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We investigate the excited states of the quasi-one-dimensional quantum antiferromagnets on hexagonal lat-
tices, including the longitudinal modes based on the magnon-density waves. A model Hamiltonian with a
uniaxial single-ion anisotropy is first studied by a linear spin-wave theory based on the one-boson method; the
ground state thus obtained is employed for the study of the longitudinal modes. The full energy spectra of
both the transverse modes (i.e., magnons) and the longitudinal modes are obtained as functions of the nearest-
neighbor coupling and the anisotropy constants. We have found two longitudinal modes due to the non-collinear
nature of the triangular antiferromagntic order, similar to that of the phenomenological field theory approach by
Affleck. The excitation energy gaps due to the anisotropy and the energy gaps of the longitudinal modes without
anisotropy are then investigated. We then compares our results for the energy gaps at the magnetic wavevectors
with the experimental results for several antiferromagnetic compounds with both integer and non-integer spin
quantum numbers. We also discuss the possible nonlinear effects (i.e., the so-called backflow corrections) in
our microscopic approach.

PACS numbers: 75.10.Jm, 75.30.DS, 75.50.Ee.

I. INTRODUCTION

The excitations of the quasi-one-dimensional (1d) Heisen-
berg antiferromagnets systems have been studied extensively
since Haldane predicted an energy gap in the excitation
spectra of the isotropic integer-spin Heisenberg chains in
1983 [1]. Now it is well established that there is an en-
ergy gap separating the singlet ground state from the triplet
lowest-energy-excitation states for the integer-spin Heisen-
berg chains, contrast to the gapless excitation states of the
half-odd-integer-spin Heisenberg systems [2, 3]. This theoret-
ical prediction has been confirmed by Buyers et al [4] in the
inelastic-neutron-scattering experiments on the quasi-1d anti-
ferromangetic compound CsNiCl3. Some subsequent exper-
imental investigations [4–9] and numerical calculations [10–
14] also support Haldane’s prediction.

At very low temperature, most of the quasi-1d antifer-
romagnetic materials including CsNiCl3 show the three-
dimensional nature with the classical magnetic order, and
more interestingly, energy gaps at the magnetic wavevector
have also been observed in many compounds [4]. For the case
of CsNiCl3, the observed energy gap was initially explained
by a uniaxial single-ion anisotropy but now it is widely ac-
cepted that the gapped excited state belongs to one of the
two longitudinal modes corresponding to the oscillations in
the magnitude of the magnetic order of the quasi-1d hexago-
nal systems, first proposed by Affleck based on a simplified
version of Haldane’s theory [15, 16]. The gapped longitu-
dinal modes are clearly beyond the conventional spin-wave
theory which produces only the transverse excitations usually
referred to as magnons. Later experimental study by Enderle
et al. [17] using high-resolution polarized neutron scattering
also confirms Affleck’s proposal of the longitudinal modes,
and contradicts to the spin-wave theory of two-magnon by
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Ohyama and Shiba [18] or a modified spin-wave theory by
Plumer and Caillé [19]. There are also investigations of the
longitudinal excitation states in other quasi-1d structures with
the Néel-like long-ranged order at low temperature such as the
tetragonal KCuF3 with s = 1/2 [20], where good agreements
between the experiment and a theory based on a sine-Gordon
field theory have been found for the energy gap at the mag-
netic wavevector [21, 22]. More recently, a longitudinal mode
was also observed in the dimerized antiferromagnetic com-
pound TlCuCl3 under pressure with a long-ranged Néel order
[23].

We recently proposed a general microscopic many-body
theory based on the magnon-density waves for the longitudi-
nal excitations of spin-s quantum antiferromagnetic systems
[24, 25]. In analogy to Feynmann’s theory of the low-lying
excited states in the helium-4 superfluid [26, 27], we iden-
tify the longitudinal excitation states in a quantum antiferro-
magnet with a Néel-like order as the collective modes of the
magnon-density waves. In application to the quasi-1d tetrago-
nal structure of KCuF3 with s = 1/2, with no other fitting
parameters than the nearest-neighbor coupling constants in
the model Hamiltonian, we find our numerical results for the
energy gap values at the magnetic wavevector are in general
agreement with the experiments [28]. We hope that more ex-
perimental results for the energy spectra at other wavevectors
will be available for comparison.

