

Deconstructing nucleon-nucleon scattering

Michael C Birse

The University of Manchester

Work in progress, based on:

Barford and Birse, hep-ph/0206146

Birse and McGovern, nucl-th/0307050

Birse, arXiv:0706.0984

Prompted by:

Shukla, Phillips and Mortenson, arXiv:0803.4190

Background

"Weinberg"/naive/engineering power counting for EFTs

- organise terms by counting powers of low-energy scales Q (momenta, m_π, ...)
- nonrelativistic NN loops of order Q (not Q²) [Weinberg (1991)]
- theory still perturbative if potential starts at order Q⁰
- cannot naturally generate low-energy bound states (or virtual states or resonances)
- $\rightarrow\,$ need to identify new low-energy scales
 - promote leading-order terms to order Q⁻¹
- \rightarrow can, and must, then be iterated to all orders

Examples of new scales

- S-wave scattering lengths $1/a \lesssim 40$ MeV [van Kolck; KSW (1998)]
- inverse Bohr radius $\kappa = \alpha M_N/2 \simeq 3.5$ MeV (*pp* scattering)
- strength of OPE set by scale

$$\lambda_{\scriptscriptstyle NN} = rac{16 \pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq$$
 290 MeV

built out of high-energy scales $(4\pi F_{\pi}, M_{N})$ but $\sim 2m_{\pi}$

Examples of new scales

- S-wave scattering lengths $1/a \lesssim 40$ MeV [van Kolck; KSW (1998)]
- inverse Bohr radius $\kappa = \alpha M_N/2 \simeq 3.5$ MeV (*pp* scattering)
- strength of OPE set by scale

$$\lambda_{\scriptscriptstyle NN} = rac{16 \pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq$$
 290 MeV

built out of high-energy scales $(4\pi F_{\pi}, M_{N})$ but $\sim 2m_{\pi}$

General tool to analyse dependence on low-energy scales and determine power counting: renormalisation group

Renormalisation group

Outline derivation of RG equation

- identify all relevant low-energy scales
- regulate at arbitary scale Λ (cut-off or subtraction) between Q and Λ₀: scale of underlying physics
- demand that physics be independent of Λ (eg T-matrix)
- rescale: express all dimensioned quantities in units of Λ (*MV* and all low-energy scales)

Renormalisation group

Outline derivation of RG equation

- identify all relevant low-energy scales
- regulate at arbitary scale Λ (cut-off or subtraction) between Q and Λ₀: scale of underlying physics
- demand that physics be independent of Λ (eg T-matrix)
- rescale: express all dimensioned quantities in units of Λ (*MV* and all low-energy scales)

Follow flow as Λ runs down from Λ_0

- $\rightarrow \,$ tends to fixed points (scale free systems) as $\Lambda \rightarrow 0$
 - expand around these: perturbations scale like Λ^v where v = d + 1 (usual power counting: Q^d)

Solution to RG equation for pure short-range potential

$$\frac{1}{V(\rho,\Lambda)} = -\frac{M}{2\pi^2} \left[\Lambda - \frac{\rho}{2} \ln \frac{\Lambda + \rho}{\Lambda - \rho} \right] - \frac{M}{4\pi} \left[-\frac{1}{a} + \frac{1}{2} r_e \rho^2 + \cdots \right]$$

- first term: fixed point of RG (bound state at zero energy) [Birse, McGovern, Richardson, hep-ph/9807302]
- RG eigenvalues ν = -1, +1, ...
 correspond to Q⁻², Q⁰, ... (shifted by -2 from naive)
- coefficients of perturbations directly related to observables: effective-range expansion [Bethe (1949)]
- power counting for potential \rightarrow counting for observables
- expansion in powers of energy (p^2) breaks down at $p = \Lambda$

Solution to RG equation for pure short-range potential

$$\frac{1}{V(\rho,\Lambda)} = -\frac{M}{2\pi^2} \left[\Lambda - \frac{\rho}{2} \ln \frac{\Lambda + \rho}{\Lambda - \rho} \right] - \frac{M}{4\pi} \left[-\frac{1}{a} + \frac{1}{2} r_e \rho^2 + \cdots \right]$$

