Renormalising nuclear forces: pions and their perturbations

Mike Birse

The University of Manchester

Review and further references:
M. C. Birse, Phil Trans Roy Soc A 369 (2011) 2662 [arXiv:1012.4914]

Effective field theories for nuclear forces

Weinberg (1990): extended chiral perturbation theory to two- and three-nucleon systems

- effective field theory expanded in powers of Q / Λ_{0} low-energy scales, Q : momenta, $m_{\pi}(\lesssim 200 \mathrm{MeV}$) scales of underlying physics, $\Lambda_{0}: 4 \pi F_{\pi}, M_{N}, m_{\rho}(\gtrsim 800 \mathrm{MeV})$
- convergent expansion of potential and observables provided Q / Λ_{0} is small enough (good separation of scales)
- terms organised by naive dimensional analysis aka "Weinberg power counting" (simply counts powers of low-energy scales)

Interactions with ranges $\sim 1 / \Lambda_{0}$ not resolved at scales Q

- replaced by contact interactions
- infinite number of terms, constrained only by symmetries of QCD
- iterations (loop diagrams) usually infinite
\rightarrow need to renormalise
- we can, provided we have a consistent expansion

But...

Interactions with ranges $\sim 1 / \Lambda_{0}$ not resolved at scales Q

- replaced by contact interactions
- infinite number of terms, constrained only by symmetries of QCD
- iterations (loop diagrams) usually infinite
\rightarrow need to renormalise
- we can, provided we have a consistent expansion

But...

- simply counting powers of low-energy scales: perturbative
- may work for weakly interacting systems: ≤ 1 nucleon
- but nucleons interact strongly at low-energies
- bound states exist (nuclei!)
\rightarrow need to treat some interactions nonperturbatively

Problem: basic nonrelativistic loop diagram of order Q

$$
\frac{M}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} q}{p^{2}-q^{2}+\mathrm{i} \varepsilon}=-\mathrm{i} \frac{M p}{4 \pi}+\text { analytic }
$$

- lowest-order potential, Q^{0} : contact term and one-pion exchange
- each iteration suppressed by power of Q / Λ_{0}
- perturbative provided $Q<\Lambda_{0}$
- integral linearly divergent
- cut off (or subtract) at $q=\Lambda$

- still perturbative provided we keep $\Lambda<\Lambda_{0}$

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in Q (and some of these depend on regulator)

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in Q (and some of these depend on regulator)
- not necessarily a problem if these terms are small
- but we need them to generate bound states

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in Q (and some of these depend on regulator)
- not necessarily a problem if these terms are small
- but we need them to generate bound states (and we don't want just to play "Steven says...")

How can we iterate interactions consistently?

Identify new low-energy scales

- promote leading-order terms to order Q^{-1}
\rightarrow cancels Q from loop and so iterations not suppressed
- can, and must, then be iterated to all orders (all other terms: perturbations)

How can we iterate interactions consistently?

Identify new low-energy scales

- promote leading-order terms to order Q^{-1}
\rightarrow cancels Q from loop and so iterations not suppressed
- can, and must, then be iterated to all orders (all other terms: perturbations)

Then use the renormalisation group to determine the power counting

- general tool for analysing scale dependence

The renormalisation group

- identify all relevant low-energy scales Q

The renormalisation group

- identify all relevant low-energy scales Q

- cut off theory at an arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)

The renormalisation group

- identify all relevant low-energy scales Q

- cut off theory at an arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)
- "integrate out" high momentum states by lowering Λ

The renormalisation group

- identify all relevant low-energy scales Q

- cut off theory at an arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)
- "integrate out" high momentum states by lowering Λ
- demand that physics be independent of Λ (eg T matrix)

