Pairing in many-fermion systems: an exact-renormalisation-group treatment

Michael C Birse, Judith A McGovern

(University of Manchester)

Boris Krippa, Niels R Walet

(UMIST)

Birse, Krippa, McGovern and Walet, hep-ph/0406249

ERG method:

Berges, Tetradis and Wetterich, hep-ph/0005122 Delamotte, Mouhanna and Tissier, cond-mat/0309101

Background

Ideas of effective field theory and renormalisation group now well-developed for few-nucleon systems

- rely on separation of scales
- RG can be used to derive power counting
- \rightarrow classify terms as perturbations around fixed point
- consistent extension of old ideas (effective-range expansion)

Many unsuccessful attempts to extend to nuclear matter

- problem: no separation of scales
- only consistent EFT so far: weakly repulsive Fermi gas [Hammer and Furnstahl, nucl-th/0004043] (reproduces old results of Bishop and others)

Other EFT's for interacting Fermi systems exist:

- Landau Fermi liquid [Shankar], Ginsburg-Landau theory
- but parameters have no simple connection to underlying forces (like ChPT and QCD)

Look for some more heuristic approach

- based on field theory
- can be matched onto EFT's for few-nucleon systems
- input from two-body (and three-body) systems in vacuum

Try "exact" renormalisation group

- based on Wilsonian RG approach to field theories
- successfully applied to various systems in particle physics
 and condensed-matter physics
 [version due to Wetterich, Phys. Lett. **B301** (1003) 00]

[version due to Wetterich, Phys Lett B301 (1993) 90]

Outline

- ERG for the effective action
- Effective action for fermions with attraction
- Choice of regulator functions
- Evolution equations: general structure
- Driving terms in evolution equations
- Initial conditions
- Results

ERG for the effective action

For single real scalar field ϕ start from

$$e^{iW[J]} = \int D\phi \, e^{i(S[\phi] + J \cdot \phi - \frac{1}{2}\phi \cdot R \cdot \phi)}$$

R(q,k): regulator function for the ERG - suppresses contributions of modes with low momenta, $q \leq k$ \rightarrow only modes with $q \gtrsim k$ integrated out $\rightarrow W[J]$ evolves with regulator ("cut-off") scale k- becomes full generating function as $k \rightarrow 0$

Legendre transform \rightarrow effective action $\Gamma[\phi_c]$ (generator for 1PI diagrams) where expectation value of the field is

$$\frac{\delta W}{\delta J} \equiv \phi_c$$

[See talks by: Furnstahl, Litim, Polonyi]

Effective action

[convention as in: Weinberg, Quantum Theory of Fields II]

$$\Gamma[\phi_c] = W[J] - J \cdot \phi_c + \frac{1}{2}\phi_c \cdot R \cdot \phi_c$$

W evolves with scale k according to

$$\partial_k W = -\frac{1}{2} \phi_c \cdot \partial_k R \cdot \phi_c + \frac{i}{2} \operatorname{Tr} \left[(\partial_k R) \frac{\delta \phi_c}{\delta J} \right]$$

Evolution of $\Gamma[\phi_c]$

– J also runs if ϕ_c is held constant

– $\phi_c \cdot \partial_k R \cdot \phi_c$ terms cancel

$$\partial_k \Gamma = \frac{i}{2} \operatorname{Tr} \left[(\partial_k R) \frac{\delta \phi_c}{\delta J} \right]$$

From definition of Γ

$$\frac{\delta J}{\delta \phi_c} = -(\Gamma^{(2)} - R) \qquad \text{where} \qquad \Gamma^{(2)} = \frac{\delta^2 \Gamma}{\delta \phi_c \delta \phi_c}$$

 \rightarrow evolution equation for Γ in form of a one-loop integral

$$\partial_k \Gamma = -\frac{i}{2} \operatorname{Tr} \left[(\partial_k R) \left(\Gamma^{(2)} - R \right)^{-1} \right]$$

 $(\Gamma^{(2)} - R)^{-1}$: propagator of boson in background field ϕ_c

One-loop structure: like RG for few-body systems

- → can match ERG in matter onto interactions in vacuum [Polchinski's version of ERG: different structure
 - see for example: Morris, hep-th/9802039]

