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PHYS20101
Introduction to Quantum Mechanics

SUMMARY OF IMPORTANT CONCEPTS

The following is a summary originally prepared by A C
Phillips, adapted by G D Lafferty, A J Bray and W R Flavell

QUANTUM WAVEFUNCTIONS

• Particle and wave properties are described by a wavefunction Ψ which
ebbs and flows in accordance with the time-dependent Schrödinger
equation (TDSE),

  

€ 

ˆ H Ψ = ih∂Ψ
∂t

where 

€ 

ˆ H  is the ‘energy operator’, usually called the Hamiltonian
operator.

• 

€ 

Ψ
2 is a probability density for position.

In one dimension,

€ 

P(x, t)dx = Ψ(x,t) 2dx =  the probability of finding 
                                        the particle at time t between x and x + dx

• If you look everywhere, you will be certain to find the particle.  Ψ is
normalised at all times t such that, integrated over all space, the
probability of finding the particle is unity.

In one dimension:

€ 

Ψ(x, t) 2
−∞

+∞

∫ dx =1
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QUANTUM STATES

Wavefunctions represent the possible states of motion of real particles.
They bear only a passing resemblance to the well-defined particle
trajectories encountered in classical physics, and are called quantum states
(QS).

• A QS provides precise predictions for the probabilities of the results
of measurements.

• In the absence of measurements, a QS evolves deterministically in
accordance with the time-dependent Schrödinger equation.

• Any linear superposition of solutions of the TDSE is also a solution.
(This is not true of superpositions of solutions of the time-independent
Schrödinger equation (TISE) unless they have the same energy, i.e.
they are degenerate.)

• A QS is fragile.  A measurement destroys it and replaces it by a new
quantum state which is compatible with the outcome of the
measurement.

• However, we still do not understand the link between the statistical
nature of some of the predictions of quantum mechanics and the
certainties we measure in the macroscopic world.

QUANTUM EVOLUTION

• Time evolution is governed by the TDSE

  

€ 

ˆ H Ψ = ih∂Ψ
∂t

.

• If the QS is a state of certain energy E, then

  

€ 

Ψ =ψ e−iEt / h ,
where ψ satisfies the TISE

€ 

ˆ H ψ = Eψ ,
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and all observable properties are constant in time,  Such a state is
called a stationary state.

• If the QS is a state of uncertain energy with normalised wavefunction
given by

  

€ 

Ψ = c1ψ1e
− iE1t / h + c2ψ2 e

− iE2t / h ,

an energy measurement results in E1 with probability |c1|2 or E2 with
probability |c2|2, and observable properties oscillate with a period
  

€ 

2πh /E2 − E1 .
Thus if the QS is a state of uncertain energy ΔE, the timescale (δt) for
change of observable properties is of the order   

€ 

δt •ΔE ≈ h .

QUANTUM MECHANICAL TUNNELLING

• If a quantum particle is subject to a confining potential V, there is a
finite probability of finding the particle in classically forbidden
regions (where E<V) unless the confining potential is infinite.

• A particle may thus ‘tunnel’ through a thin barrier of thickness a with
a tunnelling probability that depends upon 

  

€ 

e−2βa ,  where β =
2m(V − E)

h
.

Hence the wavefunction decays exponentially in the classically
forbidden barrier region.

QUANTUM OBSERVABLES

A measurable quantity or observable, A, is represented in quantum
mechanics by an operator 

€ 

ˆ A .

In general, the outcome of a measurement of A is uncertain:

• For a system in the state Ψ(x,t), the expectation value of A is

€ 

A = Ψ* (x,t) ˆ A 
−∞

∞

∫ Ψ(x, t)dx
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• The expectation value of A2 is

€ 

A2 = Ψ* (x, t) ˆ A 2
−∞

∞

∫ Ψ(x,t)dx

• The uncertainty in the outcome is

€ 

ΔA = A2 − A 2

Sometimes the outcome is certain:

• If the quantum state is an eigenstate of 

€ 

ˆ A ,

€ 

Ψ =ψn  where ˆ A ψn = Anψn ,

the outcome is equal to the eigenvalue An.

QUANTUM COMPATIBILITY

When are observables A and B compatible?

• Physically, if we can know both precisely at the same time.

• Mathematically, if the commutator 

€ 

ˆ A , ˆ B [ ]  is zero, so that there exists a
complete set of QS’s with certain values for both A and B.

Examples

• Position and momentum are incompatible because

  

€ 

ˆ x , ˆ p [ ] = ih

• The x and y components of angular momentum are incompatible
because

  

€ 

ˆ L x, ˆ L y[ ] = ih ˆ L z
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• The z component of angular momentum and its magnitude are
compatible because

€ 

ˆ L 2, ˆ L z[ ] = 0

ANGULAR MOMENTUM IN QUANTUM MECHANICS

• Orbital angular momentum has uncertain direction.  At best, the
magnitude and only one component can be determined with certainty.

• For a particle moving in a central potential V(r,θ,φ)=V(r), angular
momentum is conserved.

• In such systems, the separable wavefunction 

€ 

ψ(r,θ,φ) = R(r)Yl ,ml
(θ,φ)  is

an eigenfunction of certain L2 and Lz, but uncertain Lx and Ly.

• The eigenvalues L2 and Lz are quantised:

  

€ 

L2 = l(l +1)h2

Lz = mlh

where l = 0,1,2......and, for a given l :
ml = −l,−(l −1),...,0,...,l −1,l
i.e. ml ≤ l; ml  is an integer

l is called the ‘orbital angular momentum quantum number’ (or just
‘orbital quantum number’).

 ml is the ‘azimuthal angular momentum quantum number’ (or just
‘azimuthal quantum number’).

• The eigenfunctions have specific angular shape.  For example,

€ 

Y1,+1 = −
3
8π
sinθ e+ iφ , Y1,0 =

3
4π

cosθ , Y1,−1 =
3
8π
sinθ e− iφ



6

QUANTUM STATES IN A CENTRAL POTENTIAL

For a particle in a central potential:

• There exist eigenfunctions with certain E, L2 and Lz of the form

€ 

ψ(r,θ,φ) =
U(r)
r

Yl,ml
(θ,φ)

where the radial wavefunction R(r) is given by U(r)/r.

• For a system such as an atom, where the central potential is a
Coulomb potential, the possible energies, E, for each value of the
orbital angular momentum quantum number, l, are found by solving
the radial TISE,

  

€ 

−
h2

2me

d2

dr2 +
l(l +1)h2

2mer
2 −

e2

4πε0r
 

 
 

 

 
 U(r) = EU(r),

where l(l +1)h2

2mer
2  is the 'centrifugal potential',

subject to the boundary conditions U(r)=0 at r=0 and at r=

€ 

∞.

• The allowed energies of bound state solutions depend only on the
value of the principal quantum number, n, as En

€ 

∝ -1/n2.  n has values
(l+1), (l+2), (l+3)…….., hence n=1,2,3……..

€ 

∞.  The maximum
value of l is thus (n-1).

• The complete wavefunctions for the hydrogen atom have the form

€ 

ψn.l ,ml
(r,θ,φ) = constant × rle−r na0 (−1)k

k= 0

n− l−1

∑ ck
r
a0

 

 
 

 

 
 

k

× Pl ,ml
(θ) × eimlφ

€ 

where Pl,ml
(θ) are the associated Legendre polynomials

and the polynomials in r a0 are known as the associated Laguerre polynomials.

The index n-l-1 corresponds to the number of nodes in the radial part
of the wavefunction.


