PHYS20101
 Introduction to Quantum Mechanics

SUMMARY OF IMPORTANT CONCEPTS

The following is a summary originally prepared by A C Phillips, adapted by G D Lafferty, A J Bray and W R Flavell

QUANTUM WAVEFUNCTIONS

- Particle and wave properties are described by a wavefunction Ψ which ebbs and flows in accordance with the time-dependent Schrödinger equation (TDSE),

$$
\hat{H} \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

where \hat{H} is the 'energy operator', usually called the Hamiltonian operator.

- $|\Psi|^{2}$ is a probability density for position.

In one dimension,

$$
\begin{aligned}
P(x, t) d x=|\Psi(x, t)|^{2} d x= & \text { the probability of finding } \\
& \text { the particle at time } t \text { between } x \text { and } x+d x
\end{aligned}
$$

- If you look everywhere, you will be certain to find the particle. Ψ is normalised at all times t such that, integrated over all space, the probability of finding the particle is unity.

In one dimension:

$$
\int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=1
$$

QUANTUM STATES

Wavefunctions represent the possible states of motion of real particles. They bear only a passing resemblance to the well-defined particle trajectories encountered in classical physics, and are called quantum states (QS).

- A QS provides precise predictions for the probabilities of the results of measurements.
- In the absence of measurements, a QS evolves deterministically in accordance with the time-dependent Schrödinger equation.
- Any linear superposition of solutions of the TDSE is also a solution. (This is not true of superpositions of solutions of the time-independent Schrödinger equation (TISE) unless they have the same energy, i.e. they are degenerate.)
- A QS is fragile. A measurement destroys it and replaces it by a new quantum state which is compatible with the outcome of the measurement.
- However, we still do not understand the link between the statistical nature of some of the predictions of quantum mechanics and the certainties we measure in the macroscopic world.

QUANTUM EVOLUTION

- Time evolution is governed by the TDSE

$$
\hat{H} \Psi=i \hbar \frac{\partial \Psi}{\partial t} .
$$

- If the QS is a state of certain energy E, then

$$
\Psi=\psi e^{-i E / / \hbar},
$$

where ψ satisfies the TISE

$$
\hat{H} \psi=E \psi,
$$

and all observable properties are constant in time, Such a state is called a stationary state.

- If the QS is a state of uncertain energy with normalised wavefunction given by

$$
\Psi=c_{1} \psi_{1} e^{-i E_{1} t / \hbar}+c_{2} \psi_{2} e^{-i E_{2} t / \hbar},
$$

an energy measurement results in E_{1} with probability $\left|c_{1}\right|^{2}$ or E_{2} with probability $\left|c_{2}\right|^{2}$, and observable properties oscillate with a period $2 \pi \hbar\left|E_{2}-E_{1}\right|$.
Thus if the QS is a state of uncertain energy ΔE, the timescale (δt) for change of observable properties is of the order $\delta t \bullet \Delta E \approx \hbar$.

QUANTUM MECHANICAL TUNNELLING

- If a quantum particle is subject to a confining potential V, there is a finite probability of finding the particle in classically forbidden regions (where $E<V$) unless the confining potential is infinite.
- A particle may thus 'tunnel' through a thin barrier of thickness a with a tunnelling probability that depends upon $e^{-2 \beta \alpha}$, where $\beta=\frac{\sqrt{2 m(V-E)}}{\hbar}$. Hence the wavefunction decays exponentially in the classically forbidden barrier region.

QUANTUM OBSERVABLES

A measurable quantity or observable, A, is represented in quantum mechanics by an operator \hat{A}.

In general, the outcome of a measurement of A is uncertain:

- For a system in the state $\Psi(x, t)$, the expectation value of A is

$$
\langle A\rangle=\int_{-\infty}^{\infty} \Psi^{*}(x, t) \hat{A} \Psi(x, t) d x
$$

- The expectation value of A^{2} is

$$
\left\langle A^{2}\right\rangle=\int_{-\infty}^{\infty} \Psi *(x, t) \hat{A}^{2} \Psi(x, t) d x
$$

- The uncertainty in the outcome is

$$
\Delta A=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}}
$$

Sometimes the outcome is certain:

- If the quantum state is an eigenstate of \hat{A},

$$
\Psi=\psi_{n} \text { where } \hat{A} \psi_{n}=A_{n} \psi_{n},
$$

the outcome is equal to the eigenvalue A_{n}.

