Issues with determining the proton radius from elastic electron scattering

Mike Birse
The University of Manchester

Background

Long history of discrepant results for proton charge radius from elastic electron scattering [PDG, Phys Rev D86 (2012) 01001]

- pre-1980 values: $r_{E} \sim 0.80-0.88 \mathrm{fm}$
- recent (post-1990) $r_{E} \sim 0.84-0.91 \mathrm{fm}$
some from analyses of same data!
- support for either of Lamb shift values

Background

Long history of discrepant results for proton charge radius from elastic electron scattering [PDG, Phys Rev D86 (2012) 01001]

- pre-1980 values: $r_{E} \sim 0.80-0.88 \mathrm{fm}$
- recent (post-1990) $r_{E} \sim 0.84-0.91 \mathrm{fm}$ some from analyses of same data!
- support for either of Lamb shift values

Problem: radius given by slope of electric form factor at $Q^{2}=0$
\rightarrow need to extrapolate from data at finite Q^{2}

- older data: relatively large values of Q^{2}
- long extrapolation based on fits to region "where the light is good"

Possible solutions

Theory: use fitting functions that contain the correct physics controlling behaviour at small Q^{2}

- dispersion relations, chiral perturbation theory
- examples: Mergell et al, Nucl Phys A596 (1996) 367; Lorenz et al, arXiv:1205.6628; Hill and Paz, Phys Rev D82 (2010) 113005
\rightarrow results of fits by different groups barely consistent

$$
r_{E} \sim 0.84 \pm 0.01-0.87 \pm 0.01 \mathrm{fm}
$$

Possible solutions

Theory: use fitting functions that contain the correct physics controlling behaviour at small Q^{2}

- dispersion relations, chiral perturbation theory
- examples: Mergell et al, Nucl Phys A596 (1996) 367; Lorenz et al, arXiv:1205.6628; Hill and Paz, Phys Rev D82 (2010) 113005
\rightarrow results of fits by different groups barely consistent $r_{E} \sim 0.84 \pm 0.01-0.87 \pm 0.01 \mathrm{fm}$

Experiment: take data at much smaller Q^{2}

- now available from A1@MAMI, down to $Q^{2} \simeq 0.004 \mathrm{GeV}^{2}$ Bernauer et al, Phys Rev Lett 105 (2010) 242001
- but...

Possible solutions

Theory: use fitting functions that contain the correct physics controlling behaviour at small Q^{2}

- dispersion relations, chiral perturbation theory
- examples: Mergell et al, Nucl Phys A596 (1996) 367; Lorenz et al, arXiv:1205.6628; Hill and Paz, Phys Rev D82 (2010) 113005
\rightarrow results of fits by different groups barely consistent $r_{E} \sim 0.84 \pm 0.01-0.87 \pm 0.01 \mathrm{fm}$

Experiment: take data at much smaller Q^{2}

- now available from A1@MAMI, down to $Q^{2} \simeq 0.004 \mathrm{GeV}^{2}$ Bernauer et al, Phys Rev Lett 105 (2010) 242001
- but ... results of fits by different groups barely consistent $r_{E} \sim 0.84 \pm 0.01-0.88 \pm 0.01 \mathrm{fm}$

MAMI data

Rosenbluth separation of MAMI data, $Q^{2}>0.015 \mathrm{GeV}^{2}$
[Bernauer, PhD thesis, Mainz, 2010]
Health warning: large spectrometer acceptances \rightarrow systematic effects
not fully accounted for in error bars

Plot $\frac{1-G_{E}\left(Q^{2}\right)}{Q^{2}}$

Fit: 5th-order polynomial in Q^{2} to data $0.02 \leq Q^{2} \leq 0.55 \mathrm{GeV}^{2}$

- $G_{E}^{\prime}(0)=-3.202 \mathrm{GeV}^{-2} \rightarrow r_{c}=0.865 \mathrm{fm}$
- $\chi^{2} /$ dof $=2.15$ (72 data points, 5 parameters)

Magnetic form factor

$$
\text { Plot } \frac{1-G_{M}\left(Q^{2}\right)}{Q^{2}}
$$

Fit: 6th-order polynomial in Q^{2} to data $0.02 \leq Q^{2} \leq 0.55 \mathrm{GeV}^{2}$

- $G_{M}^{\prime}(0)=-2.581 \mathrm{GeV}^{-2} \rightarrow r_{M}=0.776 \mathrm{fm}$
- $\chi^{2} /$ dof $=1.97$ (72 data points, 6 parameters)
(A1 average of fits: $r_{E}=0.879 \pm 0.008 \mathrm{fm}, r_{M}=0.777 \pm 0.017 \mathrm{fm}$)

What could go wrong?

