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Background

Long history of discrepant results for proton charge radius from elastic
electron scattering [PDG, Phys Rev D86 (2012) 01001]
e pre-1980 values: re ~ 0.80 — 0.88 fm
e recent (post-1990) rg ~ 0.84 —0.91 fm
some from analyses of same datal!
e support for either of Lamb shift values
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Background

Long history of discrepant results for proton charge radius from elastic
electron scattering [PDG, Phys Rev D86 (2012) 01001]
e pre-1980 values: rg ~ 0.80 — 0.88 fm
e recent (post-1990) rg ~ 0.84 —0.91 fm
some from analyses of same datal!
e support for either of Lamb shift values

Problem: radius given by slope of electric form factor at Q> = 0

— need to extrapolate from data at finite Q®
e older data: relatively large values of Q2
e long extrapolation based on fits to region “where the light is good”



Possible solutions

Theory: use fitting functions that contain the correct physics controlling
behaviour at small Q®

e dispersion relations, chiral perturbation theory
o examples: Mergell et al, Nucl Phys A596 (1996) 367; Lorenz et
al, arXiv:1205.6628; Hill and Paz, Phys Rev D82 (2010) 113005
— results of fits by different groups barely consistent
re ~0.84+0.01 —0.874+0.01 fm
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Possible solutions

Theory: use fitting functions that contain the correct physics controlling
behaviour at small Q?
e dispersion relations, chiral perturbation theory
o examples: Mergell et al, Nucl Phys A596 (1996) 367; Lorenz et
al, arXiv:1205.6628; Hill and Paz, Phys Rev D82 (2010) 113005
— results of fits by different groups barely consistent
re ~0.84+0.01 —0.874+0.01 fm

Experiment: take data at much smaller Q?

e now available from A1@MAMI, down to Q2 ~ 0.004 GeV?
Bernauer et al, Phys Rev Lett 105 (2010) 242001
e but...
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Possible solutions

Theory: use fitting functions that contain the correct physics controlling
behaviour at small Q?
e dispersion relations, chiral perturbation theory
o examples: Mergell et al, Nucl Phys A596 (1996) 367; Lorenz et
al, arXiv:1205.6628; Hill and Paz, Phys Rev D82 (2010) 113005
— results of fits by different groups barely consistent
re ~0.84+0.01 —0.874+0.01 fm

Experiment: take data at much smaller Q®
e now available from A1@MAMI, down to Q® ~ 0.004 GeV?
Bernauer et al, Phys Rev Lett 105 (2010) 242001
e but ...results of fits by different groups barely consistent
re ~0.844+0.01-0.884+-0.01 fm
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MAMI data

Rosenbluth separation of MAMI data, @® > 0.015 GeV?

[Bernauer, PhD thesis, Mainz, 2010]

Health warning: large spectrometer acceptances — systematic effects
not fully accounted for in error bars
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Fit: 5th-order polynomial in QP to data 0.02 < @Q? < 0.55 GeV?

e G:(0)=—3.202GeV 2 — r, = 0.865 fm
° x2/dof = 2.15 (72 data points, 5 parameters)
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Magnetic form factor
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Fit: 6th-order polynomial in Q? to data 0.02 < @Q? < 0.55 GeV?

e G,(0)=—2581GeV 2 — ry =0.776 fm
° xz/dof = 1.97 (72 data points, 6 parameters)

(A1 average of fits: re = 0.87940.008 fm, ry = 0.777 £0.017 fm)
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What could go wrong?

Significant curvature of “G. ,(@?)" in region below Q® ~ 0.02 GeV?

Possible sources

experimental: normalisation of data

analysis: two-photon exchange correction

physics: two-pion cut at @ = —0.078 GeV? (pion cloud)
fit: overfitting the data
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Pion cloud

Photon can couple to two pions, threshold at t = —Q? = 4m,";
— nonanalytic functions of Q?/(4m2) in form factors
e cannot be well approximated by smooth functions of Q?
(eg polynomials)

Chiral perturbation theory
e 7N loop diagrams start at order O(p?) in heavy-baryon ChPT
[Bernard et al, Nucl Phys A635 (1998) 121]
e O(p*) corrections contained in relativistic approach
[Kubis and Meissner, Nucl Phys A679 (2001 698]
e TA loops could also be large [Bernard et al]



Effect of including corrections up to O(p*)

e nonanalytic terms from heavy-baryon expansion of expressions
given by Kubis and Meissner

e re — re+0.002 fm, vy — fy+0.004 fm
(O(p?) slightly larger)

e A loops change radii by less than 0.0005 fm
(large but ~ completely absorbed by refitting polynomial)

e overall effect on extrapolation small
(cf dispersion relation with 7t cut, Hill and Paz, Phys Rev D82
(2010) 113005)