In this article, we extend our microscopic approach to
the quasi-1d hexagonal quantum antiferromagnets such as
CsNiCl3 and RbNiCl3 [17, 29, 30] both with spin-1 and
CsMnI3 with spin-5/2 [31]. The basal planes of these ma-
terials are antieferromagnetic triangular lattice with the non-
collinear magnetic order. Hence there are two possible lon-
gitudinal modes in these hexagonal systems, rather than the
single longitudinal mode of the bipartite systems such as the
tetragonal KCuF3. Some preliminary results for the two di-
mensional triangular model have been published [32]. We
organize this article as follows. For completeness, we out-
line the main results of the spin-wave theory for the quasi-1d
model in Sec. 2, using the one-boson approach after two spin
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rotations. We obtain the full spin-wave spectra as a function
of the uniaxial single-ion anisotropy. To our knowledge, this
anisotropy dependence of the spin-wave spectra has not been
published before. We then apply our microscopic theory for
the longitudinal excitations in Sec. 3, using the approximated
ground state from the spin-wave theory. The energy gaps
due to the anisotropy and the energy gaps of the longitudinal
modes without anisotropy are then discussed in details. We
compare our results for the energy gaps with the experimental
results for the spin-1 compounds CsNiCl3 and RbNiCl3 and
the spin-5/2 compound CsMnI3. We conclude this article by
a discussion of the possible backflow corrections due to the
nonlinear effects in the last section.

II. THE SPIN-WAVE THEORY OF THE ANISOTROPIC
HEXAGONAL ANTIFERROMAGNETIC SYSTEMS

The quasi-1d materials such as CsNiCl3 crystallize in the
hexagonal ABX3 structure with space group P63/mmc,
where A is alkaline-metal cation, B is cation of the 3d group,
and X is halogen anion. The magnetic ions B constructs the
hexagonal lattice in the ab plane with adjacent spins forming
angles of θ = 2π/3, and antiparallel adjacent spins along the
chain of the c axis as shown in Figs. 1(a) and (b). The lat-
tice constants of CsNiCl3 for example are a = 7.144

◦
A and

c = 5.90
◦
A, and the magnetic moments are carried by Ni2+.

The superexchange interaction betweenB (Ni2+) ions is mod-
eled by an N -spin Heisenberg Hamiltonian with a strong in-
trachain interaction J and weak interchain interaction J ′ such
as

H = 2J

chain∑
〈i,j〉

Si · Sj + 2J ′
plane∑
〈i,j〉

Si · Sj +D
∑
i

(Sz
i )2, (1)

where the notation 〈i, j〉 indicates the nearest-neighbor cou-
plings only and where we have also added an Ising-like single-
ion anisotropy term with constant D(< 0). Most of the intra-
chain couplings in ABX3 compounds are antiferromagnetic
such as CsNiCl3 or RbNiCl3 with easy single-site anisotropy,
or CsMnBr3 and RbMnBr3 with hard anisotropy [33, 34].
These intrachain couplings can also be ferromagnetic (i.e.,
J < 0) as in CsNiF3 [35, 36] or CsCuCl3 [37]. We con-
sider only the antiferromagnetic couplings here. Therefore,
the classical ground state of each linear chain along the c axis
(also denoted as y-axis) is a Néel state with alternating spin-
up (blue) and spin-down (red) alignments as shown in Fig. 1
(b).

