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Background

Ideas of effective field theory and renormalisation group

o well-developed for few-nucleon and few-atom systems
e rely on separation of scales
e Wilsonian RG used to derive power counting
— classify terms as perturbations around fixed point (or limit cycle)
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Ideas of effective field theory and renormalisation group

o well-developed for few-nucleon and few-atom systems
e rely on separation of scales
e Wilsonian RG used to derive power counting
— classify terms as perturbations around fixed point (or limit cycle)

Many unsuccessful attempts to extend to dense matter

e but no separation of scales
e other EFT’s for interacting Fermi systems exist
(Landau Fermi liquid, Ginsburg-Landau theory)
e but parameters have no simple connection to underlying forces



EFTs based on contact interactions

e not well suited for standard many-body methods
— switch to lattice simulation [Lee, Meissner et al]
or look for some more heuristic approach
e based on field theory
e can be matched onto EFT’s for few-body systems
(input from 2- and 3-body systems in vacuum)
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EFTs based on contact interactions

e not well suited for standard many-body methods
— switch to lattice simulation [Lee, Meissner et al]
or look for some more heuristic approach
e based on field theory
e can be matched onto EFT’s for few-body systems
(input from 2- and 3-body systems in vacuum)

Explore functional renormalisation group (“exact” RG)

e based on Wilsonian RG approach to field theories

e successfully applied to various systems in areas from
condensed-matter physics to quantum gravity
[version due to Wetterich (1993)]
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Outline

e Functional RG
e Spin-1 fermions

o Dimer-dimer scattering
e Bosons

o Efimov physics

o 4-body systems
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Functional RG

Version based on Legendre-transformed effective action '[0¢]
(generating function for 1-particle-irreducible diagrams)

e evolves with scale k according to
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e R(g,k): regulator function suppresses modes with g < k




Functional RG

Version based on Legendre-transformed effective action '[0¢]
(generating function for 1-particle-irreducible diagrams)

e evolves with scale k according to
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e R(g,k): regulator function suppresses modes with g < k

Functional differential equation for I

e work with truncated ansatz

e |ocal action expanded in powers of derivatives
(cf low-energy EFTs, but don’t know a priori if we have a
consistent power counting)
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Derivative expansion may be good at starting scale K

e use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)

e but no guarantee that it remains good for k — 0
(can’t be for scattering amplitudes at energies above threshold:
cuts — nonanalytic behaviour)
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Derivative expansion may be good at starting scale K
e use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)
e but no guarantee that it remains good for k — 0

(can’t be for scattering amplitudes at energies above threshold:

cuts — nonanalytic behaviour)

To extend validity of expansion:

e add fields to decribe low-energy excitations:
(dimers, trimers, phonons, .. .)
e make consistency checks:
stability against adding exira terms to ansatz
stability against changes in form of regulator
— use this to optimise choice of regulator [Litim, Pawlowski]
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Two species of fermion

Fermion “atom” field: y(x) (spin-% atoms or neutrons)
Boson “dimer” field: ¢(x) (strongly interacting pairs)
Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

v, v', 0,07 K]

- /d4 [ <lao+vz) w(x)

2

+24(0000)" (130 3 ) 06— s (900000
(300 wioTozy() + o) |
g: AA—D coupling

uy (k): dimer self-energy (u1/g?: only physical parameter)
Zy(k): dimer wave-function renormalisation



Regulators

fermions: sharp cutoff on 3-momentum

k2 o q2
2M

Re(q.k) = 6(k—aq)

pushes states with g < k up to energy k?/2M
nonrelativistic version of “optimised” cutoff [Litim (2001)]
fastest convergence at this level of truncation
bosons
CBk 2 _ q2
RB(q,k) = Z¢(k) (4? e(CBk — q)

e cp: relative scale of boson cutoff
e optimised choice cg = 1 [cf Pawlowski (2007)]

(no mismatch between fermion and boson cutoffs)

/24



2-body sector: evolution equations from one “skeleton” diagram

(need to insert dxRF on one internal line)
Expand in powers of energy — dxuy, dxZy

3-body sector: AD contact interaction

v w'.0.0':K = -+ = A(6) [ ey’ (09" (00)W()

4 diagrams in evolution equation



4-body sector: DD—DD, DD—DAA, DAA—DAA terms
[Birse, Krippa and Walet (2010); c¢f Schmidt and Moroz (2009): bosons]

My, v’ 0,07k = /d“ [ us () (679)

+ % v(K) (190w o2y +Hec)

1 w(k)o oy ooy yl ooy
e “breakup” terms v, w allow 3-body physics to feed in properly
e 30 diagrams in evolution equation

(automate generation!)
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Initial conditions
As k — oo boson field purely auxiliary
(bosonises 4-fermion contact interaction G(yy)?)

o Zy, N, iz, v,w—0
e ui(K) chosen so that in physical limit (k — 0)
Mg?
u1(0) = —— a: AA scattering length
10)=-415 g leng
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Initial conditions
As k — oo boson field purely auxiliary
(bosonises 4-fermion contact interaction G(yy)?)
o Zy, N, iz, v,w—0
e ui(K) chosen so that in physical limit (k — 0)
Mg?