For a system of fermions as well as bosons

$$\partial_k \Gamma = +\frac{i}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}_F) \left((\Gamma^{(2)} - \mathbf{R})^{-1} \right)_{FF} \right] \\ -\frac{i}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}_B) \left((\Gamma^{(2)} - \mathbf{R})^{-1} \right)_{BB} \right]$$

System with charged condensates (pairing \rightarrow particle-hole mixing) – write propagator for complex field as 2 × 2 matrix (Nambu-Gor'kov) \rightarrow factors of $\frac{1}{2}$ still present

Regulator function and ansatz for Γ

Regulator R(q,k): IR cut-off on effective action Γ

- should suppress contributions of modes with $q \lesssim k$
- should give back full effective action as $k \rightarrow 0$
- $\rightarrow R(q,k)$ should provide large mass/energy gap for modes with $q \lesssim k$ and should vanish for $q \gg k$ and $k \rightarrow 0$
- Derivative $\partial_k R(q,k)$ in ERG equation
- peaks for $q\sim k$
- tends to zero for $q\gg k$
- \rightarrow acts as UV cut-off on loop integrals

ERG: complicated differential equation for functional Γ

- need to choose an ansatz for effective action
- make an expansion in local terms (as in rigorous EFT's)
- use physics to guide choice

Effective action for fermions with attraction

Attractive forces between fermions \rightarrow pairing[Furnstahl, Hands]- weak attraction: Cooper pairs (BCS state) $\mu \simeq \epsilon_F$ - strong attraction: Bose-Einstein condensation (BEC) $\mu < 0$

Single species of nonrelativistic fermion: ψ (as in neutron matter) Boson field describing correlated fermion pairs: ϕ Finite density: chemical potential μ Ansatz for Γ :

$$\begin{split} & \Gamma[\psi, \psi^{\dagger}, \phi, \phi^{\dagger}, \mu, k] \\ &= \int d^{4}x \left[\phi^{\dagger}(x) \left(Z_{\phi} \left(i\partial_{t} + 2\mu \right) + \frac{Z_{m}}{2m} \nabla^{2} \right) \phi(x) - U(\phi, \phi^{\dagger}) \right. \\ &+ \psi^{\dagger} \left(Z_{\psi} (i\partial_{t} + \mu) + \frac{Z_{M}}{2M} \nabla^{2} \right) \psi \\ &- Z_{g} g \left(\frac{i}{2} \psi^{\mathsf{T}} \sigma_{2} \psi \phi^{\dagger} - \frac{i}{2} \psi^{\dagger} \sigma_{2} \psi^{\dagger \mathsf{T}} \phi \right) \right] \end{split}$$

Potential:

Bosons carry twice charge of a fermion

- couple to chemical potential μ via quadratic term
- absorb into potential

$$\bar{U} = U - 2\mu Z_{\phi} \phi^{\dagger} \phi$$

Expand potential about minimum $\phi^{\dagger}\phi = \rho_0$ to quadratic order:

$$\bar{U} = u_0 + u_1(\phi^{\dagger}\phi - \rho_0) + \frac{1}{2}u_2(\phi^{\dagger}\phi - \rho_0)^2$$

(one redundant parameter: ρ_0 or u_1) In symmetric phase: $\rho_0 = 0$ In condensed phase: u_n defined at minimum $\rightarrow u_1 = 0$ In condensed phase with uniform background ϕ field:

Particles and holes mix (ψ and ψ^{\dagger} coupled) \rightarrow fermion spectrum with energy gap $\Delta = g|\phi|/Z_{\phi}$

$$E_F(\mathbf{q}) = \pm \frac{1}{Z_{\psi}} \sqrt{\left(\frac{Z_M}{2M}(\mathbf{q}^2 - p_F^2)\right)^2 + g^2 \phi^{\dagger} \phi}$$

Bosons become gapless Goldstone modes – spectrum (ϕ and ϕ^{\dagger} also coupled)

$$E_B(\mathbf{q}) = \pm \frac{1}{Z_{\phi}} \sqrt{\frac{Z_m}{2m}} \mathbf{q}^2 \left(\frac{Z_m}{2m} \mathbf{q}^2 + 2u_2 \phi^{\dagger} \phi\right)$$