We consider a spin-wave theory for the Hamiltonian of
Eq. (1) based on the one-boson approach by performing two

spin rotations. Firstly, we rotate the local axes of all up-spins
(blue) by 180◦ so that all spins along each chain align in the
same down direction. This is equivalent to the transformation

S∓i → −S
±
i , Sz

i → −Sz
i (2)

for the first terms in Eq. (1), leaving the last two terms un-
changed. The second rotation is on the hexagonal lattice of
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(b)

FIG. 1. The classical spin structure of the quasi-1d hexagonal an-
tiferromagnets: (a) on the ab plane, and (b) the three-dimensional
structure.

the ab plane (or xz-plane) on the second and third terms of
Eq. (1). Following Singh and Huse [38] and Miyake [39], for
every triangle of the hexagonal lattices (see Fig 1(a)), we ro-
tate the local axes of two spins along the classical direction in
the xz-plane to align with that of the third spin. This is equiv-
alent to the rotation of the i-sites of Eq. (1) by the following
transformation

Sx
i → Sx

i cos(θi) + Sz
i sin(θi),

Sy
i → Sy

i ,

Sz
i → Sz

i cos(θi)− Sx
i sin(θi),

(3)

where θi ≡ Qz ·ri and Qz = (4π/3, 0, qz) with Qz at qz = π
defined as the magnetic-ordering wavevector of the quasi-1d
hexagonal systems. The Hamiltonian of Eq. (1) after these
two transformations is given as

H = −1

2
J

chain∑
l,%

[
S+
l S

+
l+% + S−l S

−
l+% + 2Sz

l S
z
l+%]− 1

2
J ′

plane∑
l,%′

[
Sz
l S

z
l+%′ +

3

4
(S+

l S
+
l+%′ + S−l S

−
l+%′)

− 1

4
(S+

l S
−
l+%′ + S−l S

+
l+%′) + 2 sin(θl − θl+%′)(S

z
l S

x
l+%′ − Sx

l S
z
l+%′)

]
+ H̃D,

(4)

where l runs through all sites, % and %′ are the nearest neigh- bor index vectors with coordination numbers z = 2 along the
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chain and z′ = 6 on the hexagonal basal planes respectively,
and H̃D is the rotated anisotropy term. Care should be taken
for the two rotations on this anisotropy term. The first rota-
tion of Eq. (2) leaves it unchanged due to its quadratic form
as mentioned before. In order to perform the second rotation
of Eq. (3) involving rotations of the axes of the two spins to
align with the axis of the third spin on the triangular planes, we
rewrite the anisotropy term of Eq. (1) in the following equiva-
lent, suitable form∑

i

(Sz
i )2 =

1

z′
∑
l,%′

[
1

3
(Sz

l )2 +
2

3
(Sz

l+%′)
2

]
. (5)

The transformation of Eq. (3) to the second term in Eq. (5)
gives

H̃D =
1

z′
∑
l,%′

[
1

3
D(Sz

l )2 +
2

3
D[(Sz

l+%′)
2 cos2 θl+%′

+ (Sx
l+%′)

2 sin2 θl+%′ − cos θl+%′ sin θl+%′(S
z
l+%′S

x
l+%′

+ Sx
l+%′S

z
l+%′)].

(6)

We notice that this anisotropy form is different from the sim-
ple form of Ref. [44] or that of Ref. [45] where the first term
of Eq. (6) is missing. We believe that Eq. (6) is correct form
suitable for the hexagonal systems. The energy gaps in the
energy spectra due to this anisotropy term will be presented
later.

Using the canonical Holstein-Primakoff transformations,
the spin operators are expressed in terms of a single set of
boson operators a† and a as,

S+ =
√

2sfa, S− =
√

2sa†f, Sz = s− a†a, (7)

where f =
√

1− a†a/2s a and s is the spin quantum num-
ber. The Hamiltonian of Eq. (4) can then be written as, af-
ter Fourier transformations of the boson operators with the
Fourier component operators aq and a†q and to the order of
(2s),

H ≈ H0 +H1, (8)

where H0 is the classical energy,

H0 = −2JNs2+−3J ′Ns2+
1

3
DNs2(1+2 cos2 θ+

1

s
sin2 θ)

(9)
with θ = 2π/3 and H1 is given by the quadratic terms in the
boson operators as

H1 = s
∑
q

[
Aqa

†
qa−q −

1

2
Bq(a†qa

†
−q + aqa−q)

]
(10)

with constants Aq and Bq defined by

Aq = 4J + 6J ′(1 +
1

2
γq)− 2

3
D(1 + 2 cos2 θ − sin2 θ),

Bq = 4J cos qz + 9J ′γq −
2

3
D sin2 θ,

(11)

and γq defined as usual by

γq =
1

z′
∑
%′

eiq·r%′ =
1

3

(
cos qx + 2 cos

qx
2

cos

√
3

2
qy

)
.

