

Renormalising nuclear forces

or

How can we build an effective Hamiltonian for nuclear physics?

and other FAQs

Mike Birse The University of Manchester

INT Program "Effective Field Theories and the Many-Body Problem", April 2009

◆□ ト ◆ □ ト ◆ ■ ト ◆ ■ ・ ○ Q () 1/28

What's the point of an effective (field*) theory?

- no model assumptions just low-energy degrees of freedom and symmetries
- estimates of errors and theory will tell you if it breaks down (no convergence)
- consistency of effective operators and interactions
- effective coupling constants are "universal"
- → links between different low-energy phenomena (c_i 's: π N scattering \leftrightarrow TPE forces)
- → bridges between low-energy observables and underlying theory (scattering lengths: scattering processes ↔ lattice QCD)

*No creation/destruction of particles \rightarrow just effective quantum mechanics

• systematic expansion in powers of ratios of low-energy scales Q(momenta, $m_{\pi}, \ldots \sim 200 \text{ MeV}$) to scales of underlying physics Λ_0 ($m_{\rho}, M_N, 4\pi F_{\pi}, \ldots \gtrsim 700 \text{ MeV}$?)

- systematic expansion in powers of ratios of low-energy scales Q(momenta, $m_{\pi}, \ldots \sim 200 \text{ MeV}$) to scales of underlying physics Λ_0 ($m_{\rho}, M_N, 4\pi F_{\pi}, \ldots \gtrsim 700 \text{ MeV}$?)
- interactions with ranges $\sim 1/\Lambda_0$ not resolved at scales Q
- \rightarrow replaced by contact interactions

- systematic expansion in powers of ratios of low-energy scales Q(momenta, $m_{\pi}, \ldots \sim 200 \text{ MeV}$) to scales of underlying physics Λ_0 ($m_{\rho}, M_N, 4\pi F_{\pi}, \ldots \gtrsim 700 \text{ MeV}$?)
- interactions with ranges $\sim 1/\Lambda_0$ not resolved at scales Q
- \rightarrow replaced by contact interactions
 - iterations (loop diagrams) usually infinite
- \rightarrow need to renormalise

- systematic expansion in powers of ratios of low-energy scales Q(momenta, $m_{\pi}, \ldots \sim 200 \text{ MeV}$) to scales of underlying physics Λ_0 ($m_{\rho}, M_N, 4\pi F_{\pi}, \ldots \gtrsim 700 \text{ MeV}$?)
- interactions with ranges $\sim 1/\Lambda_0$ not resolved at scales Q
- \rightarrow replaced by contact interactions
 - iterations (loop diagrams) usually infinite
- $\rightarrow\,$ need to renormalise
 - works provided we have a consistent expansion (otherwise trying to renormalise an infinite number of constants, simultaneously)

Where does it work?

Works well for purely pionic and πN systems

- pions ~ Goldstone bosons of hidden chiral symmetry – strong interactions weak at low energies
- \rightarrow chiral perturbation theory
- terms organised by naive dimensional analysis aka "Weinberg power counting" (simply counts powers of low-energy scales momenta and m_π)

• over-reliance on appeals to authority ("Weinberg said ... ")

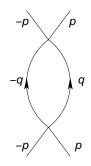
- over-reliance on appeals to authority ("Weinberg said ... ")
- · tendency to circle the wagons and shoot inwards

- nucleons interact strongly at low-energies
- simply counting powers of low-energy scales perturbative
- works for weakly interacting systems (eg pions and photons) but cannot generate bound states (nuclei!)
- need to treat some interactions nonperturbatively

Basic nonrelativistic loop diagram

$$rac{M}{(2\pi)^3}\int rac{\mathrm{d}^3 q}{p^2-q^2+\mathrm{i}\epsilon}=-\mathrm{i}rac{M
ho}{4\pi}+ ext{analytic}$$

