

Issues with determining the proton radius from elastic electron scattering

Mike Birse The University of Manchester

Background

Long history of discrepant results for proton charge radius from elastic electron scattering [PDG, Phys Rev **D86** (2012) 01001]

- pre-1980 values: r_E ~ 0.80 0.88 fm
- recent (post-1990) r_E ~ 0.84 0.91 fm some from analyses of same data!
- support for either of Lamb shift values

Background

Long history of discrepant results for proton charge radius from elastic electron scattering [PDG, Phys Rev **D86** (2012) 01001]

- pre-1980 values: r_E ∼ 0.80 − 0.88 fm
- recent (post-1990) r_E ~ 0.84 0.91 fm some from analyses of same data!
- support for either of Lamb shift values

Problem: radius given by slope of electric form factor at $Q^2 = 0$

- \rightarrow need to extrapolate from data at finite Q^2
 - older data: relatively large values of Q²
 - long extrapolation based on fits to region "where the light is good"

Possible solutions

Theory: use fitting functions that contain the correct physics controlling behaviour at small Q^2

- dispersion relations, chiral perturbation theory
- examples: Mergell *et al*, Nucl Phys **A596** (1996) 367; Lorenz *et al*, arXiv:1205.6628; Hill and Paz, Phys Rev **D82** (2010) 113005
- $\rightarrow\,$ results of fits by different groups barely consistent

 $r_E \sim 0.84 \pm 0.01 - 0.87 \pm 0.01$ fm

Possible solutions

Theory: use fitting functions that contain the correct physics controlling behaviour at small Q^2

- dispersion relations, chiral perturbation theory
- examples: Mergell *et al*, Nucl Phys **A596** (1996) 367; Lorenz *et al*, arXiv:1205.6628; Hill and Paz, Phys Rev **D82** (2010) 113005
- → results of fits by different groups barely consistent $r_F \sim 0.84 \pm 0.01 0.87 \pm 0.01$ fm

Experiment: take data at much smaller Q^2

- now available from A1@MAMI, down to Q² ~ 0.004 GeV² Bernauer *et al*, Phys Rev Lett **105** (2010) 242001
- but ...

Possible solutions

Theory: use fitting functions that contain the correct physics controlling behaviour at small Q^2

- dispersion relations, chiral perturbation theory
- examples: Mergell *et al*, Nucl Phys **A596** (1996) 367; Lorenz *et al*, arXiv:1205.6628; Hill and Paz, Phys Rev **D82** (2010) 113005
- → results of fits by different groups barely consistent $r_F \sim 0.84 \pm 0.01 0.87 \pm 0.01$ fm

Experiment: take data at much smaller Q^2

- now available from A1@MAMI, down to Q² ~ 0.004 GeV² Bernauer *et al*, Phys Rev Lett **105** (2010) 242001
- but ... results of fits by different groups barely consistent $r_E \sim 0.84 \pm 0.01 0.88 \pm 0.01$ fm

MAMI data

Rosenbluth separation of MAMI data, $Q^2 > 0.015 \text{ GeV}^2$

[Bernauer, PhD thesis, Mainz, 2010]

Health warning: large spectrometer acceptances \rightarrow systematic effects not fully accounted for in error bars

Fit: 5th-order polynomial in Q^2 to data $0.02 \le Q^2 \le 0.55 \text{ GeV}^2$

- $G'_{E}(0) = -3.202 \text{ GeV}^{-2} \rightarrow r_{c} = 0.865 \text{ fm}$
- $\chi^2/dof = 2.15$ (72 data points, 5 parameters)

Magnetic form factor

Fit: 6th-order polynomial in Q^2 to data $0.02 \le Q^2 \le 0.55$ GeV²

- $G'_{M}(0) = -2.581 \text{ GeV}^{-2} \rightarrow r_{M} = 0.776 \text{ fm}$
- $\chi^2/dof = 1.97$ (72 data points, 6 parameters)

(A1 average of fits: $r_E = 0.879 \pm 0.008$ fm, $r_M = 0.777 \pm 0.017$ fm)

What could go wrong?

