

Mike Birse
University of Manchester

- Two-photon contribution to the Lamb shift
- Low-energy theorems for doubly-virtual Compton scattering
- Calculation of subtraction term in Chiral Perturbation Theory

Mike Birse
University of Manchester

- Two-photon contribution to the Lamb shift
- Low-energy theorems for doubly-virtual Compton scattering
- Calculation of subtraction term in Chiral Perturbation Theory

Mike Birse
University of Manchester

- Two-photon contribution to the Lamb shift
- Low-energy theorems for doubly-virtual Compton scattering
- Calculation of subtraction term in Chiral Perturbation Theory

Mike Birse
University of Manchester

- Two-photon contribution to the Lamb shift
- Low-energy theorems for doubly-virtual Compton scattering
- Calculation of subtraction term in Chiral Perturbation Theory

Lamb shift in muonic hydrogen:
$$\Delta E_L = E(2p_{\frac{1}{2}}) - E(2s_{\frac{1}{2}}) \simeq +0.2 \; \mathrm{eV}$$

Much larger than in electronic hydrogen, dominated by vacuum polarisation and much more sensitive to proton structure, in particular, its charge radius

$$\Delta E_L^{\text{th}} = 206.0668(25) - 5.2275(10) \langle r_E^2 \rangle \text{ meV}$$

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann. Phys. **331** (2013) 127

Lamb shift in muonic hydrogen: $\Delta E_L = E(2p_{\frac{1}{2}}) - E(2s_{\frac{1}{2}}) \simeq +0.2 \; \mathrm{eV}$

Much larger than in electronic hydrogen, dominated by vacuum polarisation and much more sensitive to proton structure, in particular, its charge radius

$$\Delta E_L^{
m th} = 206.0668(25) - 5.2275(10) \langle r_E^2 \rangle \ {
m meV}$$

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann. Phys. **331** (2013) 127

Includes contribution from two-photon exchange

$$\Delta E^{2\gamma} = 33.2(20) \; \mu\text{eV}$$

Sensitive to polarisabilities of proton by virtual photons Focus of this talk

CREMA experiment at PSI: $2p_{\frac{3}{2}} \rightarrow 2s_{\frac{1}{2}}$ transitions to both hyperfine 2s states

Pohl et al, Nature 466 (2010) 213; Antognini et al, Science 339 (2013) 417

Eliminate hyperfine splitting to get

$$\Delta E_L^{\rm expt} = 202.3706(23) \ {\rm meV}$$

CREMA experiment at PSI: $2p_{\frac{3}{2}} \to 2s_{\frac{1}{2}}$ transitions to both hyperfine 2s states Pohl et al, Nature **466** (2010) 213; Antognini et al, Science **339** (2013) 417

Eliminate hyperfine splitting to get

$$\Delta E_L^{\rm expt} = 202.3706(23) \, {\rm meV}$$

CODATA 2010 value for charge radius, $r_E = 0.8775(51)$ fm (electronic H), gives

$$\Delta E_L^{ ext{th}} = 202.042(47) \text{ meV}$$

Discrepancy: 0.330(47) meV $(7\sigma!)$

New value for charge radius: $r_E = 0.84087 \pm 0.00026 (\exp) \pm 0.00029 (\text{th})$ fm

CREMA experiment at PSI: $2p_{\frac{3}{2}} \rightarrow 2s_{\frac{1}{2}}$ transitions to both hyperfine 2s states Pohl et al, Nature 466 (2010) 213; Antognini et al, Science 339 (2013) 417

Eliminate hyperfine splitting to get

$$\Delta E_L^{\rm expt} = 202.3706(23) \ {\rm meV}$$

CODATA 2010 value for charge radius, $r_E = 0.8775(51)$ fm (electronic H), gives

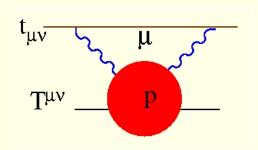
$$\Delta E_L^{ ext{th}} = 202.042(47) \text{ meV}$$

Discrepancy: 0.330(47) meV $(7\sigma!)$

New value for charge radius: $r_E = 0.84087 \pm 0.00026 (\exp) \pm 0.00029 (th)$ fm

In 2010: $\Delta E^{2\gamma} \sim 0.03$ meV was least-well determined contribution to ΔE_L^{th} Still contributes largest single uncertainty But would need to be 10 times larger to explain the discrepancy

