
model is recovered by setting J = 0 and that of the linear
antiferromagnetic chain is recovered by setting J⊥ = 0. For
the longitudinal excitation, the double commutator is derived
as

N(q) = −2sJ(1 + cos qz)g̃% + 4sJ⊥(1− γ2Dq )g̃′%′ , (26)

where the correlation functions g̃% is as defined before in
Eqs. (13) and (14) with ∆q and ρq given by

∆q = −1

2

cos qz√
Γ2
q − cos2 qz

; ρq =
1

2

( Γ√
Γ2
q − cos2 qz

− 1
)
.

(27)
The new correlation function g̃′% is defined as

g̃′% = 〈S+
l S
−
l+%〉 = µ% −

2ρµ% + ∆%δ

2s
, (28)

with the parameters calculated by Eqs. (14) and (27).
The structure factor can be calculated from Eq. (16) using

Eq. (27) for ∆q and ρq . The longitudinal excitation spectrum
can thus be calculated by Eq. (8). We present the numeri-
cal results for the longitudinal spectrum in Fig. 5 for both the
first-order and the second-order approximations, using the ex-
perimental value of the couplings constants J ≈ 34 meV and
J⊥ ≈ 1.6 meV [20]. We notice the difference in the first-order
approximation between our current results and those reported
earlier in [27] where a wrong assumption was made in one of
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the integrals. Now the overall spectrum in the first-order ap-
proximation is higher than those reported earlier. In particular,
the minimum energy gap at q → 0 for the first-order approxi-
mation is 28.9 meV and is reduced to 12.7 meV after including
the second-order correction of Eq. (13) and (28). This second
value of 12.7 meV is close to the experimental value of about
15 meV. The field theory by Essler et al produces a gap value
of 17.4 meV [19]. At the antiferromagnetic wavevector, the
gaps our first-order and second-order approximations are 44.7
and 19.7 meV respectively.
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FIG. 5. (Color online) The longitudinal spectra of Eq. (8) for KCuF3

antiferromagnetic components with ξ ≈ 0.047, together with the
spin-wave spectrum of Eqs. (23). The longitudinal spectra calculated
from the first-order and second-order approximations are indicated
by the dash and solid lines respectively.

VI. HEXAGONAL QUASI-1D ABX3-TYPE
ANTIFERROMAGNETIC SYSTEMS

The quasi-1D materials such as CsNiCl3 crystallize in the
hexagonal ABX3 structure with space group P63/mmc,
where A is an alkaline-metal cation, B is a cation of the
3d group, and X is a halogen anion. The magnetic ions B
constructs the hexagonal lattice in the ab plane with adjacent
spins forming angles of θ = 2π/3, and antiparallel adjacent
spins along the chain, thus forming three-sublattice structure,
in contrast to the bipartite systems discussed earlier. The lat-
tice constants of CsNiCl3, for example, are a = 7.14

◦
A and

c = 5.90
◦
A, and the magnetic moments are carried by Ni2+.

The superexchange interaction betweenB (Ni2+) ions is mod-
eled by an N -spin Heisenberg Hamiltonian with a strong in-
trachain interaction J and weak interchain interaction J ′ such
as

H = 2J

chain∑
〈i,j〉

Si · Sj + 2J ′
plane∑
〈i,j〉

Si · Sj +D
∑
i

(Szi )2, (29)

where we have added an Ising-like single-ion anisotropy term
with constant D(< 0). Most of the intrachain couplings in
ABX3 compounds are antiferromagnetic such as in CsNiCl3
or RbNiCl3 with easy single-site anisotropy, or CsMnBr3 and
RbMnBr3 with hard anisotropy [36, 37]. These intrachain
couplings can also be ferromagnetic (i.e., J < 0) as in CsNiF3

[38, 39] or CsCuCl3 [40]. We consider only the antiferromag-
netic couplings here. Therefore, the classical ground state of
each linear chain along the c axis (also denoted as y-axis) is a
Néel state with alternating spin-up and spin-down alignments.