(12)
The quadratic Hamiltonian H1 of Eq. (10) is diagonalized by
the usual Bogoliubov transformation and can be written in
terms of the new boson operators αq and α†q as,

H1 = ∆H0 +
∑
q

Eq
(
α†qαq +

1

2

)
, (13)

where ∆H0 is the quantum correction to the classical ground
state energy of Eq. (9),

∆H0 = −2JNs− 3J ′Ns+
1

3
DNs(1 + 2 cos2 θ − sin2 θ),

(14)
and Eq is the spin-wave excitation spectra,

Eq = s
√
A2

q −B2
q . (15)

(a)

(b)

FIG. 2. (a) The first Brillouin zone of a quasi-1d hexagonal
antiferromagnets. The points (0, 0), (2π/3, 2π/

√
3), (2π/3, 0),

(4π/3, 0), (π, π/
√

3), and (0, π/
√

3) all at qz = π are denoted
as Q′,K′, P ′, Q, L′, O′ respectively, and the similar points but at
qz = 0 are denoted as Γ,K, P,Q′′, L,O respectively. (b) The
hexagonal Brillouin zone at qz = π with some symmetry points in
conventional notations for the quasi-1d systems.

The first Brillouin zone of a quasi-1d antiferromagnet
is ploted in Fig. 2, where the magnetic wavevector Q =
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(4π/3, 0, π) is located at the corner of the hexagon and
where other symmetry points in conventional notations are
also illustrated. We plot the spin-wave spectra of Eq. (15)
in Fig. 3 for CsNiCl3 using the experimental values J =
0.345, J ′ = 0.0054 THz and negligible anisotropy D ≈ 0
[5, 15, 17, 42, 43]. We define the ratio of the two nearest-
neighbor coupling constants as ξ and for CsNiCl3,

ξ =
J ′

J
= 0.0157. (16)

The spin-wave energy spectra with different polarizations are
obtained by folding of the wavevectors. In Fig. 3, several
branches along the symmetry direction of (0, 0, η), (η, η, 1)
and (1/3, 1/3, 1 + η) are shown, where η is the reduced wave
vector component in the reciprocal lattice unit (r.l.u) with
qz = (2πl/c) · (c/2) = πl, and γ = 1/3[cosπl + cos 2πk +
cos 2π(h + k)]. Using Eq. (12) the moving in the param-
agnetic Brillouin zone can be written as for qx = 4πη and
qz = π + πη, and the corresponding symmetry directions to
those in reciprocal lattice unit are (0, 0, π + πη), (4πη, 0, π)
and (4π/3, 0, π+πη) respectively. The three transverse spin-
wave branches are obtained from Eq. (15) as follows. The
y-mode has the polarization along the y-axis of the hexago-
nal lattice where the quantum fluctuation is at q; the other two
modes are found in the xz-plane by translating the wavevector
by a magnetic wavevector as q → (q ±Q) and are denoted as
zx± respectively.

As can be seen from Fig. 3, at the magnetic wavevector Q,
the y-mode is gapless for zero anisotropy (D = 0). However,
as mentioned earlier, an energy gap about 0.41(2J) has been
observed by the neutron scattering experiments for CsNiCl3
[4]. This energy gap can be reproduced in the y-mode exci-
tation by introducing an anisotropy with D = −0.0285 using
our approximation of Eq. (6), also plotted in Fig. 3. If we use
the simple form from Ref. [44] corresponding to setting θ = 0
in Eq.(6), the required anisotropy is reduced by a little more
than half with the value D = −0.0141. Both of these values
are now considered too large for CsNiCl3 which has negligi-
ble anisotropy. The conclusion is that the observed gaps are
not of the transverse spin-wave spectra, but belong to the lon-
gitudinal modes, as first proposed by Affleck [15, 16].

