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Background

“Weinberg”/naive/engineering power counting for EFTs

• organise terms by counting powers of low-energy scales Q
(momenta, mπ, . . . )

• nonrelativistic NN loops of order Q (not Q2) [Weinberg (1991)]
• theory still perturbative if potential starts at order Q0

• cannot naturally generate low-energy bound states
(or virtual states or resonances)

→ need to identify new low-energy scales
• promote leading-order terms to order Q−1

→ can, and must, then be iterated to all orders
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Examples of new scales

• S-wave scattering lengths 1/a . 40 MeV [van Kolck; KSW (1998)]
• inverse Bohr radius κ = αMN/2 ' 3.5 MeV (pp scattering)
• strength of OPE set by scale

λNN =
16πF 2

π

g2
A MN

' 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

General tool to analyse dependence on low-energy scales
and determine power counting: renormalisation group
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Renormalisation group

Outline derivation of RG equation

• identify all relevant low-energy scales
• regulate at arbitary scale Λ (cut-off or subtraction)

between Q and Λ0: scale of underlying physics
• demand that physics be independent of Λ (eg T -matrix)
• rescale: express all dimensioned quantities in units of Λ

(MV and all low-energy scales)

Follow flow as Λ runs down from Λ0

→ tends to fixed points (scale free systems) as Λ → 0
• expand around these: perturbations scale like Λν

where ν = d +1 (usual power counting: Qd )
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Solution to RG equation for pure short-range potential

1
V (p,Λ)

=− M
2π2

[
Λ− p

2
ln

Λ+p
Λ−p

]
− M

4π

[
−1

a
+

1
2

re p2 + · · ·
]

• first term: fixed point of RG (bound state at zero energy)
[Birse, McGovern, Richardson, hep-ph/9807302]

• RG eigenvalues ν =−1, +1, . . .
correspond to Q−2, Q0, . . . (shifted by −2 from naive)

• coefficients of perturbations directly related to observables:
effective-range expansion [Bethe (1949)]

• power counting for potential → counting for observables
• expansion in powers of energy (p2) breaks down at p = Λ

Similar results in presence of long-range potentials

• power counting determined by singularity of potential as r → 0

5 / 17



Solution to RG equation for pure short-range potential

1
V (p,Λ)

=− M
2π2

[
Λ− p

2
ln

Λ+p
Λ−p

]
− M

4π

[
−1

a
+

1
2

re p2 + · · ·
]

• first term: fixed point of RG (bound state at zero energy)
[Birse, McGovern, Richardson, hep-ph/9807302]

• RG eigenvalues ν =−1, +1, . . .
correspond to Q−2, Q0, . . . (shifted by −2 from naive)

• coefficients of perturbations directly related to observables:
effective-range expansion [Bethe (1949)]

• power counting for potential → counting for observables
• expansion in powers of energy (p2) breaks down at p = Λ

Similar results in presence of long-range potentials

• power counting determined by singularity of potential as r → 0

5 / 17



Extracting a potential from empirical phase shifts (or, one day, data?)

• first determine power counting using the RG
• then use results to guide analysis:

indicate which terms to include at given order
• do not have to use same regulator

(eg radial cut-off may be more convenient)
[Birse and McGovern, nucl-th/0307050]

Can take cut-off Λ above scale of underlying physics Λ0

• smaller cut-off artefacts
(scale of coefficients set by Λ0 instead of Λ)

• radius of convergence determined by physics: Λ0

(can even take Λ → ∞?)
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Just need to be sure to respect the counting

• renormalise all potentially divergent integrals
• iterate all fixed-point or marginal terms, Q−1

• do not iterate terms that should be perturbations, Qd with d ≥ 0
• otherwise . . .

→ if lucky, fall into a new power counting:
eg tensor OPE in low partial waves
[Nogga, Timmermans and van Kolck, nucl-th/0506005]

→ if unlucky, lose any consistent counting
eg effective-range term in short-range potential
[Gabbiani, nucl-th/0104088]
or long-range TPE [Pavon Valderrama and Ruiz Arriola,
nucl-th/0506047, nucl-th/0507075; Entem et al, arXiv:0709.2770]
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Deconstructing 1S0 NN scattering 1

Start with distorted-wave effective-range expansion

• iterating OPE justified if we treat λNN as a low-energy scale
(or if too lazy to do fourth-order perturbation theory)

→ extract effects of OPE from empirical phase shifts δPWA(p)
• take four good-χ2 (but old!) Nijmegen analyses:

PWA93, NijmegenI, NijmegenII, Reid93

Solve radial Schrödinger equation with central OPE

− d2u
dr2 +MNVOPE(r)u(r) = p2u(r), p2 =

MNTlab

2

→ two solutions:
regular uR(r) (→ sin(pr +δOPE))
and irregular uI(r) (→−cos(pr +δOPE))
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Use these to construct solution with observed phase shift

u(r) = cos δ̃(p)uR(p)− sin δ̃(p)uI(p)

and find short-range potential that generates additional phase
δ̃(p) = δPWA(p)−δOPE(p)

