

Universal behaviour of four-boson systems from a functional renormalisation group

Michael C Birse
The University of Manchester

Results from:

Jaramillo Avila and Birse, arXiv:1304.5454 Schmidt and Moroz, arXiv:0910.4586 Krippa, Walet and Birse, arXiv:0911.4608 Birse, Krippa and Walet, arXiv:1011.5852

Background

Ideas of effective field theory and renormalisation group

- well-developed for few-nucleon and few-atom systems
- rely on separation of scales
- Wilsonian RG used to derive power counting
- → classify terms as perturbations around fixed point (or limit cycle)

Background

Ideas of effective field theory and renormalisation group

- well-developed for few-nucleon and few-atom systems
- rely on separation of scales
- Wilsonian RG used to derive power counting
- → classify terms as perturbations around fixed point (or limit cycle)

Many unsuccessful attempts to extend to dense matter

- but no separation of scales
- other EFT's for interacting Fermi systems exist (Landau Fermi liquid, Ginsburg-Landau theory)
- but parameters have no simple connection to underlying forces

EFTs based on contact interactions

- not well suited for standard many-body methods
- ightarrow switch to lattice simulation or look for some more heuristic approach
 - based on field theory
 - can be matched onto EFT's for few-body systems (input from 2- and 3-body systems in vacuum)

Try functional renormalisation group ("exact" RG)

- based on Wilsonian RG approach to field theories
- successfully applied to various systems in areas from condensed-matter physics to quantum gravity [version due to Wetterich (1993)]

Outline

- Functional RG
- Spin-½ fermions
 - o Dimer-dimer scattering
- Bosons
 - o Efimov physics
 - o 4-body systems

Functional RG

Version based on the effective action $\Gamma[\phi_c]$

• start from generating function W[J] defined by

$$e^{iW[J]} = \int D\phi \, e^{i(S[\phi] + J \cdot \phi - \frac{1}{2}\phi \cdot R \cdot \phi)}$$

- R(q, k): regulator function suppresses modes with momenta $q \lesssim k$ ("cutoff scale")
- only modes with $q \gtrsim k$ integrated out
- W[J] becomes full generating function as $k \to 0$

Legendre transform \rightarrow effective action

$$\Gamma[\phi_c] = W[J] - J \cdot \phi_c + \frac{1}{2} \phi_c \cdot R \cdot \phi_c$$
 where $\phi_c = \frac{\delta W}{\delta J}$

(generating function for 1-particle-irreducible diagrams)

 Γ evolves with scale k according to

$$\partial_k \Gamma = -rac{i}{2} \operatorname{Tr} \left[(\partial_k R) \left(\Gamma^{(2)} - R
ight)^{-1}
ight] \quad ext{where} \quad \Gamma^{(2)} = rac{\delta^2 \Gamma}{\delta \phi_c \delta \phi_c}$$

 $(\Gamma^{(2)}-R)^{-1}$: propagator of boson in background field ϕ_c (one-loop structure but still exact)

Evolution interpolates between "bare" classical action at large scale K and full 1PI effective action as $k \to 0$ (thresholds etc ...)

 Γ evolves with scale k according to

$$\partial_k \Gamma = -rac{i}{2} \operatorname{Tr} \left[(\partial_k R) \left(\Gamma^{(2)} - R
ight)^{-1}
ight] \quad ext{where} \quad \Gamma^{(2)} = rac{\delta^2 \Gamma}{\delta \phi_c \delta \phi_c}$$

 $(\Gamma^{(2)} - R)^{-1}$: propagator of boson in background field ϕ_c (one-loop structure but still exact)

Evolution interpolates between "bare" classical action at large scale K and full 1PI effective action as $k \to 0$ (thresholds etc ...)

