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Background

Ideas of effective field theory and renormalisation group

now well-developed for few-nucleon systems

– rely on separation of scales

– RG can be used to derive power counting

→ classify terms as perturbations around fixed point

– consistent extension of old ideas (effective-range expansion)

Many unsuccessful attempts to extend to nuclear matter

– problem: no separation of scales

– only consistent EFT so far: weakly repulsive Fermi gas

[Hammer and Furnstahl, nucl-th/0004043]

(reproduces old results of Bishop and others)
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Other EFT’s for interacting Fermi systems exist:

– Landau Fermi liquid [Shankar], Ginsburg-Landau theory

– but parameters have no simple connection to underlying

forces (like ChPT and QCD)

Look for some more heuristic approach

– based on field theory

– can be matched onto EFT’s for few-nucleon systems

– input from two-body (and three-body) systems in vacuum

Try “exact” renormalisation group

– based on Wilsonian RG approach to field theories

– successfully applied to various systems in particle physics

and condensed-matter physics

[version due to Wetterich, Phys Lett B301 (1993) 90]
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ERG for the effective action

For single real scalar field φ start from

eiW [J] =
∫
Dφei(S[φ]+J ·φ−1

2φ·R·φ)

R(q, k): regulator function for the ERG

– suppresses contributions of modes with low momenta, q <∼ k

→ only modes with q >∼ k integrated out

→ W [J] evolves with regulator (“cut-off”) scale k

– becomes full generating function as k → 0

Legendre transform → effective action Γ[φc] (generator for 1PI diagrams)

where expectation value of the field is

δW

δJ
≡ φc

[See talks by: Furnstahl, Litim, Polonyi]
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Effective action

[convention as in: Weinberg, Quantum Theory of Fields II]

Γ[φc] = W [J] − J · φc + 1

2
φc ·R · φc

W evolves with scale k according to

∂kW = −1

2
φc · ∂kR · φc + i

2
Tr

[
(∂kR)

δφc

δJ

]

Evolution of Γ[φc]

– J also runs if φc is held constant

– φc · ∂kR · φc terms cancel

∂kΓ =
i

2
Tr

[
(∂kR)

δφc

δJ

]

6



From definition of Γ

δJ

δφc
= −(Γ(2) −R) where Γ(2) =

δ2Γ

δφcδφc

→ evolution equation for Γ in form of a one-loop integral

∂kΓ = − i

2
Tr

[
(∂kR) (Γ(2) −R)−1

]

(Γ(2) −R)−1: propagator of boson in background field φc

One-loop structure: like RG for few-body systems

→ can match ERG in matter onto interactions in vacuum

[Polchinski’s version of ERG: different structure

– see for example: Morris, hep-th/9802039]
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For a system of fermions as well as bosons

∂kΓ = +
i

2
Tr

[
(∂kRF )

(
(Γ(2) − R)−1

)
FF

]

− i

2
Tr

[
(∂kRB)

(
(Γ(2) − R)−1

)
BB

]

System with charged condensates (pairing → particle-hole mixing)

– write propagator for complex field as 2× 2 matrix (Nambu-Gor’kov)

→ factors of 1
2 still present
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Regulator function and ansatz for Γ

Regulator R(q, k): IR cut-off on effective action Γ

– should suppress contributions of modes with q <∼ k

– should give back full effective action as k → 0

→ R(q, k) should provide large mass/energy gap for modes with q <∼ k

and should vanish for q � k and k → 0

Derivative ∂kR(q, k) in ERG equation

– peaks for q ∼ k

– tends to zero for q � k

→ acts as UV cut-off on loop integrals

ERG: complicated differential equation for functional Γ

– need to choose an ansatz for effective action

– make an expansion in local terms (as in rigorous EFT’s)

– use physics to guide choice
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Effective action for fermions with attraction

Attractive forces between fermions → pairing [Furnstahl, Hands]

– weak attraction: Cooper pairs (BCS state) µ � εF
– strong attraction: Bose-Einstein condensation (BEC) µ < 0

Single species of nonrelativistic fermion: ψ (as in neutron matter)

Boson field describing correlated fermion pairs: φ

Finite density: chemical potential µ

Ansatz for Γ:

Γ[ψ,ψ†, φ, φ†, µ, k]

=
∫
d4x

[
φ†(x)

(
Zφ (i∂t + 2µ) +

Zm

2m
∇2

)
φ(x) − U(φ, φ†)