Two-photon exchange

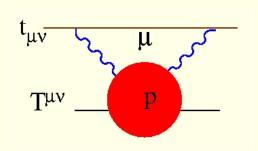


Integral over $T^{\mu\nu}(\nu,q^2)$ – doubly-virtual Compton amplitude for proton Spin-averaged, forward scattering \to two independent tensor structures Common choice:

$$T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu, Q^2) + \frac{1}{M^2}\left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right)T_2(\nu, Q^2)$$

multiplied by scalar functions of $v = p \cdot q/M$ and $Q^2 = -q^2$

Two-photon exchange



Integral over $T^{\mu\nu}(\nu,q^2)$ – doubly-virtual Compton amplitude for proton Spin-averaged, forward scattering \rightarrow two independent tensor structures Common choice:

$$T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu, Q^2) + \frac{1}{M^2}\left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right)T_2(\nu, Q^2)$$

multiplied by scalar functions of $v = p \cdot q/M$ and $Q^2 = -q^2$

Amplitude contains elastic (Born) and inelastic pieces: $T^{\mu\nu}=T_B^{\mu\nu}+\overline{T}^{\mu\nu}$

- elastic: photons couple independently to proton (no excitation)
- ullet need to remove terms already accounted for in Lamb shift (iterated Coulomb, leading dependence on $\langle r_E^2 \rangle$)
- inelastic: proton excited → polarisation effects

Doubly-virtual Compton scattering

Elastic amplitude from Dirac nucleon with Dirac and Pauli form factors

K. Pachucki, Phys. Rev. A 60 (1999) 3593

$$\Gamma^{\mu} = F_D(q^2)\gamma^{\mu} + iF_P(q^2)\frac{\sigma^{\mu\nu}q^{\nu}}{2M}$$

Gives

$$T_1^B(\mathbf{v}, Q^2) = \frac{e^2}{M} \left[\frac{Q^4 \left(F_D(Q^2) + F_P(Q^2) \right)^2}{Q^4 - 4M^2 \mathbf{v}^2} - F_D(Q^2)^2 \right]$$

$$T_2^B(\mathbf{v}, Q^2) = \frac{4e^2 M Q^2}{Q^4 - 4M^2 \mathbf{v}^2} \left[F_D(Q^2)^2 + \frac{Q^2}{4M^2} F_P(Q^2)^2 \right]$$

Final term in T_1 – no pole corresponding to on-shell intermediate nucleon But this depends on choice of tensor basis (energy-dependent tensors) cf Walker-Loud et al, Phys Rev Lett **108** (2012) 232301

Also parts of this term required by low-energy theorems (eg Thomson limit)

→ keep it as part of Born amplitude

Low-energy theorems

 $\rm V^2CS$ not directly measurable, but constrained by LETs Expand in tensor basis without kinematic singularities (1/ q^2)

Tarrach, Nuov Cim 28A (1975) 409

 \rightarrow two independent tensors of order q^2 : correspond to polarisabilities $\alpha+\beta$ and β from real Compton scattering

$$\overline{T}_1(\omega, Q^2) = 4\pi Q^2 \beta + 4\pi \omega^2 (\alpha + \beta) + \mathcal{O}(q^4)$$

$$\overline{T}_2(\omega, Q^2) = 4\pi Q^2 (\alpha + \beta) + \mathcal{O}(q^4)$$

Low-energy theorems

 V^2CS not directly measurable, but constrained by LETs Expand in tensor basis without kinematic singularities $(1/q^2)$

Tarrach, Nuov Cim 28A (1975) 409

 \rightarrow two independent tensors of order q^2 : correspond to polarisabilities $\alpha+\beta$ and β from real Compton scattering

$$\overline{T}_1(\omega, Q^2) = 4\pi Q^2 \beta + 4\pi \omega^2 (\alpha + \beta) + \mathcal{O}(q^4)$$

$$\overline{T}_2(\omega, Q^2) = 4\pi Q^2 (\alpha + \beta) + \mathcal{O}(q^4)$$

Nonpole term in Born amplitude T_1^B contains piece $\propto Q^2$:

$$F_D(Q^2)^2 = 1 - \left[\frac{1}{3}\langle r_E^2 \rangle - \frac{\kappa}{2M^2}\right]Q^2 + \mathcal{O}(Q^4)$$

Moving this to inelastic amplitude would require modified LET (if β defined in usual way from real Compton scattering) All these LETs automatically built into EFTs at 4th order (NRQED, HBChPT) eg Hill and Paz, Phys Rev Lett **107** (2011) 160402

Dispersion relations

Information on forward V²CS away from q=0 from structure functions $F_{1,2}(\mathbf{v},Q^2)$ via dispersion relations

$$\overline{T}_2(\mathbf{v}, Q^2) = -\int_{\mathbf{v}_{th}^2}^{\infty} d\mathbf{v}'^2 \frac{F_2(\mathbf{v}', Q^2)}{\mathbf{v}'^2 - \mathbf{v}^2}$$