- first term: fixed point of RG (bound state at zero energy) [Birse, McGovern, Richardson, hep-ph/9807302]
- RG eigenvalues ν = -1, +1, ...
 correspond to Q⁻², Q⁰, ... (shifted by -2 from naive)
- coefficients of perturbations directly related to observables: effective-range expansion [Bethe (1949)]
- power counting for potential \rightarrow counting for observables
- expansion in powers of energy (p^2) breaks down at $p = \Lambda$

Similar results in presence of long-range potentials

• power counting determined by singularity of potential as $r \rightarrow 0$

Extracting a potential from empirical phase shifts (or, one day, data?)

- first determine power counting using the RG
- then use results to guide analysis: indicate which terms to include at given order
- do not have to use same regulator (eg radial cut-off may be more convenient) [Birse and McGovern, nucl-th/0307050]

Extracting a potential from empirical phase shifts (or, one day, data?)

- first determine power counting using the RG
- then use results to guide analysis: indicate which terms to include at given order
- do not have to use same regulator (eg radial cut-off may be more convenient) [Birse and McGovern, nucl-th/0307050]

Can take cut-off Λ above scale of underlying physics Λ_0

- smaller cut-off artefacts (scale of coefficients set by Λ_0 instead of Λ)
- radius of convergence determined by physics: Λ_0 (can even take $\Lambda \to \infty ?)$

イロト 不得 トイヨト イヨト 二足 二

6/17

Just need to be sure to respect the counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, Q^{-1}
- do not iterate terms that should be perturbations, Q^d with $d \ge 0$
- otherwise ...

Just need to be sure to respect the counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, Q^{-1}
- do not iterate terms that should be perturbations, Q^d with $d \ge 0$
- otherwise ...
- → if lucky, fall into a new power counting: eg tensor OPE in low partial waves [Nogga, Timmermans and van Kolck, nucl-th/0506005]

Just need to be sure to respect the counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, Q^{-1}
- do not iterate terms that should be perturbations, Q^d with $d \ge 0$
- otherwise ...
- → if lucky, fall into a new power counting: eg tensor OPE in low partial waves [Nogga, Timmermans and van Kolck, nucl-th/0506005]
- → if unlucky, lose any consistent counting eg effective-range term in short-range potential [Gabbiani, nucl-th/0104088]
 or long-range TPE [Pavon Valderrama and Ruiz Arriola, nucl-th/0506047, nucl-th/0507075; Entem *et al*, arXiv:0709.2770]

Deconstructing ¹S₀ NN scattering 1

Start with distorted-wave effective-range expansion

- iterating OPE justified if we treat λ_{NN} as a low-energy scale (or if too lazy to do fourth-order perturbation theory)
- ightarrow extract effects of OPE from empirical phase shifts $\delta_{\scriptscriptstyle PWA}(
 ho)$
 - take four good-χ² (but old!) Nijmegen analyses: PWA93, NijmegenI, NijmegenII, Reid93

Solve radial Schrödinger equation with central OPE

$$-\frac{d^{2}u}{dr^{2}}+M_{N}V_{OPE}(r)u(r)=p^{2}u(r), \qquad p^{2}=\frac{M_{N}T_{lab}}{2}$$

 \rightarrow two solutions:

regular $u_{R}(r) (\rightarrow \sin(pr + \delta_{OPE}))$ and irregular $u_{I}(r) (\rightarrow -\cos(pr + \delta_{OPE}))$ Use these to construct solution with observed phase shift

$$u(r) = \cos \tilde{\delta}(p) u_R(p) - \sin \tilde{\delta}(p) u_I(p)$$

and find short-range potential that generates additional phase $\tilde{\delta}(\rho) = \delta_{\text{PWA}}(\rho) - \delta_{\text{OPE}}(\rho)$