+ψ†
(
Zψ(i∂t + µ) +

ZM
2M

∇2
)
ψ

−Zg g
(
i

2
ψTσ2ψφ

† − i

2
ψ†σ2ψ†Tφ

)]
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Potential:

Bosons carry twice charge of a fermion

– couple to chemical potential µ via quadratic term

– absorb into potential

Ū = U − 2µZφφ
†φ

Expand potential about minimum φ†φ = ρ0 to quadratic order:

Ū = u0 + u1(φ
†φ− ρ0) +

1

2
u2(φ

†φ− ρ0)
2

(one redundant parameter: ρ0 or u1)

In symmetric phase: ρ0 = 0

In condensed phase: un defined at minimum → u1 = 0
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In condensed phase with uniform background φ field:

Particles and holes mix (ψ and ψ† coupled)

→ fermion spectrum with energy gap ∆ = g|φ|/Zφ

EF (q) = ± 1

Zψ

√(
ZM
2M

(q2 − p2F )
)2

+ g2φ†φ

Bosons become gapless Goldstone modes

– spectrum (φ and φ† also coupled)

EB(q) = ± 1

Zφ

√
Zm

2m
q2
(
Zm

2m
q2 + 2u2φ

†φ
)

→ superfluid state: BCS or BEC
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Γ depends on cut-off scale k through running:

• coefficients in potential, u0, u1 (or ρ0), u2

• wave-function renormalisation factors, Zφ, Zψ
• mass renormalisations, ZM , Zm
• coupling constant renormalisation, Zg

To study crossover from BCS pairing to BEC

– need to work at fixed density

(otherwise can’t get to negative µ for BEC)

→ must allow µ to run with k

ERG becomes a set of coupled first-order ODE’s
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Bare theory: at starting scale k = K

– two-body interaction between fermions only

Lint = −1

4
C0

(
ψ†σ2ψ†T) (ψTσ2ψ

)
– bosons just auxiliary fields (Hubbard-Stratonovich)

C0(K) = − g(K)2

u1(K)

and Zφ,m(K) � 1, u2(K) � |C0|
(separation of C0 arbitrary → results independent of g(K))

Fermions not dressed at k = K→ Zψ(K) = ZM(K) = Zg(K) = 1

Here (first study):

– allow only potential (un, ρ0) and Zφ to run independently

– freeze Zψ = ZM = Zg = 1 and set Zm = Zφ or 1
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Choice of regulator functions

Nonrelativistic systems
– carry out loop integrals over energy exactly
– regulate only integrals over three-momentum

Bosonic regulator:

RB(q, k) =
k2

2m
f(q/k)

where f(x) → 1 as x→ 0 and f(x) → 0 as x→ ∞ (and q = |q|)

Take RB(q, k) ∝ k2 for q <∼ k

→ large-k behaviours of integrals reflect UV divergences

Here: use smoothed step function

f(q/k) =
1

2erf(1/σ)

[
erf

(
q+ k

kσ

)
+ erf

(
q − k

kσ

)]

σ: parameter controlling sharpness
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Fermionic regulator:

– should be positive for particle states (q2/2M > µ)

– and negative for hole states (q2/2M < µ)

(can’t just add artificial gap term – regulator must work in vacuum)

Here: use

RF (q, pF , k) = sgn(q − pµ)
k2

2M
f

(
q − pF
k

)

pµ =
√

2Mµ: Fermi momentum corresponding to running µ

pF = (3π2n)1/3: related to density n

Symmetric phase: pF = pµ (until Zψ,M run)

Condensed phase: “Fermi surface” no longer at pF
(not even well-defined for large gaps)

but gap in fermion spectrum → regulator no longer crucial
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Evolution equations: general structure

At present level of truncation (running un, ρ0 and Zφ only):

– all equations obtained from effective potential for uniform φ field

– evolves according to

∂kŪ = − 1

V4
∂kΓ V4: volume of spacetime

Write potential in terms of ρ = φ†φ: Ū(ρ, µ, k)

– coefficients

un =
∂nŪ

∂ρn

∣∣∣∣∣
ρ=ρ0

– density and wave-function renormalisation

n = − ∂Ū

∂µ

∣∣∣∣∣
ρ=ρ0

Zφ = − 1

2

∂2Ū

∂ρ∂µ

∣∣∣∣∣
ρ=ρ0
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All quantities defined at running minimum ρ = ρ0(k)

→ extra implicit dependence on k in condensed phase

– evolution of un at constant µ:

