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Background

Ideas of effective field theory and renormalisation group

• well-developed for few-nucleon and few-atom systems
• rely on separation of scales
• Wilsonian RG used to derive power counting
→ classify terms as perturbations around fixed point (or limit cycle)

Many unsuccessful attempts to extend to dense matter

• but no separation of scales
• other EFT’s for interacting Fermi systems exist

(Landau Fermi liquid, Ginsburg-Landau theory)
• but parameters have no simple connection to underlying forces
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EFTs based on contact interactions

• not well suited for standard many-body methods
→ switch to lattice simulation [Lee, Meissner et al ]

or look for some more heuristic approach
• based on field theory
• can be matched onto EFT’s for few-body systems

(input from 2- and 3-body systems in vacuum)

Explore functional renormalisation group (“exact” RG)

• based on Wilsonian RG approach to field theories
• successfully applied to various systems in areas from

condensed-matter physics to quantum gravity
[version due to Wetterich (1993)]
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Outline

• Functional RG
• Spin- 1

2 fermions
◦ Dimer-dimer scattering

• Bosons
◦ Efimov physics
◦ 4-body systems

4 / 24



Functional RG

Version based on Legendre-transformed effective action Γ[φc]
(generating function for 1-particle-irreducible diagrams)

• evolves with scale k according to

∂k Γ =− i
2

STr

[
(∂k R)

(
Γ(2)−R

)−1
]

where Γ(2) =
δ2Γ

δφcδφc

• R(q,k): regulator function suppresses modes with q . k

Functional differential equation for Γ

• work with truncated ansatz
• local action expanded in powers of derivatives

(cf low-energy EFTs, but don’t know a priori if we have a
consistent power counting)
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Derivative expansion may be good at starting scale K

• use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)
• but no guarantee that it remains good for k → 0

(can’t be for scattering amplitudes at energies above threshold:
cuts→ nonanalytic behaviour)

To extend validity of expansion:

• add fields to decribe low-energy excitations:
(dimers, trimers, phonons, . . . )
• make consistency checks:

stability against adding extra terms to ansatz
stability against changes in form of regulator

→ use this to optimise choice of regulator [Litim, Pawlowski]
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Two species of fermion

Fermion “atom” field: ψ(x) (spin- 1
2 atoms or neutrons)

Boson “dimer” field: φ(x) (strongly interacting pairs)
Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

Γ[ψ,ψ†,φ,φ†;k ]

=
∫

d4x

[
ψ(x)†

(
i∂0 +

∇2

2M

)
ψ(x)

+Zφ(k)φ(x)†
(

i∂0 +
∇2

4M

)
φ(x)−u1(k)φ(x)†

φ(x)

−g

(
i
2

φ(x)†
ψ(x)T

σ2ψ(x) + H c

)]
g: AA→D coupling
u1(k): dimer self-energy (u1/g2: only physical parameter)
Zφ(k): dimer wave-function renormalisation
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Regulators

• fermions: sharp cutoff on 3-momentum

RF (q,k) =
k2−q2

2M
θ(k−q)

• pushes states with q < k up to energy k2/2M
• nonrelativistic version of “optimised” cutoff [Litim (2001)]
• fastest convergence at this level of truncation
• bosons

RB(q,k) = Zφ(k)
(cB k)2−q2

4M
θ(cB k−q)

• cB: relative scale of boson cutoff
• optimised choice cB = 1 [cf Pawlowski (2007)]

(no mismatch between fermion and boson cutoffs)
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2-body sector: evolution equations from one “skeleton” diagram

(need to insert ∂k RF on one internal line)
Expand in powers of energy→ ∂k u1, ∂k Zφ

3-body sector: AD contact interaction

Γ[ψ,ψ†,φ,φ†;k ] = · · ·−λ(k)
∫

d4x ψ
†(x)φ

†(x)φ(x)ψ(x)

4 diagrams in evolution equation
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4-body sector: DD→DD, DD→DAA, DAA→DAA terms
[Birse, Krippa and Walet (2010); cf Schmidt and Moroz (2009): bosons]

Γ[ψ,ψ†,φ,φ†;k ] = · · ·−
∫

d4x

[
1
2

u2(k)
(
φ

†
φ
)2

+
1
4

v(k)
(
iφ

†2
φψ

T
σ2ψ + H c

)
+

1
4

w(k)φ
†
φψ

†
σ2ψ

†T
ψ

T
σ2ψ

]
• “breakup” terms v , w allow 3-body physics to feed in properly
• 30 diagrams in evolution equation

(automate generation!)
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Initial conditions
As k → ∞ boson field purely auxiliary
(bosonises 4-fermion contact interaction G(ψ†ψ)2)

• Zφ, λ, u2, v , w → 0
• u1(K ) chosen so that in physical limit (k → 0)

u1(0) =−M g2

4πa
a: AA scattering length

DD scattering length

• results converge when “breakup” terms are included
• resulting value only weakly dependent on cutoff (cB)
• stationary very close to expected “optimum” cB = 1
• final result: aB/a' 0.58±0.02
• agrees well with full few-body result aB/a = 0.6

[Petrov, Salomon and Shlyapnikov (2004)]
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Bosons
(also ≥ 3 species of fermion in spatially symmetric channels: 4He)

More interesting: Efimov effect in 3-body sector

• tower of 3-body bound states, energies in geometric series
• momentum scaling factor eπ/s0 where s0 = 1.00624
• energies in ratio ∼ 515
• two 4-body bound states below each 3-body state

[von Stecher et al (2009); Deltuva (2010)]

Introduce trimer field χ(x)

• include energy dependence associated with 3-body bound states
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Effective action