- of order *Q* [Weinberg (1991)] (come back to divergences later)
- better than relativistic case, Q^2
- but potential starts at order Q⁰ (OPE and simplest contact interaction)
- each iteration suppressed by power of Q/Λ_0
- \rightarrow still perturbative (provided $Q < \Lambda_0$)



A D N A B N A B

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied [van Kolck; Epelbaum and Meissner; Machleidt ...] and even more widely invoked [≥ 9 talks here, so far]

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied [van Kolck; Epelbaum and Meissner; Machleidt ...] and even more widely invoked [≥ 9 talks here, so far]
- but no clear power counting for observables
- resums subset of terms to all orders in *Q* and some of these depend on regulator
- · not necessarily a problem if these terms are small
- but what if we rely on them to generate bound states?

How can we iterate interactions consistently?

Identify new low-energy scales

- promote leading-order terms to order Q⁻¹ (cancels Q from loop → iterations not suppressed)
- can, and must, then be iterated to all orders (all other terms: perturbations)

How can we iterate interactions consistently?

Identify new low-energy scales

- promote leading-order terms to order Q⁻¹ (cancels Q from loop → iterations not suppressed)
- can, and must, then be iterated to all orders (all other terms: perturbations)

Examples of new scales

- S-wave scattering lengths 1/a ≤ 40 MeV [van Kolck; Kaplan, Savage and Wise (1998)]
- → for $p \ll m_{\pi}$: "pionless EFT" \equiv effective-range expansion [Schwinger (1947); Bethe (1949)]

One-pion exchange

- important for nuclear physics at energies $\sim 100 \; \text{MeV}$
- order *Q*⁰ in chiral counting
- → treat as a perturbation [Kaplan, Savage and Wise (1998)]
 - S waves: series coverges slowly, if at all
 - OPE "unnaturally" strong (cf successes of older phenomenology and Weinberg's scheme)
 - strength of OPE set by scale

$$\lambda_{\scriptscriptstyle NN} = rac{16\pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq$$
 290 MeV

built out of high-energy scales ($4\pi F_{\pi}, M_{N}$) but $\sim 2m_{\pi}$

 \rightarrow another low-energy scale?

One-pion exchange

- important for nuclear physics at energies $\sim 100 \; \text{MeV}$
- order *Q*⁰ in chiral counting
- → treat as a perturbation [Kaplan, Savage and Wise (1998)]
 - S waves: series coverges slowly, if at all
 - OPE "unnaturally" strong (cf successes of older phenomenology and Weinberg's scheme)
 - strength of OPE set by scale

$$\lambda_{\scriptscriptstyle NN} = rac{16\pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq$$
 290 MeV

built out of high-energy scales ($4\pi F_{\pi}, M_{\scriptscriptstyle N}$) but $\sim 2m_{\pi}$

- \rightarrow another low-energy scale?
 - \geq 4 proposed schemes, \sim 15 years of acrimonious debate

イロト 不得 トイヨト イヨト 二足 二

How do we analyse scale-dependence of strongly-interacting systems?

General tool for this: the renormalisation group

- scattering by contact interactions is ill-defined in QM
- couple to virtual states with arbitrarily high momenta
- example: basic loop diagram for S waves behaves as

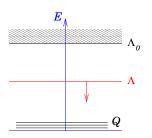
$$rac{M}{(2\pi)^3}\int rac{\mathrm{d}^3 q}{p^2-q^2+\mathrm{i}\epsilon}\sim -rac{M}{2\pi^2}\int\mathrm{d} q \quad ext{for large } q$$

(linear divergence)

 \rightarrow need to renormalise

• identify all relevant low-energy scales Q

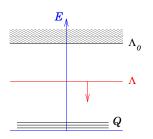
• identify all relevant low-energy scales Q



 cut off at arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)

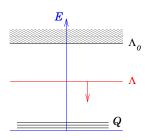
4 D b 4 A b

• identify all relevant low-energy scales Q



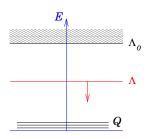
- cut off at arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)
- "integrate out" physics by lowering Λ (don't even think about taking Λ to infinity!)