- choose δ -shell form $V_{\mathcal{S}}(r,p) = \frac{1}{4\pi R^2} \widetilde{V}^{(2)}_{\mathcal{S}}(p) \, \delta(r-R)$
- take u(r) for $r \ge R$ and $u_R(r)$ for $r \le R$
- match u(R) = u_R(R) and use discontinuity in derivatives to determine strength

$$\widetilde{V}_{S}^{(2)}(p) = rac{4\pi R^{2}}{M_{N}} \, rac{u'(R) - u'_{R}(R)}{u(R)}$$

(Shukla *et al*: similar philosophy but conical well of radius *R* that reproduces u'(R)/u(R))

$$\frac{1}{\widetilde{V}_{S}^{(2)}(p)} + \frac{M_{N}}{4\pi} \left[\frac{1}{R} - M_{N} f_{\pi_{NN}}^{2} \ln(R\mu) \right] \text{ for } R = 1.6, \, 0.8, \, 0.4, \, 0.2, \, 0.1 \text{ fm}$$

Shape converges as $R \rightarrow 0$ (to DW effective-range expansion) Breakdown scale determined by R for large R $(\widetilde{V}_{S}^{(2)}(p)$ singular at $T_{\rm lab} \simeq 280$ MeV for R = 1.6 fm)

Deconstructing ¹S₀ NN scattering 2

Two-pion exchange

- leading orders Q^{2,3} [Rentmeester et al., nucl-th/9901054]
- plus order Q² relativistic correction to OPE [Friar, nucl-th/9901082]
- perturbations: treat to first order \rightarrow subtract DWBA matrix elements

But matrix elements diverge

- $\rightarrow\,$ need to renormalise them first
 - cut off radial integrals at R (same as for δ-shell)
 - identify and subtract divergent pieces
 - use perturbation theory for remaining finite quantities

Strongest divergences from r^{-6} term in order- Q^3 TPE potential and irregular parts of wave functions

leading terms at each order in energy p²

$$\int_{R}^{\infty} r^{2} dr \frac{1}{r^{6}} u_{l}(r)^{2} \sim \int_{R}^{\infty} r^{2} dr \frac{1}{r^{6}} \left[\frac{1}{r^{2}}, p^{2}, p^{4} r^{2}, p^{6} r^{4}, \cdots \right]$$
$$\sim \frac{1}{R^{5}}, \frac{p^{2}}{R^{3}}, \frac{p^{4}}{R}, Rp^{6}, \cdots$$

- renormalise with counterterms proportional to p^0 , p^2 , p^4 only
- of orders Q^{-2} , Q^0 , Q^2 around nontrivial solution of RG
- \rightarrow terms with orders $d \leq 2$ renormalise order- Q^3 TPE potential

Strongest divergences from r^{-6} term in order- Q^3 TPE potential and irregular parts of wave functions

leading terms at each order in energy p²

$$\int_{R}^{\infty} r^{2} dr \frac{1}{r^{6}} u_{l}(r)^{2} \sim \int_{R}^{\infty} r^{2} dr \frac{1}{r^{6}} \left[\frac{1}{r^{2}}, p^{2}, p^{4} r^{2}, p^{6} r^{4}, \cdots \right]$$
$$\sim \frac{1}{R^{5}}, \frac{p^{2}}{R^{3}}, \frac{p^{4}}{R}, Rp^{6}, \cdots$$

- renormalise with counterterms proportional to p^0 , p^2 , p^4 only
- of orders Q^{-2} , Q^0 , Q^2 around nontrivial solution of RG
- \rightarrow terms with orders $d \leq 2$ renormalise order- Q^3 TPE potential
 - power counting works! (trivial FP: divergences ~ R⁻³, R⁻¹p² only → orders Q⁰, Q²)

(Shukla *et al*: did not renormalise, had to keep $R \gtrsim 1$ fm)