 \rightarrow superfluid state: BCS or BEC

Γ depends on cut-off scale k through running:

- coefficients in potential, u_0 , u_1 (or ρ_0), u_2
- wave-function renormalisation factors, Z_{ϕ} , Z_{ψ}
- mass renormalisations, Z_M , Z_m
- coupling constant renormalisation, Z_g

To study crossover from BCS pairing to BEC

- need to work at fixed density
 - (otherwise can't get to negative μ for BEC)
- ightarrow must allow μ to run with k

ERG becomes a set of coupled first-order ODE's

Bare theory: at starting scale k = K

- two-body interaction between fermions only

$$\mathcal{L}_{\text{int}} = -\frac{1}{4} C_0 \left(\psi^{\dagger} \sigma_2 \psi^{\dagger \mathsf{T}} \right) \left(\psi^{\mathsf{T}} \sigma_2 \psi \right)$$

bosons just auxiliary fields (Hubbard-Stratonovich)

$$C_0(K) = -\frac{g(K)^2}{u_1(K)}$$

and $Z_{\phi,m}(K) \ll 1$, $u_2(K) \ll |C_0|$

(separation of C_0 arbitrary \rightarrow results independent of g(K))

Fermions not dressed at $k = K \rightarrow Z_{\psi}(K) = Z_M(K) = Z_g(K) = 1$

Here (first study):

- allow only potential (u_n, ρ_0) and Z_{ϕ} to run independently
- freeze $Z_{\psi} = Z_M = Z_g = 1$ and set $Z_m = Z_{\phi}$ or 1

Choice of regulator functions

Nonrelativistic systems

- carry out loop integrals over energy exactly
- regulate only integrals over three-momentum

Bosonic regulator:

$$R_B(q,k) = \frac{k^2}{2m} f(q/k)$$

where $f(x) \to 1$ as $x \to 0$ and $f(x) \to 0$ as $x \to \infty$ (and $q = |\mathbf{q}|$)

Take $R_B(q,k) \propto k^2$ for $q \lesssim k$ \rightarrow large-k behaviours of integrals reflect UV divergences

Here: use smoothed step function

$$f(q/k) = \frac{1}{2 \operatorname{erf}(1/\sigma)} \left[\operatorname{erf}\left(\frac{q+k}{k\sigma}\right) + \operatorname{erf}\left(\frac{q-k}{k\sigma}\right) \right]$$

 $\sigma:$ parameter controlling sharpness

Fermionic regulator:

- should be positive for particle states $(q^2/2M > \mu)$
- and negative for hole states $(q^2/2M < \mu)$

(can't just add artificial gap term - regulator must work in vacuum)

Here: use

$$R_F(q, p_F, k) = \operatorname{sgn}(q - p_\mu) \frac{k^2}{2M} f\left(\frac{q - p_F}{k}\right)$$

 $p_{\mu} = \sqrt{2M\mu}$: Fermi momentum corresponding to running μ $p_F = (3\pi^2 n)^{1/3}$: related to density n

Symmetric phase: $p_F = p_\mu$ (until $Z_{\psi,M}$ run)

Condensed phase: "Fermi surface" no longer at p_F (not even well-defined for large gaps) but gap in fermion spectrum \rightarrow regulator no longer crucial

Evolution equations: general structure

At present level of truncation (running u_n , ρ_0 and Z_{ϕ} only):

– all equations obtained from effective potential for uniform ϕ field – evolves according to

$$\partial_k \bar{U} = -\frac{1}{\mathcal{V}_4} \partial_k \Gamma$$
 \mathcal{V}_4 : volume of spacetime

Write potential in terms of $\rho = \phi^{\dagger} \phi$: $\overline{U}(\rho, \mu, k)$ - coefficients

$$u_n = \frac{\partial^n \bar{U}}{\partial \rho^n} \bigg|_{\rho = \rho_0}$$

- density and wave-function renormalisation

$$n = -\frac{\partial \bar{U}}{\partial \mu}\Big|_{\rho = \rho_0} \qquad \qquad Z_{\phi} = -\frac{1}{2} \frac{\partial^2 \bar{U}}{\partial \rho \partial \mu}\Big|_{\rho = \rho_0}$$