The renormalisation group

- identify all relevant low-energy scales Q

- cut off theory at an arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)
- "integrate out" high momentum states by lowering \wedge
- demand that physics be independent of Λ (eg T matrix)
- rescale express all dimensioned quantities in units of Λ (potential and all low-energy scales)
Λ is highest acceptable low-energy scale
- do not take it above breakdown scale Λ_{0}
(unless you know the rules and follow them to the letter!)
- really of order Q
- rescaling \rightarrow power of Λ counts low-energy scales
Λ is highest acceptable low-energy scale
- do not take it above breakdown scale Λ_{0} (unless you know the rules and follow them to the letter!)
- really of order Q
- rescaling \rightarrow power of Λ counts low-energy scales

Endpoints of flow of effective potential as $\Lambda \rightarrow 0$

- fixed points: rescaled theories independent of Λ (except for some three-body systems \rightarrow limit cycles)
- correspond to scale-free systems
- expand around one using perturbations that scale like Λ^{v}
\rightarrow EFT with power counting: Q^{d} where $d=v-1$

RG for short-range potentials

- potential analytic in all scales Q

$$
V\left(k^{\prime}, k, p ; \Lambda\right)=b_{00}(\Lambda)+b_{20}(\Lambda)\left(k^{2}+k^{\prime 2}\right)+b_{02}(\Lambda) p^{2}+\cdots
$$

k, k^{\prime} : initial, final momenta, $p=\sqrt{M E}$: on-shell momentum

- demand full off-shell T matrix be independent of cutoff $\partial T / \partial \Lambda=0$ (need off-shell to disantangle scaling of redundant operators)

RG for short-range potentials

- potential analytic in all scales Q

$$
V\left(k^{\prime}, k, p ; \Lambda\right)=b_{00}(\Lambda)+b_{20}(\Lambda)\left(k^{2}+k^{\prime 2}\right)+b_{02}(\Lambda) p^{2}+\cdots
$$

k, k^{\prime} : initial, final momenta, $p=\sqrt{M E}$: on-shell momentum

- demand full off-shell T matrix be independent of cutoff $\partial T / \partial \Lambda=0$ (need off-shell to disantangle scaling of redundant operators)
\rightarrow RG equation for rescaled potential
[Birse, McGovern, Richardson (1998)]

$$
\Lambda \frac{\partial \widehat{V}}{\partial \Lambda}=\hat{p} \frac{\partial \widehat{V}}{\partial \hat{p}}+\hat{k}^{\prime} \frac{\partial \widehat{V}}{\partial \hat{k}^{\prime}}+\hat{k} \frac{\partial \widehat{V}}{\partial \hat{k}}+\widehat{V}+\widehat{V}\left(\hat{k}^{\prime}, 1, \hat{p} ; \Lambda\right) \frac{1}{1-\hat{p}^{2}} \widehat{V}(1, \hat{k}, \hat{p} ; \Lambda)
$$

- two interesting fixed-point solutions $\partial \widehat{V}_{0} / \partial \Lambda=0$

Trivial fixed point $V_{0}=0$
Describes free particles (scale-free system)
Expansion around $V_{0}=0$ in powers of momenta

- $p^{2 n}$ is an eigenfunction of the RG equation: scales as $\Lambda^{2 n+1}$
- order in EFT given by naive dimensional analysis: $Q^{2 n}$
- perturbative \rightarrow appropriate EFT for weakly interacting systems

Trivial fixed point $V_{0}=0$

Describes free particles (scale-free system)
Expansion around $V_{0}=0$ in powers of momenta

- $p^{2 n}$ is an eigenfunction of the $R G$ equation: scales as $\Lambda^{2 n+1}$
- order in EFT given by naive dimensional analysis: $Q^{2 n}$
- perturbative \rightarrow appropriate EFT for weakly interacting systems

Nontrivial fixed point

$$
V_{0}(p, \Lambda)=-\frac{2 \pi^{2}}{M \Lambda}\left[1-\frac{p}{2 \Lambda} \ln \frac{\Lambda+p}{\Lambda-p}\right]^{-1} \quad(\text { sharp cutoff })
$$

