
The renormalisation group for nulear foresMihael C BirseThe University of Manhester

Birse, MGovern and Rihardson, hep-ph/9807302Barford and Birse, hep-ph/0206146Birse and MGovern, nul-th/0307050Barford and Birse, nul-th/0406008Rihardson, hep-ph/0008118Barford, nul-th/0404072 1



Outline
� Wilsonian renormalisation group� RG for the nuleon-nuleon interation� Fixed points of short-range foresÆ Weinberg, e�etive-range expansion� Energy- or momentum-dependent potentials� Long-range foresÆ Coulomb, OPE, inverse-square� Peripheral NN sattering� Challenges
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Wilsonian renormalisation groupTool for analysing sale dependene of physial systems(as developed by Wilson for ondensed matter problems)� assumes well separated sales Q (physis of interest, long distane)and �0 (underlying physis, short distane)
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� impose oating ut-o� � (Q < � < �0)� readjust ouplings to keep observables independent of �� resale: express all dimensioned quantities in units of � 3



Follow ow in \theory spae" as �! 0(spae of all possible ouplings for given �elds and symmetries)Look for �xed points� resaled theories independent of �� orrespond to sale-free systems� endpoints of RG \ow"

� stable �xed point � unstable �xed point 4



Expand around �xed point using perturbations that salewith de�nite powers of �� ��n relevant or superrenormalisable (unstable)� �n irrelevant or nonrenormalisable� �0 marginal or renormalisable (! ln� sale dependene)Resulting desription of low-energy physis an be representedby an e�etive �eld theory (EFT)� marginal terms: dimensionless ouplings (as in QED, QCD)� irrelevant terms: ouplings / ��n0! e�ets suppressed by powers of Q�0 (as in ChPT)� relevant terms: ouplings / �n0 (masses in QFT's)
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RG for the nuleon-nuleon interationConsider sattering by short-range potential VS (unresolved physis)and known long-range potential VL (eg Coulomb or OPE){ want systemati parametrisation|power ounting|for VSStart from Lippmann-Shwinger equation for 2-body T -matrix{ desribes sattering by VS between distorted waves (DW's) of VL~TS = VS + VSGL(E) ~TSwhere GL is the DW Green's funtion GL(E) = [E �H0 � VL+ i�℄�1On-shell DW T -matrix elements areh �L (p)j~TS(p)j +L (p)i = � 2�Mred e2iÆL(p) 1p �ot ~ÆS(p)� i�in terms of additional phase shift produed by VS~ÆS(p) = Æ(p)� ÆL(p)Here p = p2MredE is on-shell momentum 6



� Impose uto� q � � on GL in DW basis:GL = Mred�2 Z �0 dq q2 j L(q)ih L(q)jp2 � q2 (+bound states)� Demand that fully o�-shell T -(or K-)matrix be independent of �(all observables independent of �)! VS must depend on � aording to�VS�� = �VS �GL�� VS� Resale all dimensioned quantities in units of uto� �{ energy, momenta: ^p = p=�, ^k = k=�{ ruial to identify all low-energy sales in VL, generially �examples: m� for OPE, inverse Bohr radius �Mred for Coulomb{ resale these: ^� = �=� 7



Also resale short-range potential{ depends on behaviour of DW's near origin{ ontrolled by singularity of VL as r ! 0{ if no worse than r�1 then de�ne^VS(^p; : : : ; �) = Mred��2 VS(�^p; : : : ; �)(overs VL = 0, Coulomb, spin-singlet OPE)Look �rst at s-wave sattering by pure short-range interation, VL = 0(NN sattering at very low momenta, p < m�)Take potential to be Æ-funtion plus derivatives{ with energy-dependent oeÆients (more later)! funtion of k2; k02; p2 in momentum spae: VS(p; k0; k; �)k, k0 initial and �nal o�-shell momenta (p on-shell)
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RG equation� �^VS�� = ^p �^VS�^p +^k0 �^VS�^k0 +^k �^VS�^k + ^VS + ^VS(^k0;1; ^p; �) 11� ^p2 ^VS(1;^k; ^p; �)Boundary onditions:VS should be an analyti funtion of k2, k02 and energy (p2)Fixed points: solutions of RG equation that are independent of �! satisfy ^p �^VS0�^p + ^VS0(^p) + ^VS0(^p) 11� ^p2 ^VS0(^p) = 0(assuming they depend on energy but not momentum)
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Fixed points of short-range foresTrivial �xed point: ^VS0(^p) = 0{ system with no sattering (sale free)Real systems with weak sattering at low energies{ desribe using perturbations that sale with de�nite powers of �{ satisfy linearised version of RG equation! solutions whih are well-behaved at low momenta^VS(^p;^k0;^k; �) = C�� ^k02l ^k2m ^p2nwith RG eigenvalues � = 2(l+m+ n) + 1 where l;m; n � 0Eigenvalues just ount powers of low-energy sales Q{ terms of order Qd with d = � � 1! Weinberg power ounting (as in �PT) 10