Γk [ψ,ψ∗,φ,φ∗,χ,χ∗]

=
∫

d4x

[
ψ
∗
(

i∂0 +
∇2

2m

)
ψ + Zd φ

∗
(

i∂0 +
∇2

4m

)
φ + Zt χ

∗
(

i∂0 +
∇2

6m

)
χ

−ud φ
∗
φ−ut χ

∗
χ− g

2

(
φ
∗
ψψ + ψ

∗
ψ
∗
φ
)
−h
(
χ
∗
φψ + φ

∗
ψ
∗
χ
)

−λφ
∗
ψ
∗
φψ

−udd

2

(
φ
∗
φ
)2− vd

4

(
φ
∗
φ
∗
φψψ + φ

∗
ψ
∗
ψ
∗
φφ
)
− w

4
φ
∗
ψ
∗
ψ
∗
φψψ

−utt χ
∗
ψ
∗
χψ− udt

2

(
φ
∗
φ
∗
χψ + χ

∗
ψ
∗
φφ
)

−vt

2

(
φ
∗
ψ
∗
ψ
∗
χψ + χ

∗
ψ
∗
φψψ

)]
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AD interaction λ regenerated by evolution even if zero initially
(unlike AA scattering)

→ use running trimer field [cf Gies and Wetterich (2002)]
(shift of expansion point for χ field)

∂k χ = ζ1 φψ + ζ2 ψ
∗
χψ + ζ3 ψ

∗
φφ + ζ4 ψ

∗
φψψ

where ζ1 =−∂k λ/2h to cancel running of λ

• other terms do same for four-atom couplings vd , w and vt

• additional piece in evolution equation

∂k Γ =− i
2

Tr
[
(∂k R)

(
(Γ(2)−R)−1

)]
+

δΓ

δχ
·∂k χ

• 4-body equations with structure like Faddeev-Yakubovsky
(coupled DD, AT channels)
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3-body sector

Coupled equations for ut(k), Zt(k) and h2(k)

Scaling limit k � 1/|a|
• couplings oscillate sinusoidally with lnk
• poles in AD scattering amplitude h2/ut

(values of k where 3-body bound states appear at zero energy)
→ tower of Efimov states with s0 = 0.92503 (exact: 1.006)

[Schmidt and Moroz (2009)]
momentum scale factor eπ/s0 = 29.2 (exact: 22.7)
• tower cuts off when k ∼ 1/|a|
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4-body sector

3-body cycles→ cyclic behaviour in 4-body system
One Efimov cycle of rescaled ûtt(k) as a function of t = ln(k/K )
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solid: real, dashed: imaginary
vertical grey line: AT threshold passes through zero energy
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Comments

• imaginary part appears at AT threshold t = t3 '−4.85
• 4-body bound states below AT threshold t '−3.83, −4.67, . . .

(decay to deeper trimer + free atom→ finite widths)
• unphysical singularity from zero of h2(k) at t '−3.0

(end of region within cycle where h2(k), Zt(k) have opposite
signs→ trimer “ghost”)
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Infinite tower of 4-body bound states below AT threshold
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Double exponential pattern ∼ super-Efimov effect
[Nishida, Moroz and Son (2013)]

• but may not survive in physical limit k → 0
• 4-body states move relative to AT threshold, become virtual
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Final cycle of ûtt(k) for finite a0 < 0
tuned so that last three-body state appears at k = 0 (t =−∞)
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Three 4-body states, at t =−4.1, −5.6 and −7.1
(consistent with theorem of Amado and Greenwood)
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Run at finite energy

• three 4-body bound states per cycle (one very fragile)

Plot of binding momentum κ =
√
−ME against 1/a

-2 -1 1 2 3 4 5
Èa3È�a

-6

-5

-4

-3

-2

-1

-ΚÈa3È

a3: AA scattering length where trimer becomes bound (recombination);
black lines: AD, DD thresholds; blue: 3-body bound state;
red: 4-body states; thin blue: effective AT threshold
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4-body states become bound at

a3/a(0)4 ' 2.29, a3/a(1)4 ' 1.14, a3/a(2)4 ' 1.003

Exact results: 2.351, 1.096 (only two states) [Deltuva (2012)]
Third state extremely weakly bound: probably artefact of truncation

Unitary limit: binding momenta

• κ3|a3| ' 1.71; cf exact: 1.5077
• κ4/κ3 ' 2.18, 1.11; cf exact: 2.147, 1.0011

Overall, FRG in this truncation agrees with few-body results to . 20%
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Summary

Applications of functional RG to 3- and 4-body systems

• local effective action, “optimised” cutoff
• keeping all local terms in 4-body sector

Fermions

• results for dimer-dimer scattering length:
stable against variation of cutoff, agree with direct calculations

Bosons

• dynamical trimer field (match Faddeev-Yakubovsky equations)
• 3-body sector: Efimov cycles
• 4-body sector: three states per cycle (one very weakly bound)
• energies agree with direct calculations to . 20%
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Extra slides

Plot of binding momentum κ =
√
−ME against 1/a
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Super-Efimov effect

Relies on being close to fixed point with complex scaling
Example for fewer-body coupling g2 at nontrivial fixed point

dv
dt

= ag4 + b g2v + c v2

with b2−4ac < 0→ imaginary scaling dimension
Now consider g2 marginal: g2 = g2

0/t with t = ln(k/k0)
and define v̂ = t v

t
dv̂
dt

= ag4
0 + (1 + b g2

0)v̂ + c v̂2

→ cyclic behaviour in ln t = ln(ln(k/k0)) if(
1
g2

0
+ b

)2

−4ac < 0

4 bosons – close to AAD Efimov cycle [Deltuva (2012)]
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