identify all relevant low-energy scales Q



- cut off at arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)
- "integrate out" physics by lowering Λ (don't even think about taking Λ to infinity!)
- demand that physics be independent of Λ (eg T matrix)

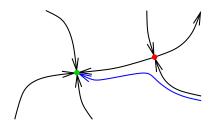
identify all relevant low-energy scales Q



- cut off at arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)
- "integrate out" physics by lowering Λ (don't even think about taking Λ to infinity!)
- demand that physics be independent of Λ (eg T matrix)
- rescale: express all dimensioned quantities in units of Λ (potential and all low-energy scales)

Follow flow of effective potential as $\Lambda \to 0$

- \rightarrow look for fixed points
 - rescaled theories independent of Λ
 - correspond to scale-free systems
 - endpoints of RG flow



stable fixed point
 unstable fixed point

Expand around fixed point using perturbations that scale like Λ^{ν}

- v < 0 relevant or superrenormalisable (unstable; eg masses in QFTs)
- v > 0 irrelevant or nonrenormalisable (stable; eg mesonic ChPT)
- $\nu = 0$ marginal or renormalisable
 - $(\rightarrow \mbox{ln}\Lambda$ scale dependence; eg couplings in QED, QCD)
- \rightarrow EFT with power counting: Q^d where d = v 1

Expand around fixed point using perturbations that scale like Λ^{ν}

- ν < 0 relevant or superrenormalisable (unstable; eg masses in QFTs)
- v > 0 irrelevant or nonrenormalisable (stable; eg mesonic ChPT)
- v = 0 marginal or renormalisable
 - $(\rightarrow \mbox{ln}\Lambda$ scale dependence; eg couplings in QED, QCD)
- \rightarrow EFT with power counting: Q^d where d = v 1
- Λ is highest acceptable low-energy scale
 - order Q
 - rescaling \rightarrow power of Λ counts low-energy scales

What does the RG tell us about short-range potentials?

Two fixed points

- trivial $V = 0 \rightarrow$ free particles
- nontrivial [Birse, McGovern, Richardson (1998)]
 - \rightarrow "unitary limit" (bound state at threshold, $a \rightarrow \infty$)
- both scale-free systems

What does the RG tell us about short-range potentials?

Two fixed points

- trivial $V = 0 \rightarrow$ free particles
- nontrivial [Birse, McGovern, Richardson (1998)]
 - \rightarrow "unitary limit" (bound state at threshold, $a \rightarrow \infty$)
- both scale-free systems

Near trivial fixed point $V(p) = C_0 + C_2 p^2 + C_4 p^4 + \cdots$

- energy-dependent: on-shell momentum $p = \sqrt{ME}$ (come back to momentum dependence)
- *p*²ⁿ are RG eigenfunctions
- orders given by naive (Weinberg) counting: Q^0 , Q^2 , Q^4 , ...
- coefficients *C*_{2n} related to energy expansion of on-shell K matrix (like T matrix but standing-wave bc's real, analytic)
- appropriate EFT for thermal np scattering

Nontrivial fixed point

$$V_0(\rho,\Lambda) = -\frac{2\pi^2}{M\Lambda} \left[1 - \frac{\rho}{2\Lambda} \ln \frac{\Lambda + \rho}{\Lambda - \rho} \right]^{-1} \quad \text{(sharp cutoff)}$$

• order Q^{-1} (so must be iterated)

• exactly cancels basic loop integral in LS equation

$$\rightarrow T(p) = i \frac{4\pi}{Mp}$$
 (unitary limit)

Nontrivial fixed point

$$V_0(\rho,\Lambda) = -\frac{2\pi^2}{M\Lambda} \left[1 - \frac{\rho}{2\Lambda} \ln \frac{\Lambda + \rho}{\Lambda - \rho} \right]^{-1} \quad (\text{sharp cutoff})$$