• choose δ-shell form VS(r ,p) = 1
4πR2 Ṽ (2)

S (p)δ(r −R)
• take u(r) for r ≥ R and uR(r) for r ≤ R
• match u(R) = uR(R) and use discontinuity in derivatives

to determine strength

Ṽ (2)
S (p) =

4πR2

MN

u′(R)−u′R(R)
u(R)

(Shukla et al : similar philosophy but conical well of radius R
that reproduces u′(R)/u(R))
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1

Ṽ (2)
S (p)

+
MN

4π

[
1
R
−MN f 2

πNN ln(Rµ)
]

for R = 1.6, 0.8, 0.4 ,0.2, 0.1 fm

100 200 300
T

-4

-3

-2

-1

Shape converges as R → 0 (to DW effective-range expansion)
Breakdown scale determined by R for large R
(Ṽ (2)

S (p) singular at Tlab ' 280 MeV for R = 1.6 fm)
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Deconstructing 1S0 NN scattering 2

Two-pion exchange

• leading orders Q2,3 [Rentmeester et al., nucl-th/9901054]
• plus order Q2 relativistic correction to OPE [Friar, nucl-th/9901082]
• perturbations: treat to first order → subtract DWBA matrix

elements

But matrix elements diverge

→ need to renormalise them first
• cut off radial integrals at R (same as for δ-shell)
• identify and subtract divergent pieces
• use perturbation theory for remaining finite quantities
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Strongest divergences from r−6 term in order-Q3 TPE potential
and irregular parts of wave functions

• leading terms at each order in energy p2

Z
∞

R
r2 dr

1
r6 uI(r)2 ∼

Z
∞

R
r2 dr

1
r6

[
1
r2 , p2, p4 r2, p6 r4, · · ·

]
∼ 1

R5 ,
p2

R3 ,
p4

R
, R p6, · · ·

• renormalise with counterterms proportional to p0, p2, p4 only
• of orders Q−2, Q0, Q2 around nontrivial solution of RG
→ terms with orders d ≤ 2 renormalise order-Q3 TPE potential

• power counting works!
(trivial FP: divergences ∼ R−3, R−1p2 only → orders Q0, Q2)

(Shukla et al : did not renormalise, had to keep R & 1 fm)
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Renormalise by subtracting all p0, p2, p4 pieces from integrals

Subtract renormalised matrix element

〈ψ(p)|V (2)
OPE +V (2,3)

TPE +Vπγ|ψ(p)〉ren

from DW ERE potential Ṽ (2)
S (p)

(→ residual potential containing long-range effects starting at Q4)

Look at 1/ṼS(p) expanded to first order:

1

Ṽ (4)
S (p)

=
1

Ṽ (2)
S (p)

+

(
1

Ṽ (2)
S (p)

)2

〈ψ(p)|V (2)
OPE +V (2,3)

TPE +Vπγ|ψ(p)〉ren

(again, subtract 1/R and lnR terms for convenience in plotting)
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Results

For R = 1.6, 0.8, 0.4 ,0.2, 0.1 fm

100 200 300
T

-1

1

2

3

4

• no effect at very low energies since terms up to p4 subtracted
• p6 and higher terms grow rapidly above T = 100 MeV
→ breakdown scale p ∼ 270 MeV (cf λNN , M∆ −MN)
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Discussion

EFT can be used to “deconstruct” empirical phase shifts

• systematically remove effects of known long-range forces
→ determine short-range forces directly from data
• extension of Bethe’s effective-range expansion

(here 1S0, previously peripheral singlets and uncoupled triplets)
• terms required by power counting do renormalise divergent

matrix elements of TPE potential
• follow power counting → cutoff-independent results as R → 0

But in 1S0 channel . . .

• expansion seems to break down for p & 270 MeV
• still need to examine scales in coefficients of p6, p8

• coefficient of r−6 exp(−2mπr) contains λNN , c3 '−5 Gev−1

→ “high-energy” scale λ
′
NN =

(
(16π)2f 4

π

144g2
A|c3|MN

)1/4

' 115 MeV
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A couple of precepts

Don’t iterate just for the hell of it!

• identify the low-energy scales that justify promoting terms
• use the RG to find the corresponding fixed point
• perturb around that point to determine the power counting

Trust the RG!

• analyse data following the power counting:
iterate relevant and marginal terms, Qd , d < 0
treat irrelevant ones as perturbations, d ≥ 0

• can then take cutoff above underlying scale
• disentangle physics from artefacts of finite cutoff
→ if expansion breaks down: that’s physics!

(missing low-energy scales or no separation of scales)
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Texas has done one thing; it has invented and established
Nuclear EFT, which is an attempt to organise the ignorance of
the community, and to elevate it to the dignity of physical force.

[With apologies to Oscar Wilde, The Critic as Artist]
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