– integral converges since $F_2 \sim 1/v$ at high energies

Dispersion relations

Information on forward V²CS away from q=0 from structure functions $F_{1,2}(\mathbf{v},Q^2)$ via dispersion relations

$$\overline{T}_2(\mathbf{v}, Q^2) = -\int_{\mathbf{v}_{th}^2}^{\infty} d\mathbf{v}'^2 \frac{F_2(\mathbf{v}', Q^2)}{\mathbf{v}'^2 - \mathbf{v}^2}$$

– integral converges since $F_2 \sim 1/v$ at high energies

But $F_1 \sim v$ so need to use subtracted dispersion relation

$$\overline{T}_1(v, Q^2) = \overline{T}_1(0, Q^2) - v^2 \int_{v_{th}^2}^{\infty} \frac{dv'^2}{v'^2} \frac{F_1(v', Q^2)}{v'^2 - v^2}$$

 $F_{1,2}(v,Q^2)$ well determined from electroproduction experiments at JLab

Dispersion relations

Information on forward V²CS away from q=0 from structure functions $F_{1,2}(\mathbf{v},Q^2)$ via dispersion relations

$$\overline{T}_2(v, Q^2) = -\int_{v_{th}^2}^{\infty} dv'^2 \frac{F_2(v', Q^2)}{v'^2 - v^2}$$

– integral converges since $F_2 \sim 1/v$ at high energies

But $F_1 \sim v$ so need to use subtracted dispersion relation

$$\overline{T}_1(\nu, Q^2) = \overline{T}_1(0, Q^2) - \nu^2 \int_{\nu_{th}^2}^{\infty} \frac{d\nu'^2}{\nu'^2} \frac{F_1(\nu', Q^2)}{\nu'^2 - \nu^2}$$

 $F_{1,2}(v,Q^2)$ well determined from electroproduction experiments at JLab

Subtraction function $\overline{T}_1(0,q^2)$ not experimentally accessible

Satisfies LET:
$$\overline{T}_1(0,Q^2)/Q^2 \to 4\pi\beta$$
 as $Q^2 \to 0$

But how does it depend on Q^2 ?

Subtraction term

Define form factor

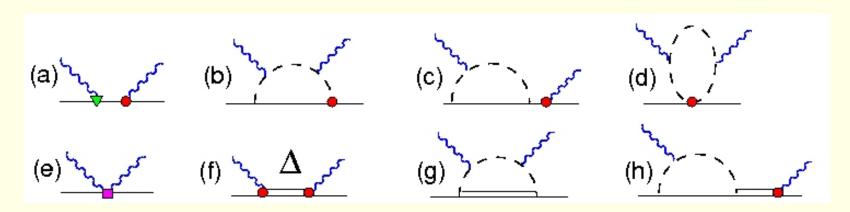
$$\overline{T}_1(0, Q^2) = 4\pi\beta Q^2 F_{\beta}(Q^2)$$

Large Q^2 : operator-product expansion, quark counting rules give $F_{\beta}(Q^2) \propto Q^{-4}$

Small Q^2 : use HBChPT at 4th order, plus leading effect of $\gamma N\Delta$ form factor

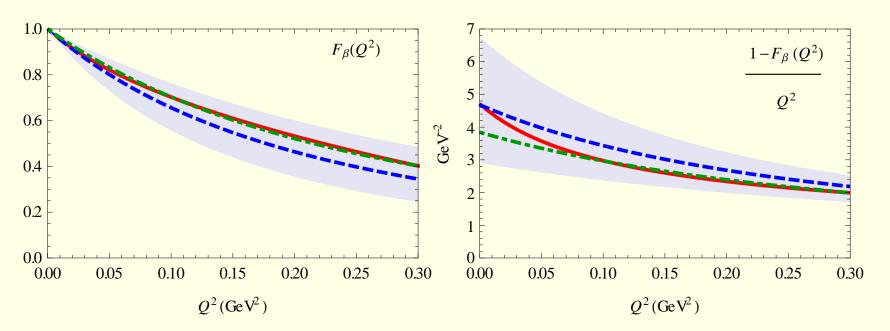
same diagrams as for real Compton scattering

McGovern et al, Eur. Phys. J. A 49 (2013) 12



- minor modifications for different kinematics
- subtract elastic (Born) contribution calculated to this order