• order Q^{-1} (so must be iterated)

• exactly cancels basic loop integral in LS equation 4π

$$\rightarrow T(p) = i \frac{m}{Mp}$$
 (unitary limit)

Expanding around this point

$$V(\rho,\Lambda) = V_0(\rho,\Lambda) + V_0(\rho,\Lambda)^2 \frac{M}{4\pi} \left(-\frac{1}{a} + \frac{1}{2} r_e \rho^2 + \cdots \right)$$

- factor V₀² ∝ Λ⁻² promotes terms by two orders compared to naive expectation: Q⁻², Q⁰, ... [van Kolck; Kaplan, Savage and Wise]
- coefficients of perturbations directly related to observables: effective-range expansion

Enhancement follows from form of wave functions as $r \rightarrow 0$

- unitary limit \rightarrow irregular solutions: $\psi(r) \propto r^{-1}$ (S wave)
- cutoff smears contact interaction over range $R \sim \Lambda^{-1}$
- \rightarrow need extra factor Λ^{-2} to cancel cutoff dependence from $|\psi(R)|^2 \propto \Lambda^2$ in matrix elements of potential

Enhancement follows from form of wave functions as $r \rightarrow 0$

- unitary limit \rightarrow irregular solutions: $\psi(r) \propto r^{-1}$ (S wave)
- cutoff smears contact interaction over range $R \sim \Lambda^{-1}$
- → need extra factor Λ^{-2} to cancel cutoff dependence from $|\psi(R)|^2 \propto \Lambda^2$ in matrix elements of potential

Other partial waves

- wave functions ψ(r) ∝ r^L for small r
 (assuming no low-energy bound state regular solution)
- extra factor Λ^{2L} needed in potential
- → leading term in *L*-th partial wave of order Q^{2L} (Weinberg counting: powers of *Q* from derivatives of δ -function)

Three-body systems

Attractive: 3 bosons or 3 distinct fermions in unitary limit (triton)

- naive dimensional analysis \rightarrow leading contact term of order Q^3
- next-to-naive expectation: promoted to Q¹ in unitary limit (enhancement of two-body wave functions at small r)
- as hyperradius $R \rightarrow 0$ wave functions behave like

 $\Psi(R) \propto R^{-2\pm is_0}$ $s_0 \simeq 1.006$ [Efimov (1971)]

- \rightarrow leading three-body force promoted to order Q^{-1}
 - marginal perturbation associated with limit cycle of RG [Bedaque, Hammer and van Kolck (1999)]

Three-body systems

Attractive: 3 bosons or 3 distinct fermions in unitary limit (triton)

- naive dimensional analysis \rightarrow leading contact term of order Q^3
- next-to-naive expectation: promoted to Q¹ in unitary limit (enhancement of two-body wave functions at small r)
- as hyperradius $R \rightarrow 0$ wave functions behave like

 $\psi(R) \propto R^{-2\pm is_0}$ $s_0 \simeq 1.006$ [Efimov (1971)]

- \rightarrow leading three-body force promoted to order Q^{-1}
 - marginal perturbation associated with limit cycle of RG [Bedaque, Hammer and van Kolck (1999)]

Repulsive: 1 distinct and 2 identical fermions in unitary limit (alkali atoms or neutrons)

- hyperradial wave functions $\psi(R) \propto R^{-2+2.1662}$
- \rightarrow leading three-body force of noninteger order $Q^{3.3324}$

How do pion-exchange forces affect the power counting?