Now we turn our attention to the order parameter. The long-
range order of the quasi-1d hexagonal systems is given by the
three sublattice-magnetizations with the same magnitude but
different orientations as shown in Fig. 1, and it is clearly non-
collinear, contrast to the collinear case of the bipartite sys-
tems. In the spin-wave theory with one boson method as de-
scribed above, the magnitude of the sublattice magnetization
can be expressed as

M =
1

N

∑
l

〈Sz
l 〉 = s− ρ, (17)

where the quantum correction ρ is the magnon density defined
as the ground-state expectation value of the boson number op-
erator

ρ = 〈a†l al〉 =
1

N

∑
q

1

2

 Aq√
A2

q −B2
q

− 1

 , (18)
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FIG. 3. The three spin-wave excitation spectra (in colors) for
CsNiCl3 with J = 0.345, J ′ = 0.0054 and D = 0 THz, along the
symmetry direction (0, 0, π+ πη), (4πη, 0, π) and ( 4π

3
, 0, π+ πη).

Also included is the gapped y-mode (black, denoted as y′) with
D = −0.0285 using the anisotropy term of Eq. (6). The solid and
dash with the blue color on the lines indicate the zx+-mode and zx−-
mode respectively.

with Aq and Bq defined by Eqs. (11). The numerical result
of the magnon density for CsNiCl3 is ρ ≈ 0.49 at D = 0,
giving the sublattice magnetization M ≈ 0.51. On the other
hand, using slightly different parameter ξ = 1.7× 10−2 from
Ref. [45], we obtain ρ = 0.48, giving M = 0.52. Both
these results compare favorably with the experimental value
of M = 0.53 [45]. As mentioned earlier, our microscopic
analysis of the longitudinal modes is based on these mangon
density fluctuations and there will be two such modes as dis-
cussed in details in the following section.

III. THE LONGITUDINAL MODES OF THE QUASI-1D
HEXAGONAL ANTIFERROMAGNETS

As mentioned before, the longitudinal excitations in a quan-
tum antiferromagnetic system with a Néel-like long-ranged
order correspond to the fluctuations in the order parameter.
Using the fact that the quantum correction in the order pa-
rameter is given by the magnon density ρ as discussed previ-
ously in Eq. (17), the longitudinal modes can be considered
as the magnon-density waves. By analogy to Feynman’s the-
ory on the low-lying excited states of the helium-4 superfluid
[26], the longitudinal excitation states can be constructed by
employing the magnon-density operators Sz , in contrast the
transverse spin-wave excitation states constructed by the spin-
flip operators S± [25]. The energy spectra of these longitudi-
nal collective modes can then be easily derived by a formula
first employed by Feynman for the famous phonon-roton spec-
trum of the helium superfluid involving the structure factor of
its ground state.

More specifically, the longitudinal excitation state is ap-
proximated by applying the magnon density fluctuation op-
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erator Xq to the ground state |Ψg〉 as,

|Ψe〉 = Xq|Ψg〉, (19)

where Xq is given by the Fourier transformation of Sz opera-
tors,

Xq =
1

N

∑
l

eiq·rlSz
l , q > 0, (20)

with index l running over all lattice sites. The condition q > 0
in Eq. (20) ensures the orthogonality to the ground state. The
excitation energy spectrum in this linear approximation can be
derived as [25],

E(q) =
N(q)

S(q)
, (21)

where N(q) is given by the ground-state expectation value of
a double commutator as

N(q) =
1

2
〈[X−q, [H,Xq]]〉g, (22)

and the state normalization integral S(q) is the structure factor
of the lattice model

S(q) = 〈X−qXq〉g =
1

N

∑
l,l′

eiq.(rl−rl′ )〈Sz
l S

z
l′〉g. (23)