All quantities defined at running minimum $\rho = \rho_0(k)$ \rightarrow extra implicit dependence on k in condensed phase – evolution of u_n at constant μ :

$$\partial_k u_n - u_{n+1} \partial_k \rho_0 = \frac{\partial^n}{\partial \rho^n} \left(\partial_k \bar{U} \right) \Big|_{\rho = \rho_0}$$

- couples u_2 to u_3 : beyond current level of truncation

Could simply set $u_3 = 0$, but can do better:

- take $u_3(k)$ from evolution with fermion loops only (can be solved analytically)
- \rightarrow approximation becomes exact if boson loops negligible

Evolution at constant density: Running $\mu(k) \rightarrow$ further implicit dependence on k

Define total derivative

$$d_k = \partial_k + (d_k \mu) \frac{\partial}{\partial \mu}$$

and apply to $\partial \bar{U}/\partial \mu \rightarrow$ evolution equation for density

$$d_k n - 2Z_\phi d_k \rho_0 + \chi d_k \mu = -\frac{\partial}{\partial \mu} \left(\partial_k \bar{U} \right) \Big|_{\rho = \rho_0}$$

where fermion-number susceptibility is

$$\chi = \frac{\partial^2 \bar{U}}{\partial \mu^2} \Big|_{\rho = \rho_0}$$

Keep n constant \rightarrow coupled equation for ρ_0 and μ

$$-2Z_{\phi} d_k \rho_0 + \chi d_k \mu = -\frac{\partial}{\partial \mu} \left(\partial_k \bar{U} \right) \Big|_{\rho = \rho_0}$$

Symmetric phase: driving term on RHS vanishes and $\rho_0 = 0$ \rightarrow evolution at constant *n* same as at constant μ

 \rightarrow much simpler set of evolution equations:

$$\partial_{k}u_{1} = \frac{\partial}{\partial\rho} \left(\partial_{k} \bar{U} \right) \Big|_{\rho=0}$$
$$\partial_{k}u_{2} = \frac{\partial^{2}}{\partial\rho^{2}} \left(\partial_{k} \bar{U} \right) \Big|_{\rho=0}$$
$$\partial_{k}Z_{\phi} = -\frac{1}{2} \frac{\partial^{2}}{\partial\mu\partial\rho} \left(\partial_{k} \bar{U} \right) \Big|_{\rho=0}$$

Condensed phase: set of equations is

$$-u_{2} d_{k} \rho_{0} + 2Z_{\phi} d_{k} \mu = \frac{\partial}{\partial \rho} \left(\partial_{k} \bar{U} \right) \Big|_{\rho = \rho_{0}}$$
$$d_{k} u_{2} - u_{3} d_{k} \rho_{0} + 2Z_{\phi}' d_{k} \mu = \frac{\partial^{2}}{\partial \rho^{2}} \left(\partial_{k} \bar{U} \right) \Big|_{\rho = \rho_{0}}$$
$$d_{k} Z_{\phi} - Z_{\phi}' d_{k} \rho_{0} + \frac{1}{2} \chi' d_{k} \mu = -\frac{1}{2} \frac{\partial^{2}}{\partial \mu \partial \rho} \left(\partial_{k} \bar{U} \right) \Big|_{\rho = \rho_{0}}$$

Here

$$Z'_{\phi} = -\frac{1}{2} \frac{\partial^{3} \bar{U}}{\partial \rho^{2} \partial \mu} \bigg|_{\rho = \rho_{0}} \qquad \qquad \chi' = \frac{\partial^{3} \bar{U}}{\partial \mu^{2} \partial \rho} \bigg|_{\rho = \rho_{0}}$$

- like u_3 and χ : beyond current level of truncation \rightarrow replace by expressions from fermion loops only

Driving terms in evolution equations

Right-hand sides of evolution equations – all obtained from $\partial_k \overline{U}$: sum of fermion and boson one-loop integrals