Treat λ_{NN} as low-energy scale \rightarrow iterate OPE

Central OPE (spin-singlet waves)

- 1/*r* singularity not enough to alter power-law forms of wave functions at small *r*, even if iterated
- $L \ge 1$ waves: weak scattering \rightarrow Weinberg power counting
- ${}^{1}S_{0}$: similar to expansion around unitary fixed point
- except for extra log divergence $\propto m_{\pi}^2/\lambda_{\rm NN}$ not distinguishable in practice from leading contact term
- \rightarrow KSW-like power counting

Tensor OPE (spin-triplet waves)

- $1/r^3$ singularity
- but higher partial waves protected by centrifugal barrier
- above critical momentum waves resolve singularity
 → OPE not perturbative
- $L \ge 3$: $p_c \gtrsim 2 \text{ GeV} \rightarrow \text{Weinberg counting OK}$
- L ≤ 2: p_c ≲ 3m_π → new counting needed [Nogga, Timmermans and van Kolck (2005)]

Tensor OPE (spin-triplet waves)

- 1/r³ singularity
- but higher partial waves protected by centrifugal barrier
- above critical momentum waves resolve singularity
 → OPE not perturbative
- $L \ge 3$: $p_c \gtrsim 2 \text{ GeV} \rightarrow \text{Weinberg counting OK}$
- $L \leq 2$: $p_c \leq 3m_{\pi} \rightarrow$ new counting needed [Nogga, Timmermans and van Kolck (2005)]
- wave functions $\psi(r) \propto r^{-1/4}$ multiplied by either sine or exponential function of $1/\sqrt{\lambda_{\scriptscriptstyle NN}r}$
- → leading contact interaction of order $Q^{-1/2}$ in P, D waves (very weakly irrelevant) and of order $Q^{-3/2}$ in ${}^{3}S_{1} - {}^{3}D_{1}$ (relevant)

Three-body forces

Two-pion exchange

- $\bullet\,$ purely long-range interactions \rightarrow not renormalised
- \rightarrow start at order Q^3

Three-body forces

Two-pion exchange

- purely long-range interactions \rightarrow not renormalised
- \rightarrow start at order Q^3
- One-pion exchange ("*c*_D")
 - contains two-body contact vertex $(N^{\dagger}N)^2 \nabla \pi$
 - counting shifted in same way as S-wave contact interactions
 - \rightarrow promoted to order Q^1 in 1S_0 and to order $Q^{3/2}$ in 3S_1

Three-body forces

Two-pion exchange

- purely long-range interactions \rightarrow not renormalised
- \rightarrow start at order Q^3
- One-pion exchange ("*c*_D")
 - contains two-body contact vertex $(N^{\dagger}N)^2 \nabla \pi$
 - · counting shifted in same way as S-wave contact interactions
 - \rightarrow promoted to order Q^1 in 1S_0 and to order $Q^{3/2}$ in 3S_1
- Contact interaction ("c_E")
 - counting still not known: need to solve 3-body problem with $1/r^3$ potentials
 - expect to be promoted, but by less than in pionless EFT
 - \rightarrow order Q^d , 0 < d < 3?

So, how should we build an effective Hamiltonian?

To order Q^3 (N2LO in Weinberg's counting)

Order	NN	NNN
Q ⁻¹	¹ S ₀ , ³ S ₁ C ₀ 's, LO OPE	
$Q^{-1/2}$	³ <i>P</i> _J , ³ <i>D</i> _J <i>C</i> ₀ 's	
Q^0	$^{1}S_{0}C_{2}$	
$Q^{1/2}$	${}^{3}S_{1}C_{2}$	
Q^1		¹ <i>S</i> ₀ <i>C</i> _{<i>D</i>0} OPE
$Q^{3/2}$ Q^2	³ Р _J , ³ D _J С ₂ 's	³ S ₁ C _{D0} OPE
Q^2	${}^{1}S_{0}C_{4}$, ${}^{1}P_{1}C_{0}$,	
	NLO OPE, LO TPE	
$Q^{5/2} Q^3$	${}^{3}S_{1}C_{4}$	³ <i>P</i> _J , ³ <i>D</i> _J <i>C</i> _{D0} 's OPE
Q^3	NLO TPE	³ S ₁ C _{D2} OPE, LO 3N TPE
$Q^{?}$		C _E

- orange terms absent from "N2LO chiral potential"
- red terms absent from "N3LO"
- order Q^{-1} : have to iterate, order $Q^{-1/2}$: may be better to

What does a finite cutoff do?