Form factor

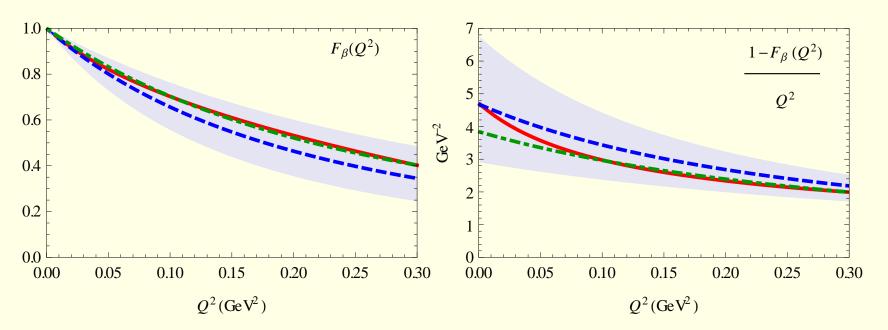


Extrapolate to higher Q^2 by matching ChPT form onto dipole

$$F_{\beta}(Q^2) \sim \frac{1}{(1 + Q^2/2M_{\beta}^2)^2}$$

Match at $Q^2=0 o M_{
m eta}=462$ MeV; at $Q^2\sim m_{\pi}^2 o M_{
m eta}=510$ MeV

Form factor



Extrapolate to higher Q^2 by matching ChPT form onto dipole

$$F_{\beta}(Q^2) \sim \frac{1}{(1 + Q^2/2M_{\beta}^2)^2}$$

Match at
$$Q^2=0 o M_{eta}=462$$
 MeV; at $Q^2\sim m_{\pi}^2 o M_{eta}=510$ MeV $M_{eta}=485\pm 100\pm 40\pm 25$ MeV

- generous allowance for higher-order effects and uncertainties in input (shaded)
- $\beta = (3.1 \pm 0.5) \times 10^{-4} \text{ fm}^3$
- matching uncertainty

Energy shift

$$\Delta E_{\text{sub}}^{2\gamma} = \frac{\alpha_{\text{EM}} \phi(0)^2}{4\pi m} \int_0^\infty dQ^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- with dipole form, 90% comes from $Q^2 < 0.3 \text{ GeV}^2$
- ullet rather insensitive to value of M_{eta}
- main source of error: $\beta = 3.1 \pm 0.5$

Energy shift

$$\Delta E_{\text{sub}}^{2\gamma} = \frac{\alpha_{\text{EM}} \phi(0)^2}{4\pi m} \int_0^\infty dQ^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- with dipole form, 90% comes from $Q^2 < 0.3 \text{ GeV}^2$
- ullet rather insensitive to value of M_{eta}
- main source of error: $\beta = 3.1 \pm 0.5$

Result:

$$\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu\text{eV}$$

Comparable to previous, model-based results Pachucki, Phys. Rev. A 60 (1999) 3593;

Carlson and Vanderhaeghen, Phys. Rev. A 84 (2011) 020102

But with errors under much better control

Energy shift

$$\Delta E_{\text{sub}}^{2\gamma} = \frac{\alpha_{\text{EM}} \phi(0)^2}{4\pi m} \int_0^\infty dQ^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- with dipole form, 90% comes from $Q^2 < 0.3 \text{ GeV}^2$
- ullet rather insensitive to value of M_{eta}
- main source of error: $\beta = 3.1 \pm 0.5$

Result:

$$\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu\text{eV}$$

Comparable to previous, model-based results Pachucki, Phys. Rev. A 60 (1999) 3593;

Carlson and Vanderhaeghen, Phys. Rev. A 84 (2011) 020102

But with errors under much better control

Combined with results of Carlson and Vanderhaeghen

- elastic (with nonpole term reinstated): $\Delta E_{\rm el}^{2\gamma} = 24.7(13)~\mu{\rm eV}$
- inelastic (dispersive): $\Delta E_{\rm inel}^{2\gamma} = 12.7(5) \ \mu \text{eV}$

$$\rightarrow$$
 total: $\Delta E^{2\gamma} = 33.2(20) \,\mu\text{eV}$

Extrapolation not needed in ChPT at 3rd order – two-photon loop finite

 \rightarrow calculate $\Delta E^{2\gamma}$ directly Nevado and Pineda, Phys Rev C **77** (2008) 035202 (ChPT with added leptons – needs lepton-nucleon contact terms at higher orders)

ChPT at 4th order

- consistent with current determination of magnetic polarisability β
- lowest order that makes direct contact with LETs
- but form factors unphysical above breakdown scale → extrapolate

Extrapolation not needed in ChPT at 3rd order – two-photon loop finite

ightarrow calculate $\Delta E^{2\gamma}$ directly Nevado and Pineda, Phys Rev C 77 (2008) 035202 (ChPT with added leptons – needs lepton-nucleon contact terms at higher orders)

ChPT at 4th order

- consistent with current determination of magnetic polarisability β
- lowest order that makes direct contact with LETs
- but form factors unphysical above breakdown scale → extrapolate

Results not sensitive to details of extrapolation, unless...