u(0)=— ina & AA scattering length

DD scattering length

results converge when “breakup” terms are included
resulting value only weakly dependent on cutoff (cg)
stationary very close to expected “optimum” cg = 1
final result: ap/a~ 0.58+0.02

agrees well with full few-body result ag/a = 0.6
[Petrov, Salomon and Shlyapnikov (2004)]
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Bosons
(also > 3 species of fermion in spatially symmetric channels: “He)

More interesting: Efimov effect in 3-body sector

tower of 3-body bound states, energies in geometric series
momentum scaling factor €™/ where s, = 1.00624
energies in ratio ~ 515

two 4-body bound states below each 3-body state

[von Stecher et al (2009); Deltuva (2010)]

Introduce trimer field x(x)
e include energy dependence associated with 3-body bound states

12/24



Effective action

rk[\vvw*aq)v(l)*?XvX*]

2 V2 VZ
_/d4 [ (1804‘) Y+ Z40" (180+>¢+Z,x <180+6m>x

—Ugd* O — U Y — g(¢*w+w*w*¢) —h(X ow+9¢ v*yx)
—AO WOy

— 22 (0%0)" — <2 (070" oW+ 0" W Y 00) — Z0°V W owy
—u"x*w*xw — 7’ (0" 0 W + X W 00)

(¢*w*w*xw+x v oyy)
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AD interaction A regenerated by evolution even if zero initially
(unlike AA scattering)

— use running trimer field [cf Gies and Wetterich (2002)]
(shift of expansion point for  field)

kX = 1 O + Loy + L3 w00 + Lo Wi owy

where {; = —dkA/2h to cancel running of A
e other terms do same for four-atom couplings v4, w and v;
e additional piece in evolution equation

akr——fTr[( )((r R)" )}+§r R

e 4-body equations with structure like Faddeev-Yakubovsky
(coupled DD, AT channels)
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3-body sector

Coupled equations for u(k), Zi(k) and hH?(k)
Scaling limit k > 1/|4]
e couplings oscillate sinusoidally with In k
e poles in AD scattering amplitude h?/u;
(values of k where 3-body bound states appear at zero energy)
— tower of Efimov states with sy = 0.92503 (exact: 1.006)
[Schmidt and Moroz (2009)]
momentum scale factor ™% = 29.2 (exact: 22.7)
e tower cuts off when k ~ 1/|4]
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4-body sector

3-body cycles — cyclic behaviour in 4-body system
One Efimov cycle of rescaled (k) as a function of t = In(k/K)
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solid: real, dashed: imaginary
vertical grey line: AT threshold passes through zero energy
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Comments

e imaginary part appears at AT threshold t = t3 ~ —4.85

e 4-body bound states below AT threshold t ~ —3.83, —4.67, ...

(decay to deeper trimer + free atom — finite widths)

e unphysical singularity from zero of h?(k) at t ~ —3.0
(end of region within cycle where h?(k), Z;(k) have opposite
signs — trimer “ghost”)
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Infinite tower of 4-body bound states below AT threshold
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Double exponential pattern ~ super-Efimov effect
[Nishida, Moroz and Son (2013)]

e but may not survive in physical limit Kk — 0
e 4-body states move relative to AT threshold, become virtual
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Final cycle of Uy (k) for finite ag < 0
tuned so that last three-body state appears at k =0 (t = —o0)

200 ;
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Three 4-body states, at t = —4.1, —5.6 and —7.1
(consistent with theorem of Amado and Greenwood)
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Run at finite energy
e three 4-body bound states per cycle (one very fragile)
Plot of binding momentum Kk = /—ME against 1/a

—Klas|

as: AA scattering length where trimer becomes bound (recombination);
black lines: AD, DD thresholds; blue: 3-body bound state;
red: 4-body states; thin blue: effective AT threshold
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4-body states become bound at
a3/a£0) ~2.29, a3/a£1) ~1.14, 33/3512) ~ 1.003

Exact results: 2.351, 1.096 (only two states) [Deltuva (2012)]
Third state extremely weakly bound: probably artefact of truncation
Unitary limit: binding momenta

e K3laz| ~1.71;  cfexact: 1.5077

° K4/K3:2.18,1.11; cf exact: 2.147, 1.0011

Overall, FRG in this truncation agrees with few-body results to < 20%
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Summary

Applications of functional RG to 3- and 4-body systems

e |ocal effective action, “optimised” cutoff
e keeping all local terms in 4-body sector

Fermions
e results for dimer-dimer scattering length:
stable against variation of cutoff, agree with direct calculations
Bosons

e dynamical trimer field (match Faddeev-Yakubovsky equations)
e 3-body sector: Efimov cycles

e 4-body sector: three states per cycle (one very weakly bound)
e energies agree with direct calculations to < 20%

22/24



Extra slides

Plot of binding momentum k = \/—ME against 1/a
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Super-Efimov effect

Relies on being close to fixed point with complex scaling
Example for fewer-body coupling g2 at nontrivial fixed point

dv
— =ag*+bgfvtcv?

dt
with b? — 4ac < 0 — imaginary scaling dimension
Now consider g2 marginal: g2 = g& /t with t = In(k / ko)
and define V = tv

A

dv
ti

5 = 2% +(1+bg5)V+c¥?

— cyclic behaviour in Int = In(In(k/ko)) if

1 2
<2+b> —4ac<0
(f}

4 bosons — close to AAD Efimov cycle [Deltuva (2012)]
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