∂kun − un+1 ∂kρ0 =
∂n

∂ρn

(
∂kŪ

)∣∣∣∣∣
ρ=ρ0

– couples u2 to u3: beyond current level of truncation

Could simply set u3 = 0, but can do better:

– take u3(k) from evolution with fermion loops only

(can be solved analytically)

→ approximation becomes exact if boson loops negligible
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Evolution at constant density:

Running µ(k) → further implicit dependence on k

Define total derivative

dk = ∂k + (dkµ)
∂

∂µ

and apply to ∂Ū/∂µ → evolution equation for density

dkn− 2Zφ dkρ0 + χdkµ = − ∂

∂µ

(
∂kŪ

)∣∣∣∣∣
ρ=ρ0

where fermion-number susceptibility is

χ =
∂2Ū

∂µ2

∣∣∣∣∣
ρ=ρ0
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Keep n constant → coupled equation for ρ0 and µ

−2Zφ dkρ0 + χ dkµ = − ∂

∂µ

(
∂kŪ

)∣∣∣∣∣
ρ=ρ0

Symmetric phase: driving term on RHS vanishes and ρ0 = 0

→ evolution at constant n same as at constant µ

→ much simpler set of evolution equations:

∂ku1 =
∂

∂ρ

(
∂kŪ

)∣∣∣∣∣
ρ=0

∂ku2 =
∂2

∂ρ2

(
∂kŪ

)∣∣∣∣∣
ρ=0

∂kZφ = − 1

2

∂2

∂µ∂ρ

(
∂kŪ

)∣∣∣∣∣
ρ=0
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Condensed phase: set of equations is

−u2 dkρ0 + 2Zφ dkµ =
∂

∂ρ

(
∂kŪ

)∣∣∣∣∣
ρ=ρ0

dku2 − u3 dkρ0 + 2Z ′
φ dkµ =

∂2

∂ρ2

(
∂kŪ

)∣∣∣∣∣
ρ=ρ0

dkZφ − Z ′
φ dkρ0 +

1

2
χ′ dkµ = − 1

2

∂2

∂µ∂ρ

(
∂kŪ

)∣∣∣∣∣
ρ=ρ0

Here

Z ′
φ = − 1

2

∂3Ū

∂ρ2∂µ

∣∣∣∣∣
ρ=ρ0

χ′ = ∂3Ū

∂µ2∂ρ

∣∣∣∣∣
ρ=ρ0

– like u3 and χ: beyond current level of truncation

→ replace by expressions from fermion loops only
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Driving terms in evolution equations

Right-hand sides of evolution equations

– all obtained from ∂kŪ: sum of fermion and boson one-loop integrals

Treat ψ and ψ† as independent fields (also φ and φ†)
→ 2 × 2 matrix structure for Gor’kov propagators etc

In presence of uniform φ field

– inverse fermion propagator

Γ(2)
FF −RF =

(
Zψq0 − EFR + iε sgn(q − pµ) igφσ2

−igφ†σ2 Zψq0 +EFR − iε sgn(q − pµ)

)

where

EFR(q, pF , k) =
1

2M
q2 − µ+RF (q, pF , k) sgn(q − pµ)
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Inverse boson propagtor

Γ(2)
BB − RB =

(
Zφq0 −EBR + iε −u2φφ

−u2φ
†φ† −Zφq0 − EBR + iε

)

where

EBR(q, k) =
Zm

2m
q2 + u1 + u2(2φ

†φ− ρ0) +RB(q, k)

Evaluating the loop integrals gives (after some work)

∂kŪ = − 1

V4
∂kΓ = −

∫
d3
q

(2π)3
EFR√

E2
FR + ∆2

sgn(q − pµ) ∂kRF

+
1

2Zφ

∫
d3
q

(2π)3
EBR√

E2
BR − V 2

B

∂kRB

where ∆2 = g2φ†φ and VB = u2φ
†φ

Derivatives of ∂kŪ with respect to ρ = φ†φ and µ → driving terms
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Initial conditions

Run evolution down to k = 0 starting from some large scale k = K

Initial conditions obtained by matching onto evolution in vacuum for k ≥ K

– fermion loops only
– can be integrated analytically to get

u1(K)

g2
= − M

4πa
+

1

2

∫
d3q

(2π)3

[
1

EFR(q,0,0)
− 1

EFR(q,0,K)