The notation 〈. . . 〉g in Eqs. (22) and (23) indicates the ground-
state expectation. We have applied these formulas to the bipar-
tite quasi-1d antiferromagnetic systems such as KCuF3 [28].
For the hexagonal lattice systems as discussed here, we ex-
pect that there are two longitudinal modes due to the non-
collinear nature of the order parameter on the triangular basal
plane. Within the one-boson approach after the two spin ro-
tations as employed here, the two longitudinal modes with
xz-polarizations of the hexagonal systems can be obtained by
folding of the wavevectors in the energy spectra of Eq. (21),
in similar fashion to the one-boson spin-wave theory as dis-
cussed in Sec. II and also to that of Ref. [15].

Using the Hamiltonian of Eqs. (4), it is straightforward to
derive the following double commutator with zero anisotropy
(i.e. D = 0) as

N(q) = 2Js
∑
%

(1 + cos qz)g̃% +
1

2
J ′s
∑
%′

[
3(1 + γq)g̃%′

− (1− γq)g̃′%′
]
,

(24)

where γq is as defined in Eq. (12) and the transverse correla-
tion functions g̃r and g̃′r are defined respectively as

g̃r =
1

2s
〈S+

l S
+
l+r〉g, g̃′r =

1

2s
〈S+

l S
−
l+r〉g, (25)

all independence of index l due to the lattice translational
symmetry. Their Fourier transformations are obtained as, us-
ing the approximation of the linear spin-wave theory for the

ground state in the one-boson approach discussed in Sec. 2,

g̃q =
1

2

Bq√
A2

q −B2
q

, g̃′q =
1

2

 Aq√
A2

q −B2
q

− 1

 , (26)

with Aq and Bq as given before by Eqs. (11). The numerical
results are g̃% = 0.669, g̃%′ = 0.056 and g̃′%′ = −0.0076. As
can be seen, N(q) is dominated by g̃%. The structure factor
within the linear spin-wave approximation is given by

S(q) = ρ+
1

N

∑
q′

ρq′ρq+q′ +
1

N

∑
q′

g̃q′ g̃q+q′ , (27)

where ρ = 1
N

∑
q ρq is the magnon density of Eq. (18), with

definition

ρq = g̃′q =
1

2

 Aq√
A2

q −B2
q

− 1

 . (28)

We first discuss the general behaviors of the longitudinal
spectrum of Eq. (21) as a function of the ratio of the two
nearest-neighbor coupling constants, ξ = J ′/J . In the limit
ξ → 0, the Hamiltonian of Eq. (1) becomes the pure 1d sys-
tems; the longitudinal spectrum is gapless and identical to
the doublet spin-wave spectra thus forming a triplet excita-
tion state as discussed in details Ref. [28]. This demonstrates
the limitation by the spin-wave ground-state employed, par-
ticularly when applied to the integer-spin Heisenberg chain
where the Haldane gap is expected as discussed in Sec. I. In
the other limit, ξ → ∞, the Hamiltonian is a pure triangular
antiferromagnet with the quasi-gapped longitudinal modes as
discussed in details in our previous paper [32], similar to the
case of the square lattice model.

For the quasi-1d materials with intermediate values of ξ,
the spin-wave ground state is a reasonable approximation.
We obtain nonzero energy gaps for the longitudinal excitation
spectra of Eq. (21). As discussed before, following Affleck
[15, 16], two longitudinal modes for the quasi-1d hexagonal
antiferromagnets can be obtained by folding of the wavevec-
tor. We denote one as L− with the spectrumE(q−Q) and the
other as L+ with the spectrum E(q + Q). We plot these two
longitudinal spectra together with the three spin-wave spectra
of Eq. (15) in Fig. 4 near the magnetic wavector Q for the
compound CsNiCl3. Our numerical result for the energy gap
of the lower longitudinal mode L− at Q is (0.96)2J , more
than twice of the experimental results of 0.41(2J). We also
notice that the upper mode L+ is higher than the L− mode
by about (0.18)2J at Q. As will be discussed in more details
later, we believe that the higher values of our energy gap are
due to the linear approximation in our analysis. We also plot
the L− mode along the the path Q′K ′PQLO of the hexag-
onal Brillouin zone in Fig. 5 together with the spin-wave y
and zx− modes. As can be seen, over the whole spectrum,
the longitudinal mode in our linear approximation does not
change much.