Treat ψ and ψ^{\dagger} as independent fields (also ϕ and ϕ^{\dagger}) $\rightarrow 2 \times 2$ matrix structure for Gor'kov propagators etc

In presence of uniform ϕ field – inverse fermion propagator

$$\Gamma_{FF}^{(2)} - \mathbf{R}_F = \begin{pmatrix} Z_{\psi}q_0 - E_{FR} + i\epsilon \operatorname{sgn}(q - p_{\mu}) & ig\phi\sigma_2 \\ -ig\phi^{\dagger}\sigma_2 & Z_{\psi}q_0 + E_{FR} - i\epsilon \operatorname{sgn}(q - p_{\mu}) \end{pmatrix}$$

where

$$E_{FR}(q, p_F, k) = \frac{1}{2M}q^2 - \mu + R_F(q, p_F, k) \operatorname{sgn}(q - p_\mu)$$

22

Inverse boson propagtor

$$\Gamma_{BB}^{(2)} - \mathbf{R}_B = \begin{pmatrix} Z_{\phi}q_0 - E_{BR} + i\epsilon & -u_2\phi\phi \\ -u_2\phi^{\dagger}\phi^{\dagger} & -Z_{\phi}q_0 - E_{BR} + i\epsilon \end{pmatrix}$$

where

$$E_{BR}(q,k) = \frac{Z_m}{2m}q^2 + u_1 + u_2(2\phi^{\dagger}\phi - \rho_0) + R_B(q,k)$$

Evaluating the loop integrals gives (after some work)

$$\begin{split} \partial_k \bar{U} &= -\frac{1}{\mathcal{V}_4} \partial_k \Gamma \;\; = \; - \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{E_{FR}}{\sqrt{E_{FR}^2 + \Delta^2}} \, \mathrm{sgn}(q - p_\mu) \, \partial_k R_F \\ &\quad + \frac{1}{2Z_\phi} \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{E_{BR}}{\sqrt{E_{BR}^2 - V_B^2}} \, \partial_k R_B \end{split}$$
where $\Delta^2 &= g^2 \phi^{\dagger} \phi$ and $V_B = u_2 \phi^{\dagger} \phi$

Derivatives of $\partial_k \bar{U}$ with respect to $\rho = \phi^{\dagger} \phi$ and $\mu \rightarrow driving$ terms

Initial conditions

Run evolution down to k = 0 starting from some large scale k = K

Initial conditions obtained by matching onto evolution in vacuum for $k \ge K$ – fermion loops only

- can be integrated analytically to get

$$\frac{u_1(K)}{g^2} = -\frac{M}{4\pi a} + \frac{1}{2} \int \frac{d^3 q}{(2\pi)^3} \left[\frac{1}{E_{FR}(q,0,0)} - \frac{1}{E_{FR}(q,0,K)} \right]$$

since $u_1(0)$ related to physical scattering amplitude at threshold by

$$T_F = \frac{4\pi a}{M} = -\frac{g^2}{u_1(0)}$$
 a: scattering length

Both integrals diverge linearly on their own

- usual linear divergence in EFT's for two-body scattering
- \rightarrow difference linear in K

(chose $R_F \propto k^2$ for large $k \to K \sim$ cut-off scale)

Need to be careful in matter: regulator shifted by Fermi surface - acts like cut-off at $K + p_F$ for large $K \gg p_F$ \rightarrow constant shift $\propto p_F$ in linearly divergent integral \rightarrow define $u_1(K)$ for use in matter by

$$\frac{u_1(K)}{g^2} = -\frac{M}{4\pi a} + \frac{1}{2} \int \frac{d^3 \vec{q}}{(2\pi)^3} \left[\frac{1}{E_{FR}(q,0,0)} - \frac{\operatorname{sgn}(q-p_F)}{E_{FR}(q,p_F,K)} \right]$$

- like using regulator that interpolates smoothly between $R_F(q, p_F, k)$ for $k \gg p_F$ and $R_F(q, 0, k)$ for $k \lesssim p_F$ (Fermi sea in second term ~ totally suppressed for $K \gg p_F$)

Other initial values: $u_2(K)$, $Z_{\phi}(K)$ determined similarly (but p_F -dependence suppressed by powers of p_F/K)