Significant curvature of " $G_{E, M}^{\prime}\left(Q^{2}\right)$ " in region below $Q^{2} \simeq 0.02 \mathrm{GeV}^{2}$
Possible sources

- experimental: normalisation of data
- analysis: two-photon exchange correction
- physics: two-pion cut at $Q^{2}=-0.078 \mathrm{GeV}^{2}$ (pion cloud)
- fit: overfitting the data

Pion cloud

Photon can couple to two pions, threshold at $t=-Q^{2}=4 m_{\pi}^{2}$
\rightarrow nonanalytic functions of $Q^{2} /\left(4 m_{\pi}^{2}\right)$ in form factors

- cannot be well approximated by smooth functions of Q^{2} (eg polynomials)

Chiral perturbation theory

- $\pi \mathrm{N}$ loop diagrams start at order $O\left(p^{3}\right)$ in heavy-baryon ChPT [Bernard et al, Nucl Phys A635 (1998) 121]
- $O\left(p^{4}\right)$ corrections contained in relativistic approach [Kubis and Meissner, Nucl Phys A679 (2001 698]
- $\pi \Delta$ loops could also be large [Bernard et al]

Effect of including corrections up to $O\left(p^{4}\right)$

- nonanalytic terms from heavy-baryon expansion of expressions given by Kubis and Meissner
- $r_{E} \rightarrow r_{E}+0.002 \mathrm{fm}, \quad r_{M} \rightarrow r_{M}+0.004 \mathrm{fm}$ $\left(O\left(p^{3}\right)\right.$ slightly larger)
- $\pi \Delta$ loops change radii by less than 0.0005 fm (large but \sim completely absorbed by refitting polynomial)
- overall effect on extrapolation small
(cf dispersion relation with $\pi \pi$ cut, Hill and Paz, Phys Rev D82 (2010) 113005)

Two-photon exchange

Small ($O(\alpha)$) but two-photon cut starts at $t=0$

- nonanalytic behaviour could be important for very small Q^{2}
\rightarrow need to remove it form measured cross sections
- MAMI data corrected only by dividing out Coulomb correction: $Q^{2}=0$ limit of correction to G_{E} treated as an overall factor $1+\delta_{C}$ in cross section, where

$$
\begin{array}{r}
\delta_{C}=\alpha \pi \frac{\sqrt{1-\varepsilon}}{\sqrt{1+\varepsilon}+\sqrt{1-\varepsilon}} \\
\left(\varepsilon=\left[1+2\left(1+Q^{2} /\left(4 M^{2}\right)\right) \tan ^{2} \theta / 2\right]^{-1}\right)
\end{array}
$$

Full 2γ contributions as corrections to E, M form factors at low Q^{2} [Borisyuk and Kobushkin, Phys Rev C75 (2007) 038202]

- complicated expressions but can be evaluated analytically assuming dipole forms for form factors
- expand $\delta_{C}(\varepsilon), \delta G_{E, M}\left(Q^{2}, \varepsilon\right)$ to order ε since data already Rosenbluth separated
- reinstate $\delta_{C} / 2$, subtract off $B \& K \delta G_{E, M}$
- $r_{E} \rightarrow r_{E}-0.005 \mathrm{fm}, \quad r_{M} \rightarrow r_{M}+0.023 \mathrm{fm}$ (similar to effects found in reanalysis by Bernauer et al, Phys Rev Lett 107 (2011) 119102)

Normalisation

A1@MAMI: lot of effort into determining normalisation of data

- important: forcing a fit to give 1 as $Q^{2} \rightarrow 0$ when data does not would introduce significant curvature in " $G_{E}^{\prime}\left(Q^{2}\right)$ " at small Q^{2}
- float normalisation: fit to $G_{E}\left(Q^{2}\right)(1+\delta N)$ with δN as a parameter
- $r_{E} \rightarrow r_{E}+0.007=0.869 \mathrm{fm}, \quad \delta N=-0.0020$
(cf spread of normalisation constants from A1@MAMI: 0.0026)
$\chi^{2} /$ dof $=2.19$
- refit $G_{M}\left(Q^{2}\right)(1+\delta N)$ with δN from fit to G_{E}
- $r_{M} \rightarrow r_{M}+0.008=0.811 \mathrm{fm}$
$\chi^{2} /$ dof $=2.11$