As before, we employ the the spin-wave approximation for
the ground state in our analysis for the longitudinal modes.
We therefore first consider a spin-wave theory for the Hamil-
tonian (29) based on the one-boson approach by performing
two spin rotations. Firstly, we rotate the local axes of all up-
spins by 180◦ so that all spins along each chain align in the
same down direction. This spin rotation is applied by using
the transformation of Eq. (2) to the first terms in Eq. (29),
leaving the last two terms unchanged. The second rotation is
on the hexagonal lattice of the ab plane (or xz-plane) on the
second and third terms of Eq. (29). Following Singh and Huse
[41] and Miyake [42], for every triangle of the hexagonal lat-
tices, we rotate the local axes of two spins along the classical
direction in the xz-plane to align with that of the third spin
[43, 44]. This is equivalent to the rotation of the i-sites of
Eq. (29) by the following transformation

Sxi → Sxi cos(θi) + Szi sin(θi),

Syi → Syi ,

Szi → Szi cos(θi)− Sxi sin(θi),

(30)

where θi ≡ Qz · ri and Qz = (4π/3, 0, qz) with Qz at qz =
π defined as the magnetic-ordering wavevector of the quasi-
1D hexagonal systems. The Hamiltonian (29) after these two
transformations is given as

H = −1

2
J

chain∑
l,%

[
S+
l S

+
l+% + S−l S

−
l+% + 2Szl S

z
l+%]−

1

2
J ′

plane∑
l,%′

[
Szl S

z
l+%′ +

3

4
(S+
l S

+
l+%′ + S−l S

−
l+%′)

− 1

4
(S+
l S
−
l+%′ + S−l S

+
l+%′)− 2 sin(θl − θl+%′)(Szl Sxl+%′ − Sxl Szl+%′)

]
+ H̃D,

(31)

where l runs through all sites, % and %′ are the nearest neigh-
bor index vectors with coordination numbers z = 2 along the
chain and z′ = 6 on the hexagonal basal planes respectively,
and H̃D is the rotated anisotropy term. In order to perform
the second rotation of Eq. (30) involving rotations of the axes

of the two spins to align with the axis of the third spin on
the triangular planes, we rewrite the anisotropy term of the
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Hamiltonian (29) in the following equivalent, suitable form∑
i

(Szi )2 =
1

z′

∑
l,%′

[
1

3
(Szl )2 +

2

3
(Szl+%′)

2

]
. (32)

The transformation of Eq. (30) to the second term in Eq. (31)
gives

H̃D =
1

z′

∑
l,%′

[
1

3
D(Szl )2 +

2

3
D[(Szl+%′)

2 cos2 θl+%′

+ (Sxl+%′)
2 sin2 θl+%′ − cos θl+%′ sin θl+%′(S

z
l+%′S

x
l+%′

+ Sxl+%′S
z
l+%′)].

(33)

After application of the usual boson transformation for the
spin operators as given by Eqs. (5), the Hamiltonian of
Eq. (31) can be expressed in terms of polynomials of the bo-
son operators. After Fourier transformations of the boson op-
erators with the Fourier component operators aq and a†q , we
have, to the order of (2s) in the large-s expansion

H ≈ H0 +H2, (34)

where H0 is the classical energy

H0 = −2JNs2−3J ′Ns2+
1

3
DNs2(1+2 cos2 θ+

1

s
sin2 θ)

(35)
with θ = 2π/3 and H2 is given by the quadratic terms in the
boson operators as

H2 = s
∑
q

[
Aqa

†
qa−q −

1

2
Bq(a

†
qa
†
−q + aqa−q)

]
(36)

with constants Aq and Bq defined by

Aq = 4J + 6J ′(1 +
1

2
γq)−

2

3
D(1 + 2 cos2 θ − sin2 θ),

Bq = 4J cos qz + 9J ′γq −
2

3
D sin2 θ,

(37)

and γq defined by

γq =
1

z′

∑
%′

eiq·r%′ =
1

3

(
cos qx + 2 cos

qx
2

cos

√
3

2
qy

)
.

(38)
The quadratic Hamiltonian H2 of Eq. (36) is diagonalized by
the usual Bogoliubov transformation and can be written in
terms of the new boson operators αq and α†q as

H2 = ∆H0 +
∑
q

Eq
(
α†qαq +

1

2

)
, (39)

where ∆H0 is the quantum correction to the classical ground
state energy of Eq. (35)

∆H0 = −2JNs− 3J ′Ns+
1

3
DNs(1 + 2 cos2 θ − sin2 θ),

(40)

and Eq is the spin-wave excitation spectra

Eq = s
√
A2
q −B2

q . (41)

