
Revision of Angular Momentum in Quantum Mechanics

This document summarises the aspects of angular momentum that you met in the second year courses
PHYS20101 and PHYS20235.

Orbital angular momentum

We start with the classical definition of orbital angular momentum. In quantum mechanics the
position and momentum vectors become operators, so

L = r× p⇒ L̂z = −i~
(
x
∂

∂y
− y ∂
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)
= −i~ ∂
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[L̂x, L̂y] = i~L̂z etc; [L̂2, L̂i] = 0;

The commutation relations imply that we can only simultaneously know L2 and one component,
taken conventionally to be Lz. The common eigenfunctions of L̂2 and L̂z are the spherical harmonics,
Y m
l (θ, φ):

L̂2Y m
l (θ, φ) = ~2 l(l + 1)Y m

l (θ, φ) L̂zY
m
l (θ, φ) = ~mY m

l (θ, φ)

From requirements that the wave function must be finite everywhere, and single-valued under φ →
φ+ 2π, it emerges that l and m are integers and must satisfy

l = 0, 1, 2 . . . , m = −l,−l + 1, . . . l.

These have definite parity of (−1)l, since under r→ −r,

Y m
l (θ, φ)→ Y m

l (π − θ, φ+ π) = (−1)lY m
l (θ, φ).

See the end of these notes for some explicit forms of spherical harmonics.

Intrinsic and total angular momentum

Orbital angular momentum is not the only source of angular momentum, particles may have intrinsic
angular momentum or spin. The corresponding operator is Ŝ. The eigenvalues of Ŝ2 have the same

form as in the orbital case, ~2s(s+ 1) , but now s can be integer or half integer; similarly the

eigenvalues of Ŝz are ~ms, with

s = 0, 1
2
, 1, 3

2
. . . , ms = −s,−s+ 1, . . . s.

s = 1
2

for an electron, s = 1 for a photon or W boson. This means that the magnitude of the spin

vector of an electron is (
√

3/2)~, but we always just say “spin-1
2
”.

If a particle has both orbital and spin angular momentum, we talk about its total angular
momentum, with operator

Ĵ = L̂ + Ŝ.

As with spin, the eigenvalues of Ĵ2 are ~2j(j + 1) ,

j = 0, 1
2
, 1, 3

2
. . . , mj = −j,−j + 1, . . . j.



Systems composed of more than one particle (hadrons, nuclei, atoms) will have many contributions
to their total angular momentum. It is sometimes useful to add up all the spins to give a total spin,
and now, confusingly, we denote the quantum numbers by S and MS, so it is really important to
distinguish operators and the corresponding quantum numbers. Then

Ŝtot = Ŝ(1) + Ŝ(2) + . . . ,

where the superscripts (1), (2) refer to the individual particles.

Similarly we use L̂tot with quantum numbers L and ML, and Ĵtot with quantum numbers J
and MJ . When talking about angular momentum generally, we often use Ĵ to refer to any angular
momentum, whether single or multiple particle, pure spin, pure orbital or a combination.

The following rules are obeyed by any angular momentum (eg Ĵ can be replaced by L̂ or Ŝ, for
a single particle of composite system):

[Ĵx, Ĵy] = i~Ĵz etc; [Ĵ2, Ĵi] = 0;

It follows that the eigenvalues of (L̂tot)2, (Ŝtot)2 and (Ĵtot)2 have exactly the same form, with
the same restrictions on the quantum numbers, as those for a single particle. So for instance the

eigenstates of (Ŝtot)2 are ~2S(S + 1) , and of Ŝtot
z are ~Ms, and

L = 0, 1, 2 . . . , S = 0, 1
2
, 1, 3

2
. . . , J = 0, 1

2
, 1, 3

2
. . . ,

ML = −L,−L+ 1, . . . L, MS = −S,−S + 1, . . . S, MJ = −J,−J + 1, . . . J.

Addition of angular momentum

The rules for the addition of angular momentum are as follows: we start with adding orbital angular
momentum and spin for a composite system with quantum numbers L and S. Angular momentum is
a vector, and so the total can be smaller as well as greater that the parts; however the z-components
just add. The allowed values of the total angular momentum quantum numbers are

J = |L− S|, |L− S|+ 1, . . . , L+ S, MJ = ML +MS.

However since L̂z and Ŝz do not commute with Ĵ2, we cannot know J , ML and MS simultaneously.
For a single-particle system, replace J , L, and S with j, l, and s.

More generally, for the addition of any two angular momenta with quantum numbers J1,M1 and
J2,M2, the rules are

J = |J1 − J2|, |J1 − J2|+ 1, . . . , J1 + J2, MJ = M1 +M2

and again we cannot know J , M1 and M2 simultaneously.
Confusingly, when referring to a composite particle (eg a hadron or nucleus), the total angular

momentum is often called its “spin” but given the quantum number J . Sometimes this usage even
extends to elementary particles. For the electron and proton, s is more common though.

For the case of a spin-1
2

particle, the eigenvalues of Ŝz are ±1
2
~, and here we will just denote these

states by ↑ and ↓ (αz and βz are also often used); hence
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~↓

For two such particles there are four states ↑↑, ↓↓, ↑↓ and ↓↑. The first two states have MS = 1
and −1 respectively, and we can show, using Ŝtot = Ŝ(1) + Ŝ(2), that they are also eigenstates of (Ŝtot)2

with S = 1. However the second two, though they have MS = 0, are not eigenstates of (Ŝtot)2. To
make those, we need linear combinations, tabulated below:



S = 1 S = 0
M = 1 ↑↑
M = 0 1√

2
(↑↓+ ↓↑) 1√

2
(↑↓ − ↓↑)

M = −1 ↓↓

The S = 1 states are symmetric under exchange of particles; the S = 0 states are antisymmetric.
For a system of N spin-1

2
particles, S will be integer if N is even and half-integer if N is odd.

Bosons and Fermions

Particles with half-integer spin (electrons, baryons) are called fermions, those with integer spin,
including J = 0, (mesons, photons, Higgs) are called bosons. The “Pauli exclusion principle” applies
to fermions, but it is a special case of the “spin-statistics theorem” which says that the overall
quantum state of a system of identical fermions must be antisymmetric under exchange of any pair,
while that of a system of identical bosons must be symmetric. There may be several components to
the state (spatial wave function, spin state...).

Examples of the consequences of the spin-statistics theorem are:

• If two electrons in an atom are in the same orbital (thus their spatial wave function is symmetric
under exchange of the two), they must be in an S = 0 state.

• Thus the ground state of helium has S = 0, but the excited states can have S = 0 (parahelium)
or S = 1 (orthohelium).

• Two π0 mesons must have even relative orbital angular momentum L (they are spinless, so this
is the only contribution to their wave function).

• Two ρ0 mesons (spin-1 particles) can have odd or even relative orbital angular momentum L,
but their spin state must have the same symmetry as their spatial state. (In this case, S = 2
and 0 are even, S = 1 is odd.)

Note that in the last two, in the centre-of-momentum frame the spatial state only depends on the
relative coordinate r. So interchanging the particles is equivalent to r→ −r, ie the parity operation.

Spherical Harmonics

In spherical polar coordinates the orbital angular momentum operators are

L̂x = 1
2
(L̂+ + L̂−) and L̂y = 1

2i
(L̂+ − L̂−), where
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The spherical harmonics, Y m
l (θ, φ) are eigenfunctions of L̂2 and L̂z; the first few are as follows
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