QUANTUM COMPATIBILITY

When are observables A and B compatible?

- Physically, if we can know both precisely at the same time.
- Mathematically, if the commutator $[\hat{A}, \hat{B}]$ is zero, so that there exists a complete set of QS's with certain values for both A and B.

Examples

- Position and momentum are incompatible because

$$
[\hat{x}, \hat{p}]=i \hbar
$$

- The x and y components of angular momentum are incompatible because

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}
$$

- The z component of angular momentum and its magnitude are compatible because

$$
\left[\hat{L}^{2}, \hat{L}_{z}\right]=0
$$

ANGULAR MOMENTUM IN QUANTUM MECHANICS

- Orbital angular momentum has uncertain direction. At best, the magnitude and only one component can be determined with certainty.
- For a particle moving in a central potential $V(r, \theta, \phi)=V(r)$, angular momentum is conserved.
- In such systems, the separable wavefunction $\psi(r, \theta, \phi)=R(r) Y_{l, m_{l}}(\theta, \phi)$ is an eigenfunction of certain L^{2} and L_{z}, but uncertain L_{x} and L_{y}.
- The eigenvalues L^{2} and L_{z} are quantised:

$$
\begin{aligned}
& L^{2}=l(l+1) \hbar^{2} \\
& L_{z}=m_{l} \hbar
\end{aligned}
$$

$$
\text { where } l=0,1,2 \ldots \ldots \text { and, for a given } l \text { : }
$$

$$
m_{l}=-l,-(l-1), \ldots, 0, \ldots, l-1, l
$$

i.e. $\left|m_{l}\right| \leq l ; m_{l}$ is an integer
l is called the 'orbital angular momentum quantum number' (or just 'orbital quantum number').
m_{l} is the 'azimuthal angular momentum quantum number' (or just 'azimuthal quantum number').

- The eigenfunctions have specific angular shape. For example,

$$
Y_{1,+1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{+i \phi}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1,-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}
$$

QUANTUM STATES IN A CENTRAL POTENTIAL

For a particle in a central potential:

- There exist eigenfunctions with certain E, L^{2} and L_{z} of the form

$$
\psi(r, \theta, \phi)=\frac{U(r)}{r} Y_{l, m_{l}}(\theta, \phi)
$$

where the radial wavefunction $R(r)$ is given by $U(r) / r$.

- For a system such as an atom, where the central potential is a Coulomb potential, the possible energies, E, for each value of the orbital angular momentum quantum number, l, are found by solving the radial TISE,

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 m_{e} r^{2}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] U(r)=E U(r),} \\
& \text { where } \frac{l(l+1) \hbar^{2}}{2 m_{e} r^{2}} \text { is the 'centrifugal potential', }
\end{aligned}
$$

subject to the boundary conditions $U(r)=0$ at $r=0$ and at $r=\infty$.

- The allowed energies of bound state solutions depend only on the value of the principal quantum number, n, as $E_{n} \propto-1 / n^{2} . n$ has values $(l+1),(l+2),(l+3) \ldots \ldots \ldots$, hence $n=1,2,3 \ldots \ldots \ldots \infty$. The maximum value of l is thus $(n-1)$.
- The complete wavefunctions for the hydrogen atom have the form

$$
\psi_{n, l m_{l}}(r, \theta, \phi)=\text { constant } \times r^{l} e^{-r / r a_{0}} \sum_{k=0}^{n--1-1}(-1)^{k} c_{k}\left(\frac{r}{a_{0}}\right)^{k} \times P_{l, m_{l}}(\theta) \times e^{i m, \phi}
$$

where $P_{l, m_{l}}(\theta)$ are the associated Legendre polynomials and the polynomials in r / a_{0} are known as the associated Laguerre polynomials.

The index $n-l-1$ corresponds to the number of nodes in the radial part of the wavefunction.

