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• Background
effective field theories for nuclear forces

• Renormalisation group
tool to determine power counting

• Deconstructing 1S0 scattering
extracting short-range interactions from empirical phase shifts
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Background

Effective field theories

• promise a systematic treatment of strong interactions
at low energies
• expansion in powers of ratios of low-energy scales Q

(momenta, mπ, . . . ∼ 200 MeV)
to scales of underlying QCD physics Λ0

(mρ, MN , 4πFπ, . . . & 700 MeV?)
• interactions with ranges ∼ 1/Λ0 not resolved at scales Q
→ replaced by contact interactions
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“Weinberg”/naive/engineering power counting

• simply counts powers of low-energy scales Q
• works for weakly interacting systems

(eg chiral perturbation theory for mesons)
• cannot generate low-energy bound states or resonances
• need to iterate some interactions to all orders
• how do we do this consistently?
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First application of ChPT to nuclear forces [Weinberg (1991)]

• nonrelativistic NN loops of order Q (not Q2)
• potential starts at order Q0

(one-pion exchange and simplest contact interaction)
→ still perturbative

Weinberg-van Kolck scheme

• expand potential to some order in Q
• then iterate to all orders in dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied [van Kolck, Epelbaum, Meissner, . . . ]
• but no clear power counting for observables
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Better: identify new low-energy scales

• promote leading-order terms to order Q−1

(cancels Q from loop→ iterations not suppressed)
→ can, and must, then be iterated to all orders

(all other terms: perturbations)

Examples of new scales

• S-wave scattering lengths 1/a . 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]

→ for p << mπ: “pionless EFT” ≡ effective-range expansion
[Bethe (1949)]
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One-pion exchange

• order Q0 in chiral counting
→ treat as a perturbation [Kaplan, Savage and Wise (1998)]
• S waves: series coverges slowly, if at all
• OPE “unnaturally” strong

(cf successes of older phenomenology and Weinberg’s scheme)
• strength of OPE set by scale

λNN =
16πF 2

π

g2
A MN

' 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

→ another low-energy scale?
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Other schemes:

• iterate OPE in chiral limit (mπ = 0)
then expand perturbatively in powers of mπ [Beane et al (2001)]
• iterate tensor OPE in attractive spin-triplet waves
→ new power counting for contact interactions

[Nogga, Timmermans and van Kolck (2005)]

(≥ 4 proposed schemes, ∼ 15 years of acrimonious debate)

General tool to analyse dependence on low-energy scales
and determine power counting: renormalisation group
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Renormalisation group

Scattering by contact interactions ill-defined→ need to renormalise

• couple to virtual states with arbitrarily high
momenta
• basic loop diagram for S waves behaves as

M
∫

q2 dq
p2−q2 ∼−M

∫
dq for large q

−p p

−p p

−q q
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Procedure

• identify all relevant low-energy scales Q

• cut off at arbitary scale Λ between Q
and Λ0 (assumes good separation of
scales)
• demand that physics be independent

of Λ (eg T -matrix)
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• rescale: express all dimensioned quantities in units of Λ
(potential and all low-energy scales)
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Follow flow as Λ→ 0; look for fixed points

• rescaled theories independent of Λ
• correspond to scale-free systems
• endpoints of RG flow

• stable fixed point • unstable fixed point
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Expand around fixed point using perturbations that scale like Λν

• ν < 0 relevant or superrenormalisable
(unstable; eg masses in QFTs)
• ν > 0 irrelevant or nonrenormalisable

(stable; eg mesonic ChPT)
• ν = 0 marginal or renormalisable

(→ lnΛ scale dependence; eg couplings in QED, QCD)
→ EFT with power counting: Qd where d = ν−1

(rescaling→ power of Λ counts low-energy scales)
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RG for short-range potential

General S-wave contact interaction, in momentum space

V (k ′,k ,p) = C00 + C20(k2 + k ′2) + C02 p2 · · ·

• k , k ′: initial and final relative momenta
• energy-dependence in terms of the on-shell momentum

p =
√

ME

Rescaled potential V̂ = MΛV/(2π2) satisfies RG equation

Λ
∂V̂
∂Λ

= k̂ ′
∂V̂

∂k̂ ′
+ k̂

∂V̂

∂k̂
+ p̂

∂V̂
∂p̂

+ V̂ + V̂ (k̂ ′,1, p̂,Λ)
1

1− p̂2 V̂ (1, k̂ , p̂,Λ)

→ two fixed points (independent of Λ)
• trivial V̂ = 0→ perturbative power counting (Weinberg)
• nontrivial [Birse, McGovern, Richardson (1998)]
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Solution to RG equation near nontrivial fixed point

1
V (p,Λ)

=− M
2π2

[
Λ− p

2
ln

Λ + p
Λ−p

]
− M

4π

[
−1

a
+

1
2

re p2 + · · ·
]

• first term: fixed point of RG (bound state at zero energy)
• RG eigenvalues ν =−1, +1, . . .

correspond to Q−2, Q0, . . . (shifted by −2 from naive)
[van Kolck; Kaplan, Savage and Wise (1998)]
• coefficients of perturbations directly related to observables:

effective-range expansion
• power counting for potential→ counting for observables
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Similar results in presence of long-range potential of order Q−1

[Barford and Birse (2002), Birse (2007)]

• short-range potential related to distorted-wave observables
• trivial fixed point→ DWBA expanded in powers of energy
• nontrivial fixed point→ DW effective-range expansion
• power counting determined by singularity of potential as r → 0

• Coulomb or Yukawa: similar to counting for pure short-range
(except for a log divergence→ marginal term in ERE)