Functional differential equation

- hard/impossible solve in general
- \rightarrow work with tructated ansatz for Γ
 - local action expanded in powers of derivatives
 (cf low-energy EFTs, but don't know a priori if we have a consistent power counting)

Derivative expansion may be good at starting scale K

- use power counting of EFT to determine relevant terms
 (or use this RG to find that power counting in scaling regime)
- but no guarantee that it remains good for k → 0
 (can't be for scattering amplitudes at energies above threshold: cuts → nonanalytic behaviour)

Derivative expansion may be good at starting scale K

- use power counting of EFT to determine relevant terms
 (or use this RG to find that power counting in scaling regime)
- but no guarantee that it remains good for k → 0
 (can't be for scattering amplitudes at energies above threshold: cuts → nonanalytic behaviour)
- → need consistency checks: stability against adding extra terms to ansatz stability against changes in form of regulator
 - use this to optimise choice of regulator [Litim, Pawlowski]

Two species of fermion

Fermion field: $\psi(x)$ (spin- $\frac{1}{2}$ atoms or neutrons)

Boson "dimer" field: $\phi(x)$ (strongly interacting pairs)

Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

$$\begin{split} &\Gamma[\psi,\psi^{\dagger},\phi,\phi^{\dagger};k] \\ &= \int d^4x \, \left[\psi(x)^{\dagger} \left(\mathrm{i} \, \partial_0 + \frac{\nabla^2}{2M} \right) \psi(x) \right. \\ &\left. + Z_{\phi}(k) \, \phi(x)^{\dagger} \left(\mathrm{i} \, \partial_0 + \frac{\nabla^2}{4M} \right) \phi(x) - u_1(k) \, \phi(x)^{\dagger} \phi(x) \right. \\ &\left. - g \left(\frac{\mathrm{i}}{2} \, \phi(x)^{\dagger} \psi(x)^{\mathrm{T}} \sigma_2 \psi(x) + \mathrm{H} \, \mathrm{c} \right) \right] \end{split}$$

 $g: AA \rightarrow D$ coupling

 $u_1(k)$: dimer self-energy (u_1/g^2 : only physical parameter)

 $Z_{\phi}(k)$: dimer wave-function renormalisation

Evolution equation

$$\begin{array}{lcl} \partial_k \Gamma & = & +\frac{\mathrm{i}}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}_F) \left((\mathbf{\Gamma}^{(2)} - \mathbf{R})^{-1} \right)_{FF} \right] \\ & & -\frac{\mathrm{i}}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}_B) \left((\mathbf{\Gamma}^{(2)} - \mathbf{R})^{-1} \right)_{BB} \right] \end{array}$$

 $\Gamma^{(2)}$: matrix of second derivatives of the action (Gorkov-like form: ψ and $ψ^\dagger$ as independent variables \to factors of $\frac{1}{2}$)

"Skeleton" diagram for driving terms in evolution of 2-body parameters

(need to insert $\partial_k \mathbf{R}_F$ on one internal line) Expand in powers of energy $\rightarrow \partial_k u_1$, $\partial_k Z_{\phi}$

3-body sector: AD contact interaction

$$\Gamma[\psi,\psi^{\dagger},\phi,\phi^{\dagger};k] = \cdots - \lambda(k) \int d^4x \, \psi^{\dagger}(x) \phi^{\dagger}(x) \phi(x) \psi(x)$$

Evolution of λ driven by terms corresponding to skeletons

- AD contact interaction
- single-A exchange between dimers (cf Faddeev and STM equations)

4-body sector: DD→DD, DD→DAA, DAA→DAA terms [Birse, Krippa and Walet (2010); cf Schmidt and Moroz (2009): bosons]

$$\begin{split} \Gamma[\psi,\psi^{\dagger},\phi,\phi^{\dagger};k] &= \cdots - \int d^4x \left[\frac{1}{2} u_2(k) \left(\phi^{\dagger} \phi \right)^2 \right. \\ &+ \frac{1}{4} v(k) \left(i \phi^{\dagger 2} \phi \psi^T \sigma_2 \psi + \mathsf{H} \, \mathsf{c} \right) \\ &+ \frac{1}{4} w(k) \phi^{\dagger} \phi \psi^{\dagger} \sigma_2 \psi^{\dagger T} \psi^T \sigma_2 \psi \right] \end{split}$$