- order Q^{-1} (so must be iterated)
\rightarrow scatteringmatrix $T(p)=i 4 \pi / M p$
- describes "unitary limit": scattering length $a \rightarrow \infty$ or bound state exactly at threshold (also scale-free)

Expanding around this point

$$
V(p, \Lambda)=V_{0}(p, \Lambda)+V_{0}(p, \Lambda)^{2} \frac{M}{4 \pi}\left(-\frac{1}{a}+\frac{1}{2} r_{e} p^{2}+\cdots\right)
$$

- factor $V_{0}^{2} \propto \Lambda^{-2}$ promotes terms by two orders compared to naive expectation: Q^{-2}, Q^{0}, \ldots
- coefficients of perturbations related to effective-range expansion [Bethe (1949)]

First example of new scales

NN scattering lengths $1 / a \lesssim 40 \mathrm{MeV}$
[van Kolck; Kaplan, Savage and Wise (1998)]

- for $p \ll m_{\pi}$ only contact interactions: "pionless EFT"
- (effective-range) expansion around unitary limit: $1 / a \rightarrow 0$

First example of new scales

NN scattering lengths $1 / a \lesssim 40 \mathrm{MeV}$
[van Kolck; Kaplan, Savage and Wise (1998)]

- for $p \ll m_{\pi}$ only contact interactions: "pionless EFT"
- (effective-range) expansion around unitary limit: $1 / a \rightarrow 0$

Promotion of potential follows from form of wave functions as $r \rightarrow 0$

- Schrödinger equation at zero energy for $r>1 / \Lambda_{0}$

$$
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\right] \psi_{0}(r)=0 \quad \text { (S wave) }
$$

- unitary limit \rightarrow irregular solutions: $\psi(r) \propto r^{-1}$
- cutoff smears contact interaction over range $R \sim \Lambda^{-1}$
\rightarrow need extra factor Λ^{-2} to cancel cutoff dependence from $|\psi(R)|^{2} \propto \Lambda^{2}$ in matrix elements of potential

One-pion exchange

- important for nuclear physics at energies $\sim 100 \mathrm{MeV}$
- order Q^{0} in chiral counting
\rightarrow treat as a perturbation [Kaplan, Savage and Wise (1998)]
- S waves: series coverges slowly, if at all [Fleming, Mehen and Stewart (1999)]
- OPE "unnaturally" strong

One-pion exchange

- important for nuclear physics at energies $\sim 100 \mathrm{MeV}$
- order Q^{0} in chiral counting
\rightarrow treat as a perturbation [Kaplan, Savage and Wise (1998)]
- S waves: series coverges slowly, if at all
[Fleming, Mehen and Stewart (1999)]
- OPE "unnaturally" strong
- strength of OPE set by scale

$$
\lambda_{N N}=\frac{16 \pi F_{\pi}^{2}}{g_{A}^{2} M_{N}} \simeq 290 \mathrm{MeV}
$$

built out of high-energy scales $\left(4 \pi F_{\pi}, M_{N}\right)$ but $\sim 2 m_{\pi}$
\rightarrow another low-energy scale?

- promotes OPE to order Q^{-1}

Central potential

- Yukawa form

$$
V_{\pi c}(r)=\frac{1}{3} \frac{m_{\pi}^{2}}{M_{N} \lambda_{\pi}} \frac{e^{-m_{\pi} r}}{r}\left(\sigma_{1} \cdot \sigma_{2}\right)\left(\tau_{1} \cdot \tau_{2}\right)
$$

- behaves like $1 / r$ for small r
- not singular enough to alter powers of r in wave functions
\rightarrow same power countings as for short-range potential alone (except for a few additional logarithms)

Central potential

- Yukawa form

$$
V_{\pi c}(r)=\frac{1}{3} \frac{m_{\pi}^{2}}{M_{N} \lambda_{\pi}} \frac{e^{-m_{\pi} r}}{r}\left(\sigma_{1} \cdot \sigma_{2}\right)\left(\tau_{1} \cdot \tau_{2}\right)
$$