Significant curvature of " $G'_{E,M}(Q^2)$ " in region below $Q^2 \simeq 0.02 \text{ GeV}^2$

Possible sources

- experimental: normalisation of data
- analysis: two-photon exchange correction
- physics: two-pion cut at $Q^2 = -0.078 \text{ GeV}^2$ (pion cloud)
- fit: overfitting the data

Pion cloud

Photon can couple to two pions, threshold at $t = -Q^2 = 4m_{\pi}^2$

- $\rightarrow\,$ nonanalytic functions of ${\it Q}^2/(4m_\pi^2)$ in form factors
 - cannot be well approximated by smooth functions of Q² (eg polynomials)

Chiral perturbation theory

- π N loop diagrams start at order $O(p^3)$ in heavy-baryon ChPT [Bernard *et al*, Nucl Phys **A635** (1998) 121]
- O(p⁴) corrections contained in relativistic approach [Kubis and Meissner, Nucl Phys A679 (2001 698]
- $\pi\Delta$ loops could also be large [Bernard *et al*]

Effect of including corrections up to $O(p^4)$

- nonanalytic terms from heavy-baryon expansion of expressions given by Kubis and Meissner
- $r_E \rightarrow r_E + 0.002$ fm, $r_M \rightarrow r_M + 0.004$ fm ($O(p^3)$ slightly larger)
- $\pi\Delta$ loops change radii by less than 0.0005 fm (large but \sim completely absorbed by refitting polynomial)
- overall effect on extrapolation small (cf dispersion relation with $\pi\pi$ cut, Hill and Paz, Phys Rev **D82** (2010) 113005)

Two-photon exchange

Small ($O(\alpha)$) but two-photon cut starts at t = 0

- nonanalytic behaviour could be important for very small Q²
- $\rightarrow\,$ need to remove it form measured cross sections
 - MAMI data corrected only by dividing out Coulomb correction: $Q^2 = 0$ limit of correction to G_E treated as an overall factor $1 + \delta_C$ in cross section, where

$$\delta_{C} = \alpha \pi \frac{\sqrt{1-\varepsilon}}{\sqrt{1+\varepsilon} + \sqrt{1-\varepsilon}}$$

 $\left(\varepsilon = \left[1 + 2\left(1 + Q^2/(4M^2)\right)\tan^2\theta/2\right]^{-1}\right)$

Full 2γ contributions as corrections to E, M form factors at low Q^2 [Borisyuk and Kobushkin, Phys Rev **C75** (2007) 038202]

- complicated expressions but can be evaluated analytically assuming dipole forms for form factors
- expand δ_C(ε), δG_{E,M}(Q², ε) to order ε since data already Rosenbluth separated
- reinstate $\delta_C/2$, subtract off B&K $\delta G_{E,M}$
- $r_E \rightarrow r_E 0.005$ fm, $r_M \rightarrow r_M + 0.023$ fm (similar to effects found in reanalysis by Bernauer *et al*, Phys Rev Lett **107** (2011) 119102)

Normalisation

A1@MAMI: lot of effort into determining normalisation of data

- important: forcing a fit to give 1 as $Q^2 \rightarrow 0$ when data does not would introduce significant curvature in " $G'_E(Q^2)$ " at small Q^2
- float normalisation: fit to $G_E(Q^2)(1 + \delta N)$ with δN as a parameter
- $r_E \rightarrow r_E + 0.007 = 0.869$ fm, $\delta N = -0.0020$ (cf spread of normalisation constants from A1@MAMI: 0.0026) $\chi^2/dof = 2.19$
- refit $G_M(Q^2)(1+\delta N)$ with δN from fit to G_E