- dimer "breakup" terms allow 3-body physics to feed in properly (cf Faddeev-Yakubovski)
- \rightarrow coupled evolution equations for u_2 , v, w (27 distinct skeletons)

Regulators

fermions: sharp cutoff

$$R_F(\boldsymbol{q},k) = \frac{k^2 - q^2}{2M} \, \theta(k-q)$$

- pushes states with q > k up to energy $k^2/2M$
- nonrelativistic version of "optimised" cutoff [Litim (2001)]
- fastest convergence at this level of truncation
- bosons

$$R_B(\mathbf{q},k) = Z_{\phi}(k) \frac{(c_B k)^2 - q^2}{4M} \theta(c_B k - q)$$

- c_B: relative scale of boson cutoff
- optimised choice $c_B = 1$ [cf Pawlowski (2007)] (no mismatch between fermion and boson cutoffs)

Also examined smooth cutoffs – more convenient in dense matter

Initial conditions

As $k \to \infty$ boson field purely auxiliary

- $Z_{\phi}(k) \rightarrow 0$
- $u_1(K)$ chosen so that in physical limit $(k \to 0)$

$$u_1(0) = -\frac{Mg^2}{4\pi a_0}$$
 a_0 : AA scattering length

- other couplings λ , u_2 , v, w also vanish as $k \to \infty$
- \rightarrow either set $Z_{\phi}(K)=0$ etc at large starting scale K or match on to K^{-n} behaviour in scaling regime $K\gg 1/a_0$

Initial conditions

As $k \to \infty$ boson field purely auxiliary

- $Z_{\phi}(k) \rightarrow 0$
- $u_1(K)$ chosen so that in physical limit $(k \to 0)$

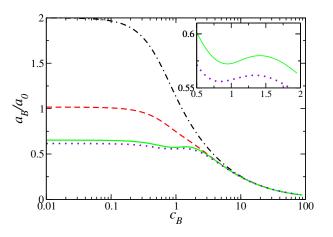
$$u_1(0) = -\frac{Mg^2}{4\pi a_0}$$
 a_0 : AA scattering length

- other couplings λ , u_2 , v, w also vanish as $k \to \infty$
- \rightarrow either set $Z_{\phi}(K)=0$ etc at large starting scale K or match on to K^{-n} behaviour in scaling regime $K\gg 1/a_0$

Expansion point for $a_0 > 0$: dimer binding energy $\mathcal{E}_D = -1/(M a_0^2)$

- external boson lines carry $P_0 = \mathcal{E}_D$
- external fermion lines carry $P_0 = \mathcal{E}_D/2$ (below all thresholds)

Results: DD scattering length



- black: "minimal" action only two-body and DD vertex u₂
- \bullet red adds three-body coupling λ
- ullet green: full local four-body action, includes v, w
- purple: similar but using smooth cutoff

Comments

- results seem to converge as more terms are included
- converge to value only weakly dependent on cutoff (very little variation over range 0 ≤ c_B ≤ 2)
- stationary very close to expected "optimum" $c_B = 1$
- incomplete actions \rightarrow strong dependence on c_B around $c_B = 1$

Comments

- results seem to converge as more terms are included
- converge to value only weakly dependent on cutoff (very little variation over range 0 ≤ c_B ≤ 2)
- stationary very close to expected "optimum" $c_B = 1$
- incomplete actions \rightarrow strong dependence on c_B around $c_B = 1$

Final result

- $a_B/a_0 \simeq 0.58 \pm 0.02$
- agrees well with full few-body result $a_B/a_0 = 0.6$ [Petrov, Salomon and Shlyapnikov (2004)]

Bosons

More interesting: Efimov effect in 3-body sector

Very similar action and evolution equations

- 3-body coupling λ periodic under scaling k by factor e^{π/s_0} where $s_0 = 0.92503$ [Schmidt and Moroz (2009)]
- agrees with Efimov $s_0 = 1.00624$ to < 10%
- no sign of 4-body bound states at this truncation [numerical integration requires some care – poles in λ]

Introduce trimer field $\chi(x)$

- include energy dependence associated with 3-body bound states
- obtain equations with structure like Faddeev-Yakubovsky [coupled DD, AT channels]