Renormalise by subtracting all p^0 , p^2 , p^4 pieces from integrals

Subtract renormalised matrix element

$$\langle \psi(oldsymbol{
ho}) | V_{ ext{OPE}}^{(2)} + V_{ ext{TPE}}^{(2,3)} + V_{\pi\gamma} | \psi(oldsymbol{
ho})
angle_{ ext{ren}}$$

from DW ERE potential $\widetilde{V}_{S}^{(2)}(\boldsymbol{p})$ (\rightarrow residual potential containing long-range effects starting at Q^{4})

Look at $1/\widetilde{V}_{\mathcal{S}}(p)$ expanded to first order:

$$\frac{1}{\widetilde{V}_{S}^{(4)}(p)} = \frac{1}{\widetilde{V}_{S}^{(2)}(p)} + \left(\frac{1}{\widetilde{V}_{S}^{(2)}(p)}\right)^{2} \langle \psi(p) | V_{\text{OPE}}^{(2)} + V_{\text{TPE}}^{(2,3)} + V_{\pi\gamma} | \psi(p) \rangle_{\text{ren}}$$

(again, subtract 1/R and ln R terms for convenience in plotting)

Results

For *R* = 1.6, 0.8, 0.4, 0.2, 0.1 fm

- no effect at very low energies since terms up to p⁴ subtracted
- p^6 and higher terms grow rapidly above T = 100 MeV
- \rightarrow breakdown scale $p \sim 270$ MeV (cf $\lambda_{_{NN}}, M_{_{\Delta}} M_{_{N}})$

Discussion

EFT can be used to "deconstruct" empirical phase shifts

- systematically remove effects of known long-range forces
- $\rightarrow\,$ determine short-range forces directly from data
 - extension of Bethe's effective-range expansion (here ¹*S*₀, previously peripheral singlets and uncoupled triplets)
 - terms required by power counting do renormalise divergent matrix elements of TPE potential
 - follow power counting \rightarrow cutoff-independent results as $R\rightarrow 0$

Discussion

EFT can be used to "deconstruct" empirical phase shifts

- systematically remove effects of known long-range forces
- \rightarrow determine short-range forces directly from data
 - extension of Bethe's effective-range expansion (here ¹S₀, previously peripheral singlets and uncoupled triplets)
 - terms required by power counting do renormalise divergent matrix elements of TPE potential
 - follow power counting \rightarrow cutoff-independent results as $R \rightarrow 0$

But in 1S_0 channel ...

- expansion seems to break down for $p \gtrsim 270 \text{ MeV}$
- still need to examine scales in coefficients of p⁶, p⁸
- coefficient of $r^{-6} \exp(-2m_{\pi}r)$ contains $\lambda_{_{NN}}$, $c_3 \simeq -5$ Gev $^{-1}$

$$ightarrow$$
 "high-energy" scale $\lambda'_{\scriptscriptstyle NN} = \left(rac{(16\pi)^2 f_\pi^4}{144 g_A^2 |c_3| M_{\scriptscriptstyle N}}
ight)^{1/4} \simeq$ 115 MeV

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 少 Q (~ 16/17

Don't iterate just for the hell of it!

Don't iterate just for the hell of it!

- identify the low-energy scales that justify promoting terms
- use the RG to find the corresponding fixed point
- perturb around that point to determine the power counting

Don't iterate just for the hell of it!

- identify the low-energy scales that justify promoting terms
- use the RG to find the corresponding fixed point
- perturb around that point to determine the power counting

Trust the RG!

Don't iterate just for the hell of it!

- identify the low-energy scales that justify promoting terms
- use the RG to find the corresponding fixed point
- perturb around that point to determine the power counting

Trust the RG!

- analyse data following the power counting: iterate relevant and marginal terms, Q^d, d < 0 treat irrelevant ones as perturbations, d ≥ 0
- can then take cutoff above underlying scale
- disentangle physics from artefacts of finite cutoff
- → if expansion breaks down: that's physics! (missing low-energy scales or no separation of scales)

Texas has done one thing; it has invented and established Nuclear EFT, which is an attempt to organise the ignorance of the community, and to elevate it to the dignity of physical force.

[With apologies to Oscar Wilde, The Critic as Artist]