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Background

Ideas of effective field theory and renormalisation group

now well-developed for few-nucleon systems

— rely on separation of scales

— RG can be used to derive power counting

— classify terms as perturbations around fixed point

— consistent extension of old ideas (effective-range expansion)

Many unsuccessful attempts to extend to nuclear matter
— problem: no separation of scales
— only consistent EFT so far: weakly repulsive Fermi gas

(reproduces old results of Bishop and others)



Other EFT’s for interacting Fermi systems exist:

— Landau Fermi liquid [Shankar], Ginsburg-Landau theory

— but parameters have no simple connection to underlying
forces (like ChPT and QCD)

Look for some more heuristic approach

— based on field theory
— can be matched onto EFT's for few-nucleon systems
— input from two-body (and three-body) systems in vacuum

Try

— based on Wilsonian RG approach to field theories

— successfully applied to various systems in particle physics
and condensed-matter physics
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ERG for the effective action

For single real scalar field ¢ start from

SWLI] — / D¢ (SOl +J-0—36-R-9)

R(q, k): regulator function for the ERG

— suppresses contributions of modes with low momenta, ¢ S &
— only modes with g 2 k integrated out

— W[J] evolves with regulator (“cut-off”) scale k

— becomes full generating function as £k — 0O

Legendre transform — effective action IN[¢¢] (generator for 1PI diagrams)
where expectation value of the field is

oW
57 = %

[See talks by: Furnstahl, Litim, Polonyi]



Effective action

1
r[(bC]:W[J]_J'(bC‘l'Ebe'R'(bC

W evolves with scale k according to

akw———¢c OLR - do+ — Tr[

Evolution of I[¢c]
— J also runs if ¢, is held constant

— ¢¢ - OLR - ¢ terms cancel
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From definition of I

2
Lo r@_R)  where r@=_""T
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— evolution equation for [ in form of a one-loop integral

O = —% Tr [(9pR) (T2 — R)™1]

(r(2 — R)~1: propagator of boson in background field ¢,

One-loop structure: like RG for few-body systems
— can match ERG in matter onto interactions in vacuum



For a system of fermions as well as bosons

nr = +2 Tr[@Rp) (P -R)Y) ]

1

—5 Tr[(GRp) (@ -R)7H) |

System with charged condensates (pairing — particle-hole mixing)
— write propagator for complex field as 2 x 2 matrix (Nambu-Gor'kov)
— factors of 3 still present



Regulator R(q, k): IR cut-off on effective action I

— should suppress contributions of modes with ¢ S k

— should give back full effective action as £k — 0

— R(q, k) should provide large mass/energy gap for modes with ¢ S k

and should vanish for ¢ > k and £k — 0O

Derivative 9, R(q,k) in ERG equation

— peaks for g ~ k
— tends to zero for ¢ > k

ERG: complicated differential equation for functional I
— need to choose an ansatz for effective action
— make an expansion in local terms (as in rigorous EFT's)

— use physics to guide choice



Effective action for fermions with attraction

Attractive forces between fermions — pairing [Furnstahl, Hands]
— weak attraction: Cooper pairs (BCS state) u ~ ep
— strong attraction: Bose-Einstein condensation (BEC) u < 0

Single species of nonrelativistic fermion: 1 (as in neutron matter)
Boson field describing correlated fermion pairs: ¢

Finite density: chemical potential u

Ansatz for [

Cl, 97, ¢, 1, u, k]
zm
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Bosons carry twice charge of a fermion
— couple to chemical potential u via quadratic term
— absorb into potential

U=U-2uZgp'¢

Expand potential about minimum ngqS = po to quadratic order:

_ 1
U = ug+ui(ed'é — po) + 5 uz (T — po)?

(one redundant parameter: pg or wy)
In symmetric phase: pg =20
In condensed phase: u, defined at minimum — w1 =0
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In condensed phase with uniform background ¢ field:

Particles and holes mix (¢ and ' coupled)
— fermion spectrum with A = g|o|/Zy

Y 0 Zy o o N2 L o
Er(q) —izw\/<2M(q pF)> + g9l

Bosons become gapless
— spectrum (¢ and ¢! also coupled)

_ L [Zm2(Zm 2 i )
EB(q)_iZ¢\/2mq (qu + 2uz¢'¢

— superfluid state: BCS or BEC
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[T depends on cut-off scale k£ through running:
e coefficients in potential, ug, uy (or pg), us

e Wwave-function renormalisation factors, Z¢, Z¢
e Mmass renormalisations, Zys, Zm

e coupling constant renormalisation, Zg,

To study crossover from BCS pairing to BEC
— need to work at fixed density

(otherwise can’t get to negative u for BEC)
— must allow p to run with k
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=2are theory: at starting scale k= K
— two-body interaction between fermions only