]

since u1(0) related to physical scattering amplitude at threshold by

TF =
4πa

M
= − g2

u1(0)
a: scattering length

Both integrals diverge linearly on their own
– usual linear divergence in EFT’s for two-body scattering
→ difference linear in K

(chose RF ∝ k2 for large k → K ∼ cut-off scale)
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Need to be careful in matter: regulator shifted by Fermi surface

– acts like cut-off at K + pF for large K � pF
→ constant shift ∝ pF in linearly divergent integral

→ define u1(K) for use in matter by

u1(K)

g2
= − M

4πa
+

1

2

∫
d3
q

(2π)3

[
1

EFR(q,0,0)
− sgn(q − pF )

EFR(q, pF ,K)

]

– like using regulator that interpolates smoothly between

RF (q, pF , k) for k � pF and RF (q,0, k) for k <∼ pF
(Fermi sea in second term ∼ totally suppressed for K � pF )

Other initial values: u2(K), Zφ(K) determined similarly

(but pF -dependence suppressed by powers of pF/K)
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Results

Technique can be applied to many systems

– for definiteness start with parameters relevant to neutron matter:

M = 4.76 fm−1, pF = 1.37 fm−1, |a| � 1 fm

– then explore wider range of values for pFa

Results are independent of K for K >∼ 4pF
(provided we are careful to use shifted cut-off to define u1(K))

Also independent of width parameter σ in regulator functions

Compare results with simpler approximation keeping fermion loops only

– mean-field approximation for bosons

→ analytic results

[Marani, Pistolesi and Strinati, cond-mat/9703160

Papenbrock and Bertsch, nucl-th/9811077

Babaev, cond-mat/0010085]
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Mean-field effective potential (at k = 0)

UMF(∆, µ) =
k∆

5

2Mπ

⎡
⎢⎣ 1

8ak∆
− 1

15

(
1 + x2

)3
4 P1

3
2

⎛
⎜⎝− x√

1 + x2

⎞
⎟⎠
⎤
⎥⎦

Pml (y): associated Legendre function

k∆ =
√

2M∆, x = µ/∆, in terms of gap ∆ = g|φ|

Minimise with respect to ∆ at constant density

→ nonlinear equations for ∆, µ

In limit of weak attraction, pFa→ 0−, gap has exponential form

∆ � 8

e2
εF exp

(
− π

2pF |a|

)
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Numerical solutions to the evolution equations for infinite a0,
starting from K = 16 fm−1 (all in appropriate powers of fm−1)

—: full solution —: fermion loops only

Transition to condensed phase (u1 = 0) at kcrit � 1.2 fm−1

Contributions of boson loops small (negligible in symmetric phase)

28



Crossover from BCS to BEC
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Gap ∆ and chemical potential µ

at physical point (k = 0)

– over wide range of densities

or couplings, (pFa)
−1

–: fermions only (analytical)

•: fermions only (numerical)

◦: bosonic loops with Zφ = 1

×: full results

BCS: positive µ ∼ p2F/2M

(large negative (pFa)
−1)

BEC: large negative µ

(large positive (pFa)
−1)
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Closer look at gap
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Fractional deviation of gap from analytic mean-field result

•: fermions only (numerical)

◦: bosonic loops, Zφ = 1

×: full results
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Comments

In region of strong attraction

– contributions of boson loops to gap ∆ very small

– ∼ 1% enhancement of gap in large-pFa region

– effects on other quantities larger (∼ 10% in u2)

– tend to cancel in ∆

But increasingly important for weaker couplings or lower densities

Not able to get results for 1/(pFa0) <∼ −2

– effective potential nonanalytic in φ for small gaps

→ expansion of effective action breaks down

For parameters corresponding to neutron matter

– gap comparable to εF (∼ 30 MeV)

– more realistic treatments give ∆ ∼ 5 MeV

→ need to keep higher-order terms in effective-range expansion
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Future work

Long list of “things to do” including:

Renormalisation of boson kinetic mass, Zm
→ scaling analysis of boson loops for small gaps

Complete analysis of current ansatz for Γ
– running of fermion renormalisation factors, Zψ,M

and “Yukawa” coupling, Zg

Adding momentum-dependent interactions (effective range)
→ more realistic interaction strength at Fermi surface

Treating explicitly particle-hole channels (RPA phonons)
– important physics [Schwenk]
– remove Fierz ambiguity in bosonisation

[Jaeckel and Wetterich, hep-ph/0207094]

Adding three-body forces
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