Choice of fit

Polynomial functions for low Q^{2} (motivated by ChPT)

$$
G\left(Q^{2}\right)=1-\sum_{k=1}^{K} a_{k} Q^{2 k}+\text { nonanalytic terms }
$$

Vary order of polynomial, check

- $\chi^{2} /$ dof
- Akaike information criterion: $A_{c}=\chi^{2}+2 K+\frac{2 K(K+1)}{N-K-1}$ N : data, K: parameters
- "naturalness" of coefficients on scale $\sim 0.5 \mathrm{GeV}^{2}$
- stability of low-order coefficients against changing K
- stability against including $Q^{2}<0.02 \mathrm{GeV}^{2}$, excluding $Q^{2}>0.4 \mathrm{GeV}^{2}$
$\rightarrow K=5$, 6 fits of similar quality for both $G_{E, M}$

Error estimates

Problems with estimating errors since minimum $\chi_{\text {min }}^{2} /$ dof ~ 2 (health warning on Rosenbluth separation)

- assume errors on data under-estimated, random
- use ellipsoids where $\chi^{2}=\chi_{\text {min }}^{2}+\chi_{\text {min }}^{2} /$ dof (instead of $\chi_{\text {min }}^{2}+1$)
$\rightarrow r_{E}=0.869 \pm 0.009 \mathrm{fm}$ (5th-order polynomial)
$\delta N=-0.0020 \pm 0.0024$
r_{E} and δN very strongly correlated
$r_{M}=0.811 \pm 0.008 \pm 0.009 \mathrm{fm}$ (6th-order)
first error: fit to G_{M}, second: δN

Sanity check: cross sections at very low Q^{2}

Compare total cross sections with these form factors and two-photon exchange to data for $0.004<Q^{2}<0.02 \mathrm{GeV}^{2}$ (not fitted)

- $\chi^{2} / N=2.68$ (243 points)
- not good, but...

Sanity check: cross sections at very low Q^{2}

Compare total cross sections with these form factors and two-photon exchange to data for $0.004<Q^{2}<0.02 \mathrm{GeV}^{2}$ (not fitted)

- $\chi^{2} / N=2.68$ (243 points)
- not good, but... very sensitive to δN
- use parameters from fits above but adjust $\delta N=+0.0002$ or adjust δN and refit Rosenbluth data
$\rightarrow \chi^{2} /(N-1)=0.95$
- fits consistent with data for low Q^{2}

Conclusions

Possible sources of curvature in $G_{E, M}^{\prime}\left(Q^{2}\right)$ at low Q^{2}

- nonanalytic effects of pion cloud: small
- two-photon exchange: larger, important for magnetic radius
- floating normalisation: potentially very important
($\delta \mathrm{N}$ strongly correlated with radii)
but in practice fairly small

Conclusions

Possible sources of curvature in $G_{E, M}^{\prime}\left(Q^{2}\right)$ at low Q^{2}

- nonanalytic effects of pion cloud: small
- two-photon exchange: larger, important for magnetic radius
- floating normalisation: potentially very important
($\delta \mathrm{N}$ strongly correlated with radii)
but in practice fairly small
Fits to A1@MAMI Rosenbluth separated data
- $r_{E}=0.869 \pm 0.009 \mathrm{fm}$
- $r_{M}=0.811 \pm 0.008 \pm 0.009 \mathrm{fm}$
- errors underestimated because of systematics?
- also, fits to $Q^{2}<0.3 \mathrm{GeV}^{2}$ unstable
- consistent with A1 refit of full dataset, after correcting for Q^{2} dependence of two-photon exchange
- barely consistent with dispersive analysis by Bonn group

Conclusions

Possible sources of curvature in $G_{E, M}^{\prime}\left(Q^{2}\right)$ at low Q^{2}

- nonanalytic effects of pion cloud: small
- two-photon exchange: larger, important for magnetic radius
- floating normalisation: potentially very important
($\delta \mathrm{N}$ strongly correlated with radii)
but in practice fairly small
Fits to A1@MAMI Rosenbluth separated data
- $r_{E}=0.869 \pm 0.009 \mathrm{fm}$
- $r_{M}=0.811 \pm 0.008 \pm 0.009 \mathrm{fm}$
- errors underestimated because of systematics?
- also, fits to $Q^{2}<0.3 \mathrm{GeV}^{2}$ unstable
- consistent with A1 refit of full dataset, after correcting for Q^{2} dependence of two-photon exchange
- barely consistent with dispersive analysis by Bonn group
\rightarrow no change to radius puzzle