•
$$r_M \rightarrow r_M + 0.008 = 0.811$$
 fm $\chi^2/dof = 2.11$

Choice of fit

Polynomial functions for low Q^2 (motivated by ChPT)

$$G(Q^2) = 1 - \sum_{k=1}^{K} a_k Q^{2k} + \text{nonanalytic terms}$$

Vary order of polynomial, check

- χ^2/dof
- Akaike information criterion: $A_c = \chi^2 + 2K + \frac{2K(K+1)}{N-K-1}$ N: data, K: parameters
- "naturalness" of coefficients on scale $\sim 0.5~GeV^2$
- stability of low-order coefficients against changing K
- stability against including $Q^2 < 0.02 \text{ GeV}^2$, excluding $Q^2 > 0.4 \text{ GeV}^2$
- $\rightarrow K = 5, 6$ fits of similar quality for both $G_{E,M}$

Error estimates

Problems with estimating errors since minimum $\chi^2_{min}/dof\sim 2$ (health warning on Rosenbluth separation)

- assume errors on data under-estimated, random
- use ellipsoids where $\chi^2 = \chi^2_{min} + \chi^2_{min}/dof$ (instead of $\chi^2_{min} + 1$)
- $\rightarrow r_E = 0.869 \pm 0.009 \text{ fm (5th-order polynomial)}$ $\delta N = -0.0020 \pm 0.0024$

 r_E and δN very strongly correlated

 $r_M = 0.811 \pm 0.008 \pm 0.009$ fm (6th-order)

first error: fit to G_M , second: δN

Sanity check: cross sections at very low Q^2

Compare total cross sections with these form factors and two-photon exchange to data for $0.004 < Q^2 < 0.02 \text{ GeV}^2$ (not fitted)

- $\chi^2/N = 2.68$ (243 points)
- not good, but...

Sanity check: cross sections at very low Q^2

Compare total cross sections with these form factors and two-photon exchange to data for $0.004 < Q^2 < 0.02 \text{ GeV}^2$ (not fitted)

- $\chi^2/N = 2.68$ (243 points)
- not good, but... very sensitive to δN
- use parameters from fits above but adjust $\delta N = +0.0002$ or adjust δN and refit Rosenbluth data

$$\rightarrow \chi^2/(N-1) = 0.95$$

• fits consistent with data for low Q²

Conclusions

Possible sources of curvature in $G'_{E,M}(Q^2)$ at low Q^2

- nonanalytic effects of pion cloud: small
- two-photon exchange: larger, important for magnetic radius
- floating normalisation: potentially very important (δN strongly correlated with radii) but in practice fairly small

Conclusions

Possible sources of curvature in $G'_{E,M}(Q^2)$ at low Q^2

- nonanalytic effects of pion cloud: small
- two-photon exchange: larger, important for magnetic radius
- floating normalisation: potentially very important (δN strongly correlated with radii) but in practice fairly small

Fits to A1@MAMI Rosenbluth separated data

- $r_E = 0.869 \pm 0.009$ fm
- $r_M = 0.811 \pm 0.008 \pm 0.009$ fm
- errors underestimated because of systematics?
- also, fits to $Q^2 < 0.3 \text{ GeV}^2$ unstable
- consistent with A1 refit of full dataset, after correcting for Q² dependence of two-photon exchange
- barely consistent with dispersive analysis by Bonn group

Conclusions

Possible sources of curvature in $G'_{E,M}(Q^2)$ at low Q^2

- nonanalytic effects of pion cloud: small
- two-photon exchange: larger, important for magnetic radius
- floating normalisation: potentially very important (δN strongly correlated with radii) but in practice fairly small

Fits to A1@MAMI Rosenbluth separated data

- $r_E = 0.869 \pm 0.009$ fm
- $r_M = 0.811 \pm 0.008 \pm 0.009$ fm
- errors underestimated because of systematics?
- also, fits to $Q^2 < 0.3 \text{ GeV}^2$ unstable
- consistent with A1 refit of full dataset, after correcting for Q² dependence of two-photon exchange
- barely consistent with dispersive analysis by Bonn group
- $\rightarrow\,$ no change to radius puzzle