BUILDING BLOCKS OF MATTER

These basic constituents of matter are spin- $\frac{1}{2}$ fermions: quarks and leptons. These carry various charges including: electric charge, Q, baryon number, B and lepton number, L. Quarks carry a three-valued charge called colour; they are never seen as free particles but are always confined in colourless hadrons, either mesons $(q\bar{q})$ or baryons (qqq). For quarks and hadrons we define the third component of the isospin, I_3 . They form multiplets with isospin I where $I_3 = +I$, ..., -I.

Everyday matter consists mainly of up quarks, u, down quarks, d and electrons, e^- . Weak β decays of unstable nuclei produce electron neutrinos, ν_e .

particle	B	L	Q	Ι	I_3	Mass
u	$+\frac{1}{3}$	0	$+\frac{2}{3}$	$\frac{1}{2}$	$+\frac{1}{2}$	$\sim 300 \text{ MeV}^*$ 2.5 MeV^\dagger
d	$+\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\begin{array}{c} \sim 300 \ {\rm MeV^*} \\ 5 \ {\rm MeV^\dagger} \end{array}$
e^-	0	+1	-1	-	_	$0.511~{\rm MeV}$
$ u_e$	0	+1	0	_	_	$< 0.25~{\rm eV}$

* "constituent" mass relevant to hadron structure; [†] "current" mass relevant to high energy processes

Their antiparticles, \overline{u} , \overline{d} , e^+ and $\overline{\nu}_e$, have the same masses as their partners but opposite values for B, L, Q and I_3 . Fermions and antifermions have opposite intrinsic parities; by convention we assign P = +1 to the fermions. The charges of the light quarks and antiquarks can be related to their isospins by $Q = \frac{1}{2}B + I_3$.

The fundamental forces between these particles are mediated by bosons. Most of these are spin-1 (vector or "gauge") bosons, namely photons, γ , gluons, g, and weak bosons, W^{\pm} and Z^0 . However, we now know that there is also a spin-0 Higgs boson, H^0 . All of these have B = L = 0. Two, W^{\pm} , carry electric charge, and the gluons have 8 possible colour charges.

force	particle	Q	$J^{PC} *$	Mass
strong	g	0	1-	0^{\dagger}
EM	γ	0	1	0
weak	W^{\pm}	± 1	1	$80.4 \mathrm{GeV}$
	Z^0	0	1	$91.2~{\rm GeV}$
	H^0	0	0	$126 { m ~GeV}$

* C is not defined for the coloured gluons; neither P nor C is defined for the weak bosons; \dagger confined Mike Birse (October 2014)