Extrapolation not needed in ChPT at 3rd order – two-photon loop finite

ightarrow calculate $\Delta E^{2\gamma}$ directly Nevado and Pineda, Phys Rev C **77** (2008) 035202 (ChPT with added leptons – needs lepton-nucleon contact terms at higher orders)

ChPT at 4th order

- consistent with current determination of magnetic polarisability β
- lowest order that makes direct contact with LETs
- but form factors unphysical above breakdown scale → extrapolate

Results not sensitive to details of extrapolation, unless... nucleons become very soft for momentum scales $Q^2\gtrsim 2~{\rm GeV}^2$ Miller, Phys Lett B **718** (2013) 1078

But no evidence from related processes:

- dispersion relations for $T_2(0,Q^2)$ ($\sim \alpha + \beta$)
- proton-neutron mass difference Walker-Loud et al, Phys Rev Lett 108 (2012) 232301
- quasi-elastic electron-nucleus scattering Miller, Phys Rev C 86 (2012) 065201

But no evidence from related processes:

- dispersion relations for $T_2(0,Q^2)$ ($\sim \alpha + \beta$)
- proton-neutron mass difference Walker-Loud et al, Phys Rev Lett 108 (2012) 232301
- quasi-elastic electron-nucleus scattering Miller, Phys Rev C 86 (2012) 065201

Nor from energy-weighted sum rules (despite large uncertainties)

Gorchtein et al, Phys Rev A 87 (2013) 052501

after transfer of nonpole Born term back to elastic piece

$$\Delta E_{\rm sub}^{2\gamma} = +1.5 \pm 4.6 \,\mu {\rm eV}$$

(opposite sign for central value since $\beta = -0.3 \pm 4.0$)

Summary

Subtraction term in two-photon-exchange contribution to Lamb shift calculated using HBChPT at 4th order

$$\Delta E_{
m sub}^{2\gamma} = -4.2 \pm 1.0 \, \mu
m eV$$

Complete two-photon exchange contribution now well determined

$$\Delta E^{2\gamma} = 33 \pm 2 \,\mu\text{eV}$$

- factor 10 too small to explain proton radius puzzle (330 μ eV)
- extrapolation of ChPT result needed at 4th order
- ullet no evidence for very unnatural behaviour at $Q^2 \gtrsim 2~{
 m GeV}^2$
- \bullet main sources of uncertainty: β (subtraction) and form factors (elastic)

Summary

Subtraction term in two-photon-exchange contribution to Lamb shift calculated using HBChPT at 4th order

$$\Delta E_{
m sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu
m eV$$

Complete two-photon exchange contribution now well determined

$$\Delta E^{2\gamma} = 33 \pm 2 \,\mu\text{eV}$$

- factor 10 too small to explain proton radius puzzle (330 μ eV)
- extrapolation of ChPT result needed at 4th order
- ullet no evidence for very unnatural behaviour at $Q^2 \gtrsim 2~{
 m GeV}^2$
- \bullet main sources of uncertainty: β (subtraction) and form factors (elastic)

Important to maintain consistency between definition of elastic/Born contribution and LET satisfied by subtraction term

Summary

Subtraction term in two-photon-exchange contribution to Lamb shift calculated using HBChPT at 4th order

$$\Delta E_{
m sub}^{2\gamma} = -4.2 \pm 1.0 \, \mu
m eV$$

Complete two-photon exchange contribution now well determined

$$\Delta E^{2\gamma} = 33 \pm 2 \,\mu\text{eV}$$

- factor 10 too small to explain proton radius puzzle (330 μ eV)
- extrapolation of ChPT result needed at 4th order
- ullet no evidence for very unnatural behaviour at $Q^2 \gtrsim 2~{
 m GeV}^2$
- main sources of uncertainty: β (subtraction) and form factors (elastic)

Important to maintain consistency between definition of elastic/Born contribution and LET satisfied by subtraction term

- form of nucleon pole terms depends on choice of tensor basis
- leading two terms in nonpole piece of $T_1(0,Q^2)$ both constrained by LETs
- → take full Born terms for Dirac nucleon in elastic contribution to Lamb shift