Two-photon exchange

Small (O(a)) but two-photon cut starts at t =0

e nonanalytic behaviour could be important for very small Q?
— need to remove it form measured cross sections
e MAMI data corrected only by dividing out Coulomb correction:
@? = 0 limit of correction to G treated as an overall factor 1+ 8¢
in cross section, where

dc =oam V1-¢
T ViterVi-e

(e = [14+2(1+ Q?/(4M?))tan?6//2] ’1>
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Full 2y contributions as corrections to E, M form factors at low Q?
[Borisyuk and Kobushkin, Phys Rev C75 (2007) 038202]

e complicated expressions but can be evaluated analytically
assuming dipole forms for form factors

e expand 8¢(€), 3Ge m(Q?,€) to order € since data already
Rosenbluth separated

e reinstate 8¢ /2, subtract off B&K 8Gg m

o re — re—0.005 fm, y — my+0.023 fm
(similar to effects found in reanalysis by Bernauer et al,
Phys Rev Lett 107 (2011) 119102)
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Normalisation

A1@MAMI: lot of effort into determining normalisation of data

e important: forcing a fit to give 1 as Q*> — 0 when data does not
would introduce significant curvature in “G(Q?)” at small Q?
e float normalisation: fit to Ge(Q?)(1 + 8N) with SN as a parameter
e rg — re+0.007 = 0.869 fm, SN = —0.0020
(cf spread of normalisation constants from A1@MAMI: 0.0026)
x2/dof = 2.19
o refit Gu(Q?)(1+8N) with 8N from fit to Gg
® ry— rny+0.008=0.811fm
x?/dof = 2.11
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Choice of fit

Polynomial functions for low Q? (motivated by ChPT)

K
G(@) =1-Y aQ@* +nonanalytic terms
k=1

Vary order of polynomial, check
o x2/dof

L o 2 2K(K +1)
e Akaike information criterion: Ac = X“+2K +

N: data, K: parameters
e “naturalness” of coefficients on scale ~ 0.5 GeV?
o stability of low-order coefficients against changing K
e stability against including @ < 0.02 GeV?, excluding
Q® > 0.4 GeV?
— K =5, 6 fits of similar quality for both Gg

N—K-1
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Error estimates

Problems with estimating errors since minimum xfnin/dof ~2

(health warning on Rosenbluth separation)

e assume errors on data under-estimated, random

e use ellipsoids where 32 = %2 +%5,;,/dof
(instead of %2, +1)

— rg = 0.86940.009 fm (5th-order polynomial)

ON = —0.0020 + 0.0024
re and 8N very strongly correlated
rny = 0.81140.008 +-0.009 fm (6th-order)
first error: fit to Gy, second: dN
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Sanity check: cross sections at very low Q2

Compare total cross sections with these form factors and two-photon
exchange to data for 0.004 < @® < 0.02 GeV? (not fitted)

e x?/N = 2.68 (243 points)
e not good, but...
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Sanity check: cross sections at very low Q2

Compare total cross sections with these form factors and two-photon
exchange to data for 0.004 < @® < 0.02 GeV? (not fitted)
e x?/N = 2.68 (243 points)
e not good, but... very sensitive to ON
e use parameters from fits above but adjust 3N = +0.0002
or adjust ON and refit Rosenbluth data
— x2/(N—1)=0.95
e fits consistent with data for low Q?
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Conclusions
Possible sources of curvature in G ,,(Q?) at low Q?

e nonanalytic effects of pion cloud: small
e two-photon exchange: larger, important for magnetic radius
e floating normalisation: potentially very important

(6N strongly correlated with radii)

but in practice fairly small
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Conclusions

Possible sources of curvature in G ,,(Q?) at low Q?

nonanalytic effects of pion cloud: small

e two-photon exchange: larger, important for magnetic radius
e floating normalisation: potentially very important

(6N strongly correlated with radii)
but in practice fairly small

Fits to A1@MAMI Rosenbluth separated data

re = 0.869£0.009 fm

rny = 0.8114+0.008 +0.009 fm

errors underestimated because of systematics?

also, fits to @% < 0.3 GeV? unstable

consistent with A1 refit of full dataset, after correcting for Q?
dependence of two-photon exchange

barely consistent with dispersive analysis by Bonn group
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Conclusions

Possible sources of curvature in G ,,(Q?) at low Q?

e nonanalytic effects of pion cloud: small
e two-photon exchange: larger, important for magnetic radius
e floating normalisation: potentially very important

(6N strongly correlated with radii)

but in practice fairly small

Fits to A1@MAMI Rosenbluth separated data

re = 0.869£0.009 fm
rny = 0.8114+0.008 +0.009 fm
errors underestimated because of systematics?
also, fits to @% < 0.3 GeV? unstable
consistent with A1 refit of full dataset, after correcting for Q?
dependence of two-photon exchange
e barely consistent with dispersive analysis by Bonn group
— no change to radius puzzle
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