→ KSW-like counting for short-range potential in 1S0 channel
• L > 0 spin-singlet channels: Weinberg counting

(no low-lying resonances)
• tensor OPE ∼ 1/r−3 as r → 0
→ NTvK counting in spin-triplet channels L≤ 2
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Deconstructing 1S0 NN scattering 1

• iterate OPE (justified if we treat λNN as a low-energy scale)
• use distorted-wave effective-range expansion to extract effects of

OPE from empirical phase shifts δPWA(p)
(four good-χ2 Nijmegen analyses: PWA93, NijmegenI,
NijmegenII, Reid93)

Solve radial Schrödinger equation with central OPE

− d2u
dr2 + MNVOPE(r)u(r) = p2u(r), p2 =

MNTlab

2

→ regular solution: uR(r) (→ sin(pr + δOPE))
and irregular: uI(r) (→−cos(pr + δOPE))
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Use these to construct solution with observed phase shift

u(r) = cos δ̃(p)uR(p)− sin δ̃(p)uI(p)

and find short-range potential that generates additional phase
δ̃(p) = δPWA(p)−δOPE(p)

• choose δ-shell form VS(r ,p) = 1
4πR2 Ṽ (2)

S (p)δ(r −R)
• take u(r) for r ≥ R and uR(r) for r ≤ R
• match u(R) = uR(R) and use discontinuity in derivatives

to determine strength

Ṽ (2)
S (p) =

4πR2

MN

u′(R)−u′R(R)

u(R)

[Shukla et al (2008): similar philosophy but conical well of radius R]
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1

Ṽ (2)
S (p)

+
MN

4π

[
1
R
−MN f 2

πNN ln(Rµ)

]
for R = 1.6, 0.8, 0.4 ,0.2, 0.1 fm

100 200 300
T

-4

-3

-2

-1

Linear (1/R) and log (m2
π ln(R)) divergences correspond

to those in KSW counting, removed for ease of plotting
Shape converges as R→ 0 (to DW effective-range expansion)
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Deconstructing 1S0 NN scattering 2

Two-pion exchange

• leading orders Q2,3 [Kaiser et al (1997), Rentmeester et al (1999)]
• plus order-Q2 relativistic correction to OPE [Friar 91999)]

and πγ-exchange van Kolck et al (1996)]
• perturbations: treat at first order→ subtract DWBA matrix

elements

But matrix elements diverge

→ need to renormalise them first
• cut off radial integrals at R (same as for δ-shell)
• identify and subtract divergent pieces
• use perturbation theory for remaining finite quantities
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Strongest divergences from r−6 term in order-Q3 TPE potential
and irregular parts of wave functions

• leading terms at each order in energy p2

∫
∞

R
r2 dr

1
r6 uI(r)2 ∼

∫
∞

R
r2 dr

1
r6

[
1
r2 , p2, p4 r2, p6 r4, · · ·

]
∼ 1

R5 ,
p2

R3 ,
p4

R
, R p6, · · ·

• renormalise with counterterms proportional to p0, p2, p4 only
• of orders Q−2, Q0, Q2 around nontrivial solution of RG
→ terms with orders d ≤ 2 renormalise order-Q3 TPE potential

• power counting works
(trivial FP: divergences ∼ R−3, R−1p2 only→ orders Q0, Q2)
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Renormalise by subtracting all p0, p2, p4 pieces from integrals

Subtract renormalised matrix element

〈ψ(p)|V (2)
OPE + V (2,3)

TPE + Vπγ|ψ(p)〉ren

from DW ERE potential Ṽ (2)
S (p)

(→ residual potential containing long-range effects starting at Q4)

Look at 1/ṼS(p) expanded to first order:

1

Ṽ (4)
S (p)

=
1

Ṽ (2)
S (p)

+

(
1

Ṽ (2)
S (p)

)2

〈ψ(p)|V (2)
OPE + V (2,3)

TPE + Vπγ|ψ(p)〉ren

(again, subtract 1/R and lnR terms for convenience in plotting)
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Results

For R = 1.6, 0.8, 0.4 ,0.2, 0.1 fm

100 200 300
T

-1

1

2

3

4

• no effect at very low energies since terms up to p4 subtracted
• p6 and higher terms grow rapidly above T = 100 MeV
→ breakdown scale p ∼ 270 MeV (cf λNN , M∆−MN)
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Summary

Trust the RG!

• identify low-energy scales and find a fixed point
• determine power counting around that point
• then use resulting EFT to “deconstruct” data:

either DWBA (peripheral waves)
or DW effective-range expansion (S waves)

• can use different regulator
(eg radial cut-off may be more convenient)
• can take cutoff above underlying scale

(disentangle physics from artefacts of finite cutoff)
but do not try to iterate perturbations
[cf Phillips, Beane and Cohen (1997)]

→ if expansion breaks down: that’s physics!
(missing low-energy scales or no separation of scales)
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RG provides power countings to use with iterated OPE

• 1S0: KSW-like
• L > 0 spin-singlet channels: Weinberg (perturbative)
• L≤ 2 spin-triplet channels: NTvK
→ terms required by power counting do renormalise divergent

matrix elements of TPE potential

But in 1S0 channel . . .

• expansion seems to break down for p & 270 MeV
• still need to examine scales in coefficients of p6, p8

• coefficient of r−6 exp(−2mπr) contains λNN , c3 '−5 GeV−1

→ “high-energy” scale

λ
′
NN =

(
(16π)2f 4

π

144g2
A|c3|MN

)1/4

' 115 MeV

→ need to include ∆?
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