NN s-waves: strong sattering at low energies ! nontrivial �xed point{ 1=VS0 satisifes linear equation^p ��^p  1^VS0!� 1^VS0(^p) � 11� ^p2 = 0{ solution exatly anels loop integral in LS equation! in�nite K-matrix: system with zero-energy bound state (sale free)Perturbations around �xed point (energy-dependent only)1^VS(^p;�) = 1^VS0(^p) � 1Xn=0C2n�2n�1 ^p2n{ RG eigenvalues � = 2n� 1 = �1;1;3; : : : (� = �1 ! unstable){ KSW power ounting: order Qd with d = � � 1 = 2n� 2{ one-to-one orrespondane with terms in e�etive-range expansion1K(p) = �Mred2� �� 1a + 12 re p2+ � � �� = �Mred�2 1Xn=0C2n p2n 11



Energy- or momentum-dependent potentialsPerturbations around nontrivial �xed point inludeÆ^VS(^k0;^k; ^p) = �2n 24^k2n � ^p2n+ n�1Xm=0 ^p2m2n� 2m+1 ^VS0(^p)35 ^VS0(^p)and ones with similar fators involving k0{ RG eigenvalues � = 2n = 2;4;6 : : :! momentum-dependent terms less relevant than energy-dependentTrivial �xed point: k2, k02, p2 all of same order{ an make transformation (\use equations of motion"){ swap momentum for energy dependene { same power ountingEnergy-dependent potential � (stepwise) Bloh-Horowitz redutionof Hilbert spae to smaller \model spae"VS(����) = VS(�) + VS(�) Q(�)E �Q(�)H0Q(�) VS(�)Q(�) projets onto eliminated states ���� < q < � 12



Alternative: Lee-Suzuki similarity transformation{ keeps potential energy-independent{ used by Kuo and oworkers to generate e�etive potential Vlow�kPreserving half-o�-shell T -matrix T(p; k; p)! evolution equation���Vlow�k(k0; k; �) = Mred�2 Vlow�k(k0;�;�) 11� (k=�)2 T(�; k;�)[Bogner et al, nul-th/0108041, nul-th/0305035℄Could use �eld transformation or folded diagrams{ eliminate energy-dependene from VS(p; �) ! \Vvery�low�k(k0; k; �)"{ only input: oeÆients from e�etive-range expansion{ but unnatural oeÆients for momentum-dependent perturbations! power ounting not obvious (more ompliated evolution)
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Long-range foresCoulomb potential VL(r) = �=r{ extra low-energy sale for small �: � = �Mred{ potential of order Q�1 (like �xed point) ! resum to all orderss-wave DW's at origin have form (Sommerfeld)j L(p;0)j2 = C(�=p) � 2��=pe2��=p � 1{ resale VS as above ! RG equation (energy dependent)� ���  1^VS!= ^p ��^p  1^VS!+^� ��^�  1^VS!� 1^VS � C(^�)1� ^p2Trivial �xed point ! perturbative expansion in powers of p2, �Nontrivial �xed point: 1=VS0 anels analyti parts of LS loop integral! terms in potential orrespond to DW e�etive-range expansion[Kong and Ravndal, hep-ph/9903523℄ 14



One-pion exhange{ low-energy sale m� = 140 MeV{ also �� = 16�f2�MNg2A ' 300 MeV ! high-energy or low?

Two hoies:� �� built out of QCD sales MN , f� ! high energy (�PT)! potential of order Q0 (like e�etive-range term){ KSW sheme: treat OPE perturbatively[Kaplan, Savage and Wise, nul-th/9802075℄{ but expansion onverges at best slowly[Fleming, Mehen and Stewart, nul-th/9911001℄� �� only � 2m� ! low-energy! treat �� as new low-energy sale! potential of order Q�1 { part of �xed point{ Weinberg{van Kolk sheme: iterate OPE to all orders[van Kolk, nul-th/9902015℄ 15



Weinberg{van Kolk shemeSpin-singlet hannels: leading-order OPE just YukawaVL(r) = � m2�MN�� e�m�rrRG analysis similar to Coulomb{ but with two low-energy sales: m� and �� = m2�=2�� (both O(Q))Nontrivial �xed point ! DW e�etive-range expansionC�(��=p;m�=p) ot ÆS = 2���H�(��=p;m�=p) + ln��=��+ 2� Xl;m;nClmnm2l� �m� p2n{ all nonanalyti behaviour ontained in C�, H� and ln��(long-range parts of loop integral over DW's)But onnetion to �PT lost if �� treated as low-energy sale 16



Inverse-square potentialCentrifugal potential (L > 0 waves) and three-body systemsVL(r) = L(L+1)2Mredr2DW's vanish as r ! 0j L(p; r)j2 � �4�(L+3=2)2 �pr2 �2L � jNj2(pr)2L

! VS either 2L-th derivative of Æ-funtion (integer L){ or small but nonzero range, suh as Æ-shellVS(r) = VS(p; �) Æ(r �R)4�R2R arbitrary \fatorisation" sale{ separates o� region of nonperturbative high-energy physis(works for any real or omplex L; for integers just numerial derivative)17