Results

Technique can be applied to many systems

- for definiteness start with parameters relevant to neutron matter:
 - $M=4.76~{
 m fm}^{-1}$, $p_F=1.37~{
 m fm}^{-1}$, $|a|\gg 1~{
 m fm}$
- then explore wider range of values for p_Fa

Results are independent of K for $K \gtrsim 4p_F$

(provided we are careful to use shifted cut-off to define $u_1(K)$)

Also independent of width parameter σ in regulator functions

Compare results with simpler approximation keeping fermion loops only – mean-field approximation for bosons

 \rightarrow analytic results

[Marani, Pistolesi and Strinati, cond-mat/9703160 Papenbrock and Bertsch, nucl-th/9811077

Babaev, cond-mat/0010085]

Mean-field effective potential (at k = 0)

$$U^{\mathsf{MF}}(\Delta,\mu) = \frac{k_{\Delta}^{5}}{2M\pi} \left[\frac{1}{8ak_{\Delta}} - \frac{1}{15} \left(1 + x^{2}\right)^{\frac{3}{4}} P_{\frac{3}{2}}^{1} \left(-\frac{x}{\sqrt{1 + x^{2}}} \right) \right]$$

 $P_l^m(y)$: associated Legendre function $k_{\Delta} = \sqrt{2M\Delta}, \ x = \mu/\Delta$, in terms of gap $\Delta = g|\phi|$

Minimise with respect to Δ at constant density \rightarrow nonlinear equations for $\Delta,~\mu$

In limit of weak attraction, $p_F a \rightarrow 0^-$, gap has exponential form

$$\Delta \simeq \frac{8}{e^2} \epsilon_F \exp\left(-\frac{\pi}{2p_F|a|}\right)$$

Numerical solutions to the evolution equations for infinite a_0 , starting from $K = 16 \text{ fm}^{-1}$ (all in appropriate powers of fm⁻¹)

-: full solution -: fermion loops only

Transition to condensed phase $(u_1 = 0)$ at $k_{crit} \simeq 1.2$ fm⁻¹ Contributions of boson loops small (negligible in symmetric phase)

Crossover from BCS to BEC

Gap Δ and chemical potential μ at physical point (k = 0) – over wide range of densities or couplings, ($p_F a$)⁻¹

-: fermions only (analytical) •: fermions only (numerical) o: bosonic loops with $Z_{\phi} = 1$ \times : full results

BCS: positive $\mu \sim p_F^2/2M$ (large negative $(p_F a)^{-1}$) BEC: large negative μ (large positive $(p_F a)^{-1}$)

Closer look at gap

Fractional deviation of gap from analytic mean-field result

- •: fermions only (numerical)
- \circ : bosonic loops, $Z_{\phi} = 1$
- \times : full results

Comments

- In region of strong attraction
- contributions of boson loops to gap Δ very small
- $-\sim 1\%$ enhancement of gap in large- p_Fa region
- effects on other quantities larger ($\sim 10\%$ in u_2)
- tend to cancel in Δ

But increasingly important for weaker couplings or lower densities

Not able to get results for $1/(p_F a_0) \lesssim -2$

– effective potential nonanalytic in ϕ for small gaps

 \rightarrow expansion of effective action breaks down

For parameters corresponding to neutron matter

- gap comparable to ϵ_F (~ 30 MeV)
- more realistic treatments give $\Delta \sim$ 5 MeV
- \rightarrow need to keep higher-order terms in effective-range expansion

Future work

- Long list of "things to do" including:
- Renormalisation of boson kinetic mass, Z_m \rightarrow scaling analysis of boson loops for small gaps

Complete analysis of current ansatz for $\boldsymbol{\Gamma}$

- running of fermion renormalisation factors, $Z_{\psi,M}$ and "Yukawa" coupling, Z_g
- Adding momentum-dependent interactions (effective range) \rightarrow more realistic interaction strength at Fermi surface
- Treating explicitly particle-hole channels (RPA phonons)
- important physics [Schwenk]
- remove Fierz ambiguity in bosonisation
 [Jaeckel and Wetterich, hep-ph/0207094]

Adding three-body forces