- regulates divergences
- also introduces artefacts ∝ Λ⁻ⁿ (except for dimensional regularisation)
- suppose only have expansion of effective potential above

$$V(\rho,\Lambda) = -\frac{2\pi^2}{M\Lambda} - \frac{\pi^3}{M\Lambda^2 a} + \frac{\pi^3}{2M\Lambda^2} r_e p^2 - \frac{2\pi^2}{M\Lambda^3} p^2 + \cdots$$

- last term $\propto p^2$ but of order Q^{-1} (really part of fixed point)
- dominates over effective range term if $\Lambda < \Lambda_0 \sim 1/r_e$
- $\rightarrow \,$ theory breaks down at momentum scale Λ not Λ_0 size of errors due to truncation determined by $1/\Lambda$ not $1/\Lambda_0$
 - keep Λ as large as possible: $\Lambda \gtrsim \Lambda_0$

イロト 不得 トイヨト イヨト 二足 二

What about momentum dependence?

Momentum-dependent perturbations (off-shell form of potential)

- trivial FP: same order as corresponding energy-dependent ones
- → no cost to trading energy- for momentum-dependence (field redefinition or "using the equation of motion")
 - unitary FP: one order higher
- → remove energy dependence only by taking unnaturally large coefficients for off-shell dependence

What about momentum dependence?

Momentum-dependent perturbations (off-shell form of potential)

- trivial FP: same order as corresponding energy-dependent ones
- → no cost to trading energy- for momentum-dependence (field redefinition or "using the equation of motion")
 - unitary FP: one order higher
- → remove energy dependence only by taking unnaturally large coefficients for off-shell dependence

Possible issues for purely momentum-dependent potentials

- unnaturally strong off-shell behaviour
- $\rightarrow\,$ will affect other effective operators, 3-body forces, \ldots
- off-shell T matrix not RG invariant
 - (cf V_{low-k} derived from invariance of half-off-shell T matrix)
- $\rightarrow\,$ no clear power counting for potential or other operators
 - probably not problems provided Λ is kept large: $\Lambda\gtrsim\Lambda_0$

<ロト</th>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Yes, but only if you keep your hands clean

Yes, but only if you keep your hands clean and respect the counting

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆」

24/28

- · renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, order Q^{-1}
- do not iterate irrelevant terms, order Q^d with $d \ge 0$
- otherwise ...

Yes, but only if you keep your hands clean and respect the counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, order Q⁻¹
- do not iterate irrelevant terms, order Q^d with $d \ge 0$
- otherwise ...
- → if very lucky, might discover a new power counting eg tensor OPE in low partial waves [Nogga, Timmermans and van Kolck]

Yes, but only if you keep your hands clean and respect the counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, order Q⁻¹
- do not iterate irrelevant terms, order Q^d with $d \ge 0$
- otherwise ...
- → if very lucky, might discover a new power counting eg tensor OPE in low partial waves [Nogga, Timmermans and van Kolck]
- → more generally, lose any consistent counting eg effective-range term in short-range potential [Phillips, Beane and Cohen (1997); and many others]

Can I iterate my full potential?

Can I iterate my full potential?

Yes, but only if you are very careful ...

- resumming subset of higher-order terms
- without the counterterms needed to renormalise them
- dangerous: can alter form of short-distance wave functions and destroy power counting (or, at best, change it)
- but problems don't arise, provided higher-order terms are small
- general way to ensure this: keep cutoff small, $\Lambda < \Lambda_0$

Combining EFT and standard many-body methods

Combining EFT and standard many-body methods \rightarrow tension!

- desire to minimise artefacts, esp for momentum-dependent potentials $\to \Lambda \gtrsim \Lambda_0$
- desire to plug full potential into dynamical equation $\rightarrow \Lambda < \Lambda_0$

Combining EFT and standard many-body methods \rightarrow tension!