1
= = T 7T T
Lint =~ Co (¥1o29T) (v To20))
— bosons just auxiliary fields (Hubbard-Stratonovich)

g(K)?
u1 (K)

Co(K) = —

and Zy ,(K) < 1, ua(K) < |Co
(separation of Cy arbitrary — results independent of g(K))

Fermions not dressed at k = K— Z,(K) = Zy(K) = Zg(K) =1

Here (first study):
— allow only potential (un, pg) and Z, to run independently

—freezezwzzM:Zg:1and seth=Z¢Or1
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Choice of regulator functions

Nonrelativistic systems
— carry out loop integrals over energy exactly
— regulate only integrals over three-momentum

k2
Rp(q,k) = %f(Q/k)

where f(z) — 1 asx— 0 and f(x) - 0as z — oo (and ¢ = |q])

Take Rp(q, k) «x k2 for ¢ S k
— large-k behaviours of integrals reflect UV divergences

Here: use smoothed step function
1 q+ k q—k
k) = [erf( ) erf( )]
f(a/k) 2erf(1/0) ko + o
o. parameter controlling sharpness
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Fermionic regulator:

— should be positive for particle states (q2/2M > 1)

— and negative for hole states (¢2/2M < p)

(can’t just add artificial gap term — regulator must work in vacuum)

Here: use

oM P

pu = V2Mp: Fermi momentum corresponding to running u
pr = (372n)1/3; related to density n

Symmetric phase: pp = p, (until Z 5y run)

Condensed phase: “Fermi surface” no longer at pp
(not even well-defined for large gaps)
but gap in fermion spectrum — regulator no longer crucial
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Evolution equations: general structure

At present level of truncation (running u,, pg and Z only):
— all equations obtained from effective potential for uniform ¢ field
— evolves according to

_ 1
oLU = YA Ol V4. volume of spacetime
4

Write potential in terms of p = ¢T¢: U(p, u, k)
— coefficients

onU
Un —
n
O™ | p=p;
— density and wave-function renormalisation
oU 1 920
T T e 26 =" 2 5,0
Hlp=po POR p=py
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All quantities defined at p = po(k)
— extra implicit dependence on k in condensed phase
— evolution of uy at constant u:
o" _
Opun — Up1 Ogpo = a—pn@kU )
P=P0

— couples us to u3z: beyond current level of truncation

Could simply set uz = 0, but can do better:
— take uz(k) from evolution with fermion loops only
(can be solved analytically)
— approximation becomes exact if boson loops negligible
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Running u(k) — further implicit dependence on k

Define total derivative

0
dr = O + (dgp) e
L4

and apply to 8(7/8M — evolution equation for density

o0 _
dpn — 2Z4 dppo + x dgp = — 8—(3kU)
H p=po
where fermion-number susceptibility is
02U
X— 535
O | p=pg
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Keep n constant — coupled equation for pg and u

0

—2Z4dppo + x dpp = — a—’u(ﬁk(_])

P=p0

driving term on RHS vanishes and pg =0
— evolution at constant n same as at constant u
— much simpler set of evolution equations:

dp p=0
02 [ -
P p=0
1 92 _
0z = — =2 (8kU)
2 Oudp p=0
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set of equations is

0 _
—updppo + 2Zy dpp = 8_<8k:U)
P pP=p0
/ 0% [, -
dipup —uzdgpo +2Zydpp = ﬁ(ﬁkU)
P pP=po
1 1 92 _
dpZy — Z' d “Xdgp = —= (8U)
kg — Zg kPO‘l‘QX 37 > oo\ B
p=p0
Here
, 1 930 ., 030
26= "% 920 X T 920
PO p=pq H=OPl p=pq

— like u3z and x: beyond current level of truncation
— replace by expressions from fermion loops only
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Driving terms in evolution equations

Right-hand sides of evolution equations
— all obtained from 8kl7: sum of fermion and boson one-loop integrals

Treat ¢ and ¢ as independent fields (also ¢ and ¢')
— 2 X 2 matrix structure for Gor'kov propagators etc

In presence of uniform ¢ field
— inverse fermion propagator

r® R, = ( %0~ Ergtic sagn(q — py) 1gpo2
FE —igglon Zya0 + Erpr —i€sgn(q — pu)
where
1
Err(q,pr, k) = ——¢° — u+ Rp(q,pr, k) san(q — pp)

2M
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Inverse boson propagtor

(2) ([ Zp90 — EBR T i€ — U@
where
Zm
Epr(e.k) == ¢° +u1 +uz(26'¢ — po) + Rp(g, k)