Effective action

$$\begin{split} \Gamma_{k}[\psi,\psi^{*},\phi,\phi^{*},\chi,\chi^{*}] \\ &= \int d^{4}x \left[\psi^{*} \left(i \partial_{0} + \frac{\nabla^{2}}{2m} \right) \psi + Z_{d} \phi^{*} \left(i \partial_{0} + \frac{\nabla^{2}}{4m} \right) \phi + Z_{t} \chi^{*} \left(i \partial_{0} + \frac{\nabla^{2}}{6m} \right) \chi \right. \\ & \left. - u_{d} \phi^{*} \phi - u_{t} \chi^{*} \chi - \frac{g}{2} \left(\phi^{*} \psi \psi + \psi^{*} \psi^{*} \phi \right) - h \left(\chi^{*} \phi \psi + \phi^{*} \psi^{*} \chi \right) \right. \\ & \left. - \lambda \phi^{*} \psi^{*} \phi \psi \right. \\ & \left. - \lambda \phi^{*} \psi^{*} \phi \psi \right. \\ & \left. - \frac{u_{dd}}{2} \left(\phi^{*} \phi \right)^{2} - \frac{v_{d}}{4} \left(\phi^{*} \phi^{*} \phi \psi \psi + \phi^{*} \psi^{*} \psi^{*} \phi \phi \right) - \frac{w}{4} \phi^{*} \psi^{*} \psi^{*} \phi \psi \psi \right. \\ & \left. - u_{tt} \chi^{*} \psi^{*} \chi \psi - \frac{u_{dt}}{2} \left(\phi^{*} \phi^{*} \chi \psi + \chi^{*} \psi^{*} \phi \phi \right) \right. \\ & \left. - \frac{v_{t}}{2} \left(\phi^{*} \psi^{*} \psi^{*} \chi \psi + \chi^{*} \psi^{*} \phi \psi \psi \right) \right] \end{split}$$

AD interaction λ regenerated by evolution even if zero initially [unlike AA scattering]

→ introduce running trimer field [cf Gies and Wetterich (2002)]

$$\partial_{\textbf{k}}\chi = \zeta_{1}\,\varphi\psi + \zeta_{2}\,\psi^{\dagger}\chi\psi + \zeta_{3}\,\psi^{\dagger}\varphi\varphi + \zeta_{4}\,\psi^{\dagger}\varphi\psi\psi$$

where $\zeta_1 = -\partial_k \lambda/2h$ to cancel running of λ

- other terms do same for four-atom couplings v_d, w and v_t
- additional piece in evolution equation

$$\partial_k \Gamma = -rac{\mathrm{i}}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}) \left((\mathbf{\Gamma}^{(2)} - \mathbf{R})^{-1}
ight)
ight] + rac{\delta \Gamma}{\delta \chi} \cdot \partial_k \chi$$

• can keep λ , v_d , w and $v_t = 0$ for all k

3-body sector

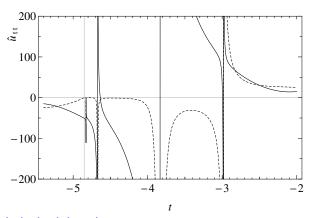
Coupled equations for $u_t(k)$, $Z_t(k)$ and $h^2(k)$

Scaling limit $k \gg 1/|a_0|$

- couplings oscillate sinusoidally with ln k
- poles in AD scattering amplitude h^2/u_t (values of k where 3-body bound states appear at zero energy)
- \rightarrow tower of Efimov states with $s_0=0.92503$ momentum scale factor $e^{\pi/s_0}=29.2$ (exact: 22.7)
 - tower cuts off when $k \sim 1/a_0$

4-body sector

3-body couplings \rightarrow cyclic behaviour in $u_{dd}(k)$, $u_{dt}(k)$, and $v_t(k)$ One Efimov cycle of rescaled $\hat{u}_{tt}(k)$ as a function of $t = \ln(k/K)$