For the compound RbNiCl3 also with s = 1, using the ex-
change parameters J = 0.485 and J ′ = 0.0143 THz with a
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larger ratio ξ = J ′/J = 0.0295 [49], we obtain similar lon-
gitudinal modes as those of CsNiCl3. The numerical result
for the energy gap of the L− mode is 1.16 THz at the mag-
netic wavevector, again about twice of the experimental value
of 0.51 THz. We like to point out that there is some difficulty
in fitting of Affleck’s model with the experimental results for
RbNiCl3 [16, 49].

Finally we turn to the longitudinal modes for the non-
integer-spin quasi-1d hexagonal systems. The superexchange
interactions in the hexagonal compound CsMnI3 can be de-
scribed by the Hamiltonian of Eq. (1) with spin quantum num-

ber s = 5/2 and the nearest-neighbor coupling constants
J = 0.198 and J ′ = 0.001 THz and negligible anisotropy
[31]. This system is very close to the pure 1d system with
a very small ratio ξ = J ′/J ≈ 0.005. The linear spin-wave
theory may be a poor approximation for such a system. Never-
theless, with the similar analysis as before based on the spin-
wave ground state, we obtain a gap value of 0.64 THz for the
lower L− mode at the magnetic wavevector Q. This is much
larger than the experimental value of about 0.1 THz by Har-
rison et al [31], which was used to fit a modified spin-wave
theory by Plumer and Cailé [19]. Clearly, for such systems as
CsMnI3, we need a better ground state than that of the spin-
wave theory in our analysis, in additional to the nonlinear ef-
fects in the excitation state operator as mentioned before for
CsNiCl3 and RbNiCl3 compounds. We will discuss further in
the next section.

IV. DISCUSSION

In this paper, we have investigated the excitation states of
the quasi-1d hexagonal systems as modeled by the anisotropic
Heisenberg Hamiltonian with only the nearest-neighbor cou-
plings. We have obtained the three spin-wave modes and two
longitudinal modes. The energy gaps due to the anisotropy
and the energy gaps of the longitudinal modes at the mag-
netic wavevector are investigated and compared with the ex-
perimental results for several quasi-1d hexagonal compounds.
We like to emphasize that our analysis applies to both inte-
ger and non-integer spin systems and there are no other fitting
parameters than the nearest-neighbor coupling constants and
the anisotropy parameter in the model Hamiltonian. For the
compounds CsNiCl3 and RbNiCl3, our estimate for the en-
ergy gaps at the magnetic wavevector is about twice of the
experimental values; for the compound CsMnI3 which is very
close to the pure 1d model, our estimate is much larger than
the experimental value.

Our larger energy gap values than the experimental results
are perhaps due to the linear approximation in our excita-
tion operator Xq of Eq. (20), where the couplings between
magnons and the longitudinal modes have been ignored. It is
interesting to note that for the case of the phonon-roton spec-
trum of helium superfluid, a similar linear theory produces an
energy gap near the roton wavevector with a value of about
twice of the experimental results, and better agreement with
the experimental results is obtained only after inclusion of
the nonlinear effects (or the so-called backflow corrections)
[27, 51]. We therefore believe that such nonlinear effects may
also be significant in the quasi-1d hexagonal quantum ant-
ferromagnets and deserve further investigation. Furthermore,
particularly for the compound CsMnI3 where the interchain
coupling is particularly weak, a better ground state than that
of the linear spin-wave theory is needed. A more sophisticated
many-body theory such as the coupled-cluster method, partic-
ularly its recent variational version [52, 53], may provide such
improvement.
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