Evaluating the loop integrals gives (after some work)

d3q R
8U———8 =—/ san(a — v.) OuR
d3* Epp

+ OpRp

3
2Z¢ (2m)3 \[E2, - V2

where A2 = ¢2¢T¢ and Vg = usgl¢

Derivatives of 8,0 with respect to p = ¢'¢ and p —
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Initial conditions

Run evolution down to k£ = 0 starting from some large scale £k = K

Initial conditions obtained by matching onto evolution in vacuum for k > K

— fermion loops only
— can be integrated analytically to get

ui(K) M n 1 [ d3q 1 1
g 4ra 2 ) (2m)3 |Epg(q,0,0) Epgr(q,0,K)
since u1(0) related to physical scattering amplitude at threshold by
4dma 92 :
Tp = — = — a. scattering length
M u1(0)

Both integrals diverge linearly on their own
— usual linear divergence in EFT's for two-body scattering

— difference linear in K

(chose Rp o k2 for large k — K ~ cut-off scale)
24



Need to be careful in matter: regulator shifted by Fermi surface
— acts like cut-off at K + pp for large K > pp
— constant shift o« pr in linearly divergent integral
— define w1 (K) for use in matter by

w(K) M 1 dG 1 ~ sgn(q — pr)

g° 4wa 2 (2m)3 |Eppr(q,0,0) Epgr(q,pr, K)

— like using regulator that interpolates smoothly between
RF(q,pF,k) for k > PR and RF(q,O,k) for k SpF

(Fermi sea in second term ~ totally suppressed for K > pp)

Other initial values: ux(K), Z4(K) determined similarly
(but pp-dependence suppressed by powers of pr/K)
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Results

Technique can be applied to many systems

— for definiteness start with parameters relevant to neutron matter:
M=476 fm ! ppr=137 fm 1 |a|>1 fm

— then explore wider range of values for pra

Results are independent of K for K 2 4pp
(provided we are careful to use shifted cut-off to define uq(K))
Also independent of width parameter o in regulator functions

Compare results with simpler approximation keeping fermion loops only
— mean-field approximation for bosons
— analytic results
[Marani, Pistolesi and Strinati, cond-mat/9703160
Papenbrock and Bertsch, nucl-th/9811077
Babaev, cond-mat/0010085]
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(at £ =0)

N 1 1 3
UMF(A, p) = 24 (14+22)* P} - =

2Mm 8&]€A_E 2 ’/1—|—CE2

P/"(y): associated Legendre function
kan =V2MA, x = u/A, in terms of gap A = g|¢|

Minimise with respect to A at constant density
— nonlinear equations for A, u

In limit of weak attraction, pra — 07, gap has exponential form

38 T
A~ —=epexp (— )
e? 2pr|al
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Numerical solutions to the evolution equations for infinite ag,
starting from K = 16 fm—1 (all in appropriate powers of fm_l)

—: full solution . fermion loops only

Transition to condensed phase (u; = 0) at kgt ~ 1.2 fm—1
Contributions of boson loops small (negligible in symmetric phase)
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Crossover from BCS to BEC

Gap A and chemical potential u
at physical point (k = 0)

— over wide range of densities
- E : -1

ooon | | ; or couplings, (ppa)

—: fermions only (analytical)
e: fermions only (numerical)
o: bosonic loops with Z¢ =1
x . full results

we,

BCS: positive p ~ p2./2M
(large negative (ppa)™1)

BEC: large negative u
(large positive (ppa)™1)

weg
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Closer look at gap
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Fractional deviation of gap from analytic mean-field result
e: fermions only (numerical)

o: bosonic loops, Z(b =1

x . full results
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In region of strong attraction

— contributions of boson loops to gap A very small

— ~ 1% enhancement of gap in large-pra region

— effects on other quantities larger (~ 10% in us)

— tend to cancel in A

But increasingly important for weaker couplings or lower densities

Not able to get results for 1/(ppag) S —2
— effective potential nonanalytic in ¢ for small gaps
— expansion of effective action breaks down

For parameters corresponding to neutron matter

— gap comparable to ep (~ 30 MeV)

— more realistic treatments give A ~ 5 MeV

— need to keep higher-order terms in effective-range expansion
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Future work
Long list of “things to do” including:

Renormalisation of boson kinetic mass, Zm,
— scaling analysis of boson loops for small gaps

Complete analysis of current ansatz for I
— running of fermion renormalisation factors, Z¢7M
and “Yukawa" coupling, Z4

Adding momentum-dependent interactions (effective range)
— more realistic interaction strength at Fermi surface

Treating explicitly particle-hole channels (RPA phonons)

— important physics [Schwenk]
— remove Fierz ambiguity in bosonisation

Adding three-body forces
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