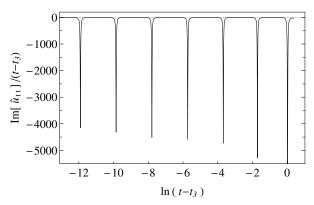


solid: real, dashed: imaginary vertical grey line: AT threshold passes through zero energy

Comments

- imaginary part appears at AT threshold $t = t_3 \simeq -4.85$
- 4-body bound states below AT threshold $t \simeq -3.83, -4.67, \dots$ (decay to deeper trimer + free atom \rightarrow finite widths)
- unphysical singularity from zero of h²(k) at t ≃ -3.0 (end of region within cycle where h²(k), Z_t(k) have opposite signs → trimer "ghost")

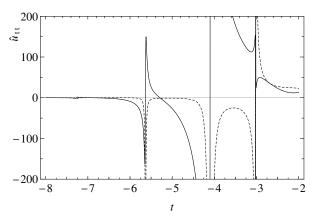
Infinite tower of 4-body bound states below AT threshold



Double exponential pattern \sim super-Efimov effect [Nishida, Moroz and Son (2013)]

- but may not survive in physical limit $k \to 0$
- 4-body states may move relative to AT threshold, become virtual

Final cycle of $\hat{u}_{tt}(k)$ for finite $a_0 < 0$ tuned so that last three-body state appears at k = 0 ($t = -\infty$)



Three 4-body states, at t = -4.1, -5.6 and -7.1 (consistent with theorem of Amado and Greenwood)

AA scattering lenght corresponding to zero-energy 3-body state: a_3 (results just shown)

Further decrease in a: 4-body states cross zero energy at

$$a_4^{(0)}/a_3 \simeq 0.438, \quad a_4^{(1)}/a_3 \simeq 0.877, \quad a_4^{(2)}/a_3 \simeq 0.9967$$

Two lowest states: ratios within 5% of exact results [von Stecher it et al (2009); Deltuva (2010)]

Third state extremely weakly bound

- if real: challenge to observe numerically and experimentally
- could be artefact of truncation (Efimov cycles too long: scale factor \sim 30 instead of 23)

Scaling regime

Scales at which 3- and 4-body states appear

double exponential form

$$\textit{k}_{4}^{(\textit{n})} = \textit{k}_{3} \exp \left[\alpha e^{-\beta \textit{n}} \right]$$

Ratios of scales given by universal relation

$$k_4^{(n+1)}/k_4^{(n)} = \left(k_3/k_4^{(n)}\right)^{1-\exp(-\beta)}$$

Similar to universal scaling function found by Hadizadeh et al but

- different functional form
- no new 4-body scale parameter
 (α fixed, independent of the initial conditions)

Summary

Applications of functional RG to 3- and 4-body systems

- local effective action, "optimised" cutoff
- keeping all local terms in 4-body sector

Fermions

 results for dimer-dimer scattering length stable against variation of cutof, agree with direct calculations

Bosons

- dynamical trimer field to match structure of Faddeev-Yakubovsky equations
- imaginary parts of 4-body couplings from each AT threshold
- infinite tower of 4-body bound states below each AT threshold
- double exponential (super-Efimov) pattern
- finite 2-body scattering length: three states in last cycle

Super-Efimov effect

Relies on being close to fixed point with complex scaling Example for fewer-body coupling g^2 at nontrivial fixed point

$$\frac{\mathrm{d}v}{\mathrm{d}t} = ag^4 + bg^2v + cv^2$$

with $b^2-4ac<0$ \to imaginary scaling dimension Now consider g^2 marginal: $g^2=g_0^2/t$ with $t=\ln(k/k_0)$ and define $\hat{v}=t\,v$

$$t\frac{\mathrm{d}\hat{v}}{\mathrm{d}t} = ag_0^4 + (1 + bg_0^2)\hat{v} + c\hat{v}^2$$

 \rightarrow cyclic behaviour in $\ln t = \ln(\ln(k/k_0))$ if

$$\left(\frac{1}{g_0^2}+b\right)^2-4ac<0$$

4 bosons - close to AAD Efimov cycle [Deltuva (2012)]