The spin-wave energy spectra with different polarizations are
obtained by folding of the wavevectors. In Fig. 6, sev-
eral branches along the symmetry direction of (0, 0, η +
1), (η, η, 1), and (1/3, 1/3, 1 + η) are shown, where η is the
reduced wave vector component in the reciprocal lattice unit
(r.l.u) with qz = (2πl/c) ·(c/2) = πl, and γ = 1/3[cos 2πh+
cos 2πk + cos 2π(h + k)]. Using Eq. (38) the moving in the
paramagnetic Brillouin zone can be written as for qx = 4πη
and qz = π+ πη, and the corresponding symmetry directions
to those in reciprocal lattice unit are (0, 0, π+πη), (4πη, 0, π)
and (4π/3, 0, π+πη) respectively. The three transverse spin-
wave branches are obtained from Eq. (41) as follows. The
y-mode has the polarization along the y-axis of the hexago-
nal lattice where the quantum fluctuation is at q; the other two
modes are found in the xz-plane by translating the wavevector
by a magnetic wavevector as q → (q ±Q) and are denoted as
zx± respectively.

As can be seen from Fig. 6, at the magnetic wavevector Q,
the y-mode is gapless for zero anisotropy (D = 0). However,
as mentioned earlier, an energy gap about 0.41(2J) has been
observed by the neutron scattering experiments for CsNiCl3
[6]. This energy gap can be reproduced in the y-mode exci-
tation by introducing an anisotropy with D = −0.0285 using
our approximation of Eq. (33), also plotted in Fig. 6. If we use
the simple form of Ref. [45] corresponding to setting θ = 0
in Eq. (33), the required anisotropy is reduced by a little more
than half with the value D = −0.0141. Both of these values
are now considered too large for CsNiCl3 which has negligi-
ble anisotropy. The conclusion is that the observed gaps are
not of the transverse spin-wave spectra, but belong to the lon-
gitudinal modes, as first proposed by Affleck [15, 16].

Using the Hamiltonian of Eqs. (31), it is straightforward to
derive the following double commutator with zero anisotropy
(i.e. D = 0) as

N(q) = 2sJ
∑
%

(1 + cos qz)g̃% +
1

2
J ′s
∑
%′

[
3(1 + γq)g̃%′

− (1− γq)g̃′%′
]
,

(42)

where γq is as defined in Eq. (38) and the transverse correla-
tion functions g̃% and g̃′% are defined in Eqs. (13) and (28) re-
spectively, all independent of index l due to the lattice transla-
tional symmetry. Also, the contribution from the three-boson
operators with sin(θl−θl+%) (the so-called cubic term) is zero.
We notice that this cubic term has been included in perturba-
tion theory for the correction in spin-wave spectrum [42, 43].
In the evaluation of the correlation functions g̃% and g̃′%, we
use the definition of Eqs. (13), (14) and (28) with the follow-
ing expression

∆q =
1

2

Bq√
A2
q −B2

q

, ρq =
1

2

( Aq√
A2
q −B2

q

− 1
)
, (43)
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FIG. 6. The three spin-wave excitation spectra (in colors) for
CsNiCl3 with J = 0.345, J ′ = 0.0054 and D = 0 THz, along the
symmetry direction (0, 0, π+ πη), (4πη, 0, π) and ( 4π

3
, 0, π+ πη).

Also included is the gapped y-mode (black, denoted as y′) with
D = −0.0285 using the anisotropy term of Eq. (33). The solid
and dash with the blue color on the lines indicate the zx+-mode and
zx−-mode respectively.

with Aq and Bq as given before by Eqs. (37). The structure
factor within the linear spin-wave approximation is indepen-
dent of s, and is given by Eq. (16) with the results of Eq. (43).

We first discuss the general behaviors of the longitudinal
spectrum of Eq. (8) as a function of the ratio of the two
nearest-neighbor coupling constants, ξ = J ′/J . In the limit
ξ → 0, the Hamiltonian of (29) becomes the pure 1D systems;
the longitudinal spectrum is gapless and identical to the dou-
blet spin-wave spectra thus forming a triplet excitation state
as discussed in Sec. III(A). This demonstrates the limitation
by the spin-wave ground-state employed, particularly when
applied to the integer-spin Heisenberg chain where the Hal-
dane gap is expected as discussed in Sec. I. In the other limit,
ξ → ∞, the Hamiltonian is a pure triangular antiferromagnet
with the quasi-gapped longitudinal modes as discussed in de-
tails in our previous paper [25] where we keep only the first
order term in Eqs. (13) and (28) in the large s-expansion, sim-
ilar to the case of the square lattice model.