Resaled potential^VS(^p; �) = Mred�2 �2L+1R2L VS(�^p;�)satis�es RG equation� �^VS�� = ^p �^VS�^p + (2L+1)^VS + jN j21� ^p2 ^VS(^p; �)2Trivial �xed point ^VS = 0 (nontrivial highly unstable){ leading perturbation ^VS = C�2L+1 ! order Q2L(as expeted for integer L: equivalent to k0L kL term)Attrative 1=r2 potential in spin-doublet nd hannel (triton)� omplex L ! wave funtions osillate as r ! 0� origin of E�mov e�et (tower of geometrially spaed bound states)� need to �x self-adjoint extension of Hamiltonian[Bawin and Coon, quant-ph/0302199℄� leading three-body fore: marginal perturbation around limit yle[Bedaque et al, nul-th/9906032; nul-th/0207034℄ 18



Peripheral NN satteringUse DW methods to remove e�ets of known pion-exhange potentials{ peripheral waves: test expansion of pion-exhange potential{ hiral OPE + TPE up to order Q3[Kaiser et al, nul-th/9706045; Rentmeester et al, nul-th/9901054℄{ OPE multiplied by M=E ! order-Q2 orretion [Friar, nul-th/9901082℄Weak sattering for large L ! Weinberg power ounting{ start from DW K-matrix (simpler than high-order perturbation theory)~KS(p) = � 2�Mred p tan�Æ(p)� Æ(0)OPE(p)�Æ(p) empirial phase shift, taken from �ve Nijmegen analyses (1993){ then subtrat order-Q2 OPE and order-Q2;3 TPE! residual sattering starts at order Q4: Æ-shell at r = R with strength~V (4)(p) = R2L[(2L+1)!! OPE(p;R)℄2 � � ~K(p)� h OPE(p)jV (2;3)O;TPEj OPE(p)i�19



Results (strength of residual sattering)np 1D2
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Leading-order OPE removed Order-Q2;3 OPE and TPE removedBelow about 80 MeV { signi�ant di�erenes between PWA'sAfter subtration of order-Q2;3 terms � linearly dependent on energy! energy dependene well-desribed by hiral TPE 20



np 1G4
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Leading-order OPE removed Order-Q2;3 OPE and TPE removedLarge di�erenes between PWA's even up to 200 MeV! hard to draw de�nite onlusionsbut residual sattering muh smaller after order-Q2;3 terms subtrated
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np 1F3
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-0.006Leading-order OPE removed Order-Q2;3 OPE and TPE removedSimilar piture to 1G4Downward urvature at low energies for all PWA's (also in 1P1)! possible hint of isospin-breaking in �N ouplings(isospin-singlet waves { �tted to np data) 22



Substantial di�erenes between the various PWA's at low energies{ 1F3 and 1G4 waves: artefats ompletely dominate{ but no orrelation among deviations ! no systemati bias in �ts(exept possibly in isospin-singlet waves { CSB?){ important to use same �N oupling as assumed in PWAand to inlude M=E fator multiplying OPEMomentum sales of residual interations~V (4) � (L!)2��60 m4�2L� k2L g(p=m�)� 1D2 interept orresponds to �0 � 200 MeV { unaturally large� 1D2 slope orresponds to �0 � 370 MeV� 1F3, 1G4 sales in range 300� 400 MeVNo evidene for breakdown of EFT in these peripheral wavesand no need to introdue model form fators et(but large systemati unertainties in available PWA's) 23



SummaryCombination of renormalisation-group and distorted-wave methods:� powerful tool for analysing low-energy interations between nuleons� DW's allow lean separation of known long-distane physisfrom unknown short-distane� RG then gives systemati lassi�ation of terms in e�etive potential� works for nonperturbative systems(where simple Weinberg power ounting does not apply)Results not new� e�etive-range expansion and DW versions[Bethe, Shwinger, Blatt and Jakson, . . . , � 1950℄� and extensions to three-body systems[Phillips, E�mov, Brayshaw, Noyes, . . . , � 1970℄� but EFT framework ! e�etive ouplings to EM and weak urrents24



Challenges� Extension to tensor OPE (spin-triplet hannels){ 1=r3 form at short distanes! must be treated nonperturbatively above ritial momentum{ 3S1{3D1 hannels: p >� 0:68 ��3 ' 66 MeV (hiral limit)� Diret determination of NN potential from empirial phase shiftsand hiral pion-exhange fores{ use DW Born and e�etive-range expansions{ transform to energy-independent form! diret derivation of Vlow�k(without going via model potentials)� Use DW expansions diretly in PWA's of sattering data! �t parameters with EFT interpretations(unlike urrent Nijmegen �ts) 25



� apply e�etive potentials to nulear struture{ take e�etive two- and three-body potentials in vaumrenormalised at high uto� sale{ use as starting point for \no-ore" shell model alulationsinitial model spae: large number of osillator shells for �nite nulei{ then evolve down by eliminating osillator shellsusing either Bloh-Horowitz [Haxton and Song, nul-th/9907097℄or Lee-Suzuki [Navr�atil et al, nul-th/9907054℄{ related example: appliation of \exat" RG to fermioni matter[Birse et al, hep-ph/0406249℄
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