- desire to minimise artefacts, esp for momentum-dependent potentials $\to \Lambda \gtrsim \Lambda_0$
- desire to plug full potential into dynamical equation $\to \Lambda < \Lambda_0$
- $\rightarrow\,$ one way out: take the largest cutoff you dare (just below $\Lambda_0)$ and stick with it?
 - but can't then check for cutoff independence or use cutoff dependence to estimate errors
 - already see examples of this in potentials of Epelbaum and Meissner, Entem and Machleidt: $\Lambda\sim 500-600~\text{MeV}$

Where does all this leave us?

Clear power counting rules for most partial waves, with iterated OPE

- controlled by forms of wave functions as $r \rightarrow 0$
- in general, not naive dimensional analysis!
- what is counting for 3-body forces in presence of tensor OPE?
- critical momenta for tensor OPE in ${}^{3}P_{J}$, ${}^{3}D_{J}$ waves with $m_{\pi} \neq 0$?
- is counting same for waves where tensor OPE is repulsive?

Where does all this leave us?

Clear power counting rules for most partial waves, with iterated OPE

- controlled by forms of wave functions as $r \rightarrow 0$
- in general, not naive dimensional analysis!
- what is counting for 3-body forces in presence of tensor OPE?
- critical momenta for tensor OPE in ${}^{3}P_{J}$, ${}^{3}D_{J}$ waves with $m_{\pi} \neq 0$?
- is counting same for waves where tensor OPE is repulsive?

Contact interactions directly related to "observables" (phase shifts)

- distorted-wave K matrix $\widetilde{K}(p) = -\frac{4\pi}{Mp} \tan(\delta_{\text{PWA}}(p) \delta_{\text{OPE}}(p))$
- either DWBA: expand $\widetilde{K}(p)$ in powers of energy (peripheral w's)
- or DW effective-range expansion: expand $1/\widetilde{K}(p)$ (S waves)

Where does all this leave us?

Clear power counting rules for most partial waves, with iterated OPE

- controlled by forms of wave functions as $r \rightarrow 0$
- in general, not naive dimensional analysis!
- what is counting for 3-body forces in presence of tensor OPE?
- critical momenta for tensor OPE in ${}^{3}P_{J}$, ${}^{3}D_{J}$ waves with $m_{\pi} \neq 0$?
- is counting same for waves where tensor OPE is repulsive?

Contact interactions directly related to "observables" (phase shifts)

- distorted-wave K matrix $\widetilde{K}(p) = -\frac{4\pi}{Mp} \tan(\delta_{\text{PWA}}(p) \delta_{\text{OPE}}(p))$
- either DWBA: expand $\widetilde{K}(p)$ in powers of energy (peripheral w's)
- or DW effective-range expansion: expand $1/\widetilde{K}(p)$ (S waves)

In S waves with low-energy bound/virtual states (close to unitary limit)

energy dependence is lower order than momentum dependence

Uses of EFT potentials in many-body calculations torn between

- keeping cutoff large to minimise artefacts, especially if potential is forced to be energy-independent
- and keeping cutoff small so that full potential can be iterated, without large higher-order terms destroying the power counting
- $\rightarrow~$ leaves only a narrow window: Λ at or just below Λ_0
 - loses much of power of EFT: ability to check cutoff independence, or to use cutoff dependence to estimate theoretical errors

Uses of EFT potentials in many-body calculations torn between

- keeping cutoff large to minimise artefacts, especially if potential is forced to be energy-independent
- and keeping cutoff small so that full potential can be iterated, without large higher-order terms destroying the power counting
- $\rightarrow~$ leaves only a narrow window: Λ at or just below Λ_0
 - loses much of power of EFT: ability to check cutoff independence, or to use cutoff dependence to estimate theoretical errors

・ロト ・四ト ・ヨト ・ヨト ・ヨー

28/28

• can't have it all!