For the quasi-1D materials with intermediate values of ξ,
we expect that the spin-wave ground state is a reasonable ap-
proximation. We obtain nonzero energy gaps for the longi-
tudinal excitation spectra of Eq. (41). As discussed before,
following Affleck [15, 16], two longitudinal modes for the
quasi-1D hexagonal antiferromagnets can be obtained by fold-
ing of the wavevector. We denote one asL− with the spectrum
E(q − Q) and the other as L+ with the spectrum E(q + Q).
We plot these two longitudinal spectra in the first and second
order approximations together with the three spin-wave spec-
tra of Eq. (41) in Fig. 7 near the magnetic wavector Q for the
compound CsNiCl3. Our numerical result for the energy gap
of the lower longitudinal modeL− atQ is 0.96(2J) in the first
order approximation in Eqs. (13) and (28). After including the

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.1 0.2 0.3 0.4
0
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Reduced Wavevector Component η

F
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q
u
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(T
H
z)

( 4π3 , 0,π + πη)(4πη, 0,π)(0, 0,π + πη)

zx+

zx−

zx+

y

y

y

zx±

zx−

L+

L−

L±

L+

L±

L−

FIG. 7. The longitudinal modes L± as derived from Eq. (8) together
with the spin-wave y- and zx± modes as derived from Eq. (15) for
CsNiCl3 along the symmetry direction (0, 0, π + πη), (4πη, 0, π)
and ( 4π

3
, 0, π + πη). The longitudinal modes L± calculated from

the first-order and second-order approximations are indicated by the
dash and solid lines respectively.

second order terms the energy gap value is now (0.49)2J , in
agreement with the experimental results of 0.41(2J). We also
notice that the upper mode L+ is higher than the L− mode by
about (0.092)2J at Q.

For the compound RbNiCl3 also with s = 1, using the ex-
change parameters J = 0.485 and J ′ = 0.0143 THz with a
larger ratio ξ = J ′/J = 0.0295 [46], we obtain similar longi-
tudinal modes as those of CsNiCl3. The numerical result for
the energy gap of the L− mode is 1.16 THz in the first order
approximation and 0.69 THz after including the second order
contributions at the magnetic wavevector. This later result is
in better agreement with the experimental result of about 0.51
THz. We like to point out that there is some difficulty in fitting
of Affleck’s model with the experimental results for RbNiCl3
[16, 46].

Finally we turn to the longitudinal modes for the non-
integer-spin quasi-1D hexagonal systems. The superexchange
interactions in the hexagonal compound CsMnI3 can be de-
scribed by the Hamiltonian of (29) with spin quantum num-
ber s = 5/2 and the nearest-neighbor coupling constants
J = 0.198 and J ′ = 0.001 THz and negligible anisotropy
[47]. This system is very close to the pure 1D system with
a very small ratio ξ = J ′/J ≈ 0.005. The linear spin-wave
theory may be a poor approximation for such a system. Nev-
ertheless, with a similar analysis as before based on the spin-
wave ground state, we obtain the L− mode energy gap value
of 0.64 THz at the magnetic wavevector Q in the first order
approximation, and of 0.47 THz after including the second or-
der contributions. This later value is still much larger than the
experimental value of about 0.1 THz by Harrison et al [47],
which was used to fit a modified spin-wave theory by Plumer
and Cailé [17]. Clearly, for such systems as CsMnI3, we need
a better ground state than that of the spin-wave theory in our
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analysis.

VII. CONCLUSION

In this paper we have extended our high-order calcula-
tions for the longitudinal modes in the hexagonal quantum
antiferromagnetic systems [26] to a number of bipartite sys-
tems, including the the quasi-1D compound KCuF3 where
good agreement in the minimum energy gap is found between
the experimental result and our estimate after inclusion of the
high-order contributions.

We notice that all the longitudinal modes in antiferromag-
netic systems with long-ranged order have so far been ob-

served only on a few quasi-1D systems near the critical points.
This is not surprising since in these systems the magnon den-
sity is high and the longitudinal modes is well-defined and
long-lived. We also notice that there is no report of longi-
tudinal modes in 2D or quasi-2D quantum antiferromangetc
systems. In particular, as we have discussed in Sec. III(B), the
longitudinal energy spectrum after inclusion of the high-order
contributions, as shown in Fig. 2, is comparable to the spin-
wave spectrum for the 2D square model with a tiny anisotropy
same in value to the parent compound La2CuO4 of the high-
Tc superconductor. It will therefore be interesting to examine
possible longitudinal modes in this compound near the transi-
tion to the superconducting phase when doping.
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