- behaves like $1 / r$ for small r
- not singular enough to alter powers of r in wave functions
\rightarrow same power countings as for short-range potential alone (except for a few additional logarithms)

Tensor potential

- much more singular

$$
V_{\pi \tau}(r)=\frac{1}{3} \frac{1}{M_{N} \lambda_{\pi}}\left(3+3 m_{\pi} r+m_{\pi}^{2} r^{2}\right) \frac{e^{-m_{\pi} r}}{r^{3}} S_{12}\left(\tau_{1} \cdot \tau_{2}\right)
$$

- dominated by $1 / r^{3}$ for small r
\rightarrow very different forms for wave functions

Schrödinger equation for spin-triplet channels at short distances (uncoupled waves, keep only most singular term in potential)

- tends to energy-independent form

$$
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{L(L+1)}{r^{2}}+\frac{\beta_{L J}}{r^{3}}\right] \psi_{0}(r)=0 \quad \beta_{L J} \propto \frac{1}{\lambda_{N N}}
$$

- can be converted to Bessel's equation by defining $x=2 \sqrt{\left|\beta_{L J}\right| / r}$

$$
\psi_{0}(r) \propto r^{-1 / 2}\left[\sin \alpha J_{2 L+1}\left(2 \sqrt{\frac{\beta_{L J}}{r}}\right)+\cos \alpha Y_{2 L+1}\left(2 \sqrt{\frac{\beta_{L J}}{r}}\right)\right]
$$

- $\beta_{L J}>0$: solutions undetermined as $r \rightarrow 0$
$\rightarrow \alpha$: fixes phase of short-distance oscillations (self-adjoint extension of Hamiltonian)
- equivalent to fixing leading contact interaction

Attractive potential $\beta>0$

- $r \ll 1 / \beta$: oscillatory behaviour $\left(1 / r^{3}\right)$

$$
r^{-1 / 2} Y_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{-1 / 4} \sin \left(2 \sqrt{\frac{\beta}{r}}-\left(L+\frac{3}{4}\right) \pi\right)
$$

- $r \gg 1 / \beta$: usual power law (centrifugal)

$$
r^{-1 / 2} Y_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{L}
$$

Attractive potential $\beta>0$

- $r \ll 1 / \beta$: oscillatory behaviour $\left(1 / r^{3}\right)$

$$
r^{-1 / 2} Y_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{-1 / 4} \sin \left(2 \sqrt{\frac{\beta}{r}}-\left(L+\frac{3}{4}\right) \pi\right)
$$

- $r \gg 1 / \beta$: usual power law (centrifugal)

$$
r^{-1 / 2} Y_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{L}
$$

- fine tune $\alpha=\pi / 2$

$$
r^{-1 / 2} J_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{-(L+1)}
$$

irregular solution for $r \gg 1 / \beta \rightarrow$ unitary limit

Repulsive case $\beta<0$: modified Bessel functions

- $r \ll 1 / \beta$: exponential behaviour (regular as $r \rightarrow 0$)

$$
r^{-1 / 2} K_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{-1 / 4} \exp \left(-2 \sqrt{\frac{\beta}{r}}\right)
$$

- $r \gg 1 / \beta$: power law

$$
r^{-1 / 2} K_{2 L+1}\left(2 \sqrt{\frac{\beta}{r}}\right) \sim r^{L}
$$

Wave functions $\psi(r) / p^{L}$ for (a) ${ }^{3} P_{0}$, (b) ${ }^{3} P_{1}$, (c) ${ }^{3} D_{2}$, (d) ${ }^{3} G_{4}$.
Solid lines: energy-independent asymptotic form Short-dashed lines: $T=5 \mathrm{MeV}$; long-dashed lines: $T=300 \mathrm{MeV}$

New power countings

Power-law behaviour of wave functions in presence of tensor OPE:

$$
\psi(r) \sim r^{-1 / 4} \times \text { sine or exponential }
$$

Renormalised contact interactions

- extra factor of $\Lambda^{-1 / 2}$ to cancel $|\psi(R)|^{2} \propto \Lambda^{1 / 2}$
\rightarrow promoted by half order compared to naive dimensional analysis for S waves, but in all partial waves
- leading term: order $Q^{-1 / 2}$ (not quite relevant)
- matches results of full RG analysis [Birse (2006)]

RG analysis \rightarrow second fixed point

- unstable, like effective-range point
- contact interactions promoted by further power of Q^{-1}
- leading term: order $Q^{-3 / 2} \rightarrow$ iterate
- presumably related to bound state with momentum scale $p \lesssim \beta$ equivalent to taking α close to $\pi / 2$

RG analysis \rightarrow second fixed point

- unstable, like effective-range point
- contact interactions promoted by further power of Q^{-1}
- leading term: order $Q^{-3 / 2} \rightarrow$ iterate
- presumably related to bound state with momentum scale $p \lesssim \beta$ equivalent to taking α close to $\pi / 2$

Leading term is relevant only in small regions of α

- explains "new leading order" [Nogga, Timmermans and van Kolck (2005)]
- also "plateaux" in Λ-dependence seen there
- need to fix α to get well-defined wave functions but away low-energy scattering depends weakly on α except around $\alpha=\pi / 2$
$1 / r^{3}$ "short-ranged" for a long-range potential
- nonperturbative region not resolved by long-wavelength S waves
- higher partial waves shielded by centrifugal barrier below critical momentum

$$
p_{c} \sim[L(L+1)]^{3 / 2} /|\beta|
$$

\rightarrow perturbative treatment of tensor potential for $p \ll p_{c}$
Critical momenta in chiral limit

Channel	p_{c}
${ }^{3} S_{1}-{ }^{3} D_{1}$	66 MeV
${ }^{3} P_{0}$	182 MeV
other P, D waves	$\sim 400 \mathrm{MeV}$
F waves and above	$\gtrsim 2000 \mathrm{MeV}$

Summary

Identifying $\lambda_{N N}$ as another low-energy scale justifies (requires) iteration of OPE

- scale $\propto \lambda_{N N}$ defining nonperturbative region depends on L
- "natural" systems: scattering depends weakly on short-distance parameter α or leading contact interactions
- "unnatural" systems: fine-tuned to give low-energy bound state (cf effective-range expansion around unitary limit)

Summary

Identifying $\lambda_{N N}$ as another low-energy scale justifies (requires) iteration of OPE

- scale $\propto \lambda_{N N}$ defining nonperturbative region depends on L
- "natural" systems: scattering depends weakly on short-distance parameter α or leading contact interactions
- "unnatural" systems: fine-tuned to give low-energy bound state (cf effective-range expansion around unitary limit)

RG analysis

- gives the possible power countings
- can explain features seen by Nogga, Timmermans and van Kolck, and Pavòn Valderrama and Ruiz Arriola
- but does not say whether separation of scales is good enough
\rightarrow need to examine specific system and its scales

Suggested power countings for triplet waves:

- naive dimensional analysis ("Weinberg")
- F waves and above
- P and D waves for $p \ll \lambda_{N N}$
- "natural" counting with iterated tensor potential: leading contact term promoted to order $Q^{-1 / 2}$
- P and D waves for $p \gtrsim \lambda_{N N}$
- "unnatural" counting: leading contact term of order $Q^{-3 / 2}$
- ${ }^{3} S_{1}-{ }^{3} D_{1}$

Open questions

- Is the new power counting needed for all P and D waves?
- Is the unnatural counting required in the ${ }^{3} S_{1-}{ }^{3} D_{1}$ waves? (And what does it mean in terms of wave functions?)
- Do the same power countings also apply to waves where tensor OPE is repulsive?
- What is the counting for three-body forces in presence of tensor OPE?

