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e Background
effective field theories for nuclear forces

e Renormalisation group
tool to determine power counting

e Deconstructing 1S, scattering
extracting short-range interactions from empirical phase shifts



Background

Effective field theories

promise a systematic treatment of strong interactions

at low energies

expansion in powers of ratios of low-energy scales Q
(momenta, my, ... ~ 200 MeV)

to scales of underlying QCD physics Ag

(mp, My, 47Fy, ... 2 700 MeV?)

interactions with ranges ~ 1/Ag not resolved at scales Q
replaced by contact interactions



“Weinberg”/naive/engineering power counting

simply counts powers of low-energy scales Q

works for weakly interacting systems

(eg chiral perturbation theory for mesons)

cannot generate low-energy bound states or resonances
need to iterate some interactions to all orders

how do we do this consistently?
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First application of ChPT to nuclear forces [Weinberg (1991)]

e nonrelativistic NN loops of order Q (not Q%)
e potential starts at order Q°
(one-pion exchange and simplest contact interaction)
— still perturbative
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First application of ChPT to nuclear forces [Weinberg (1991)]

e nonrelativistic NN loops of order Q (not Q%)
e potential starts at order Q°
(one-pion exchange and simplest contact interaction)
— still perturbative

Weinberg-van Kolck scheme

e expand potential to some order in Q

then iterate to all orders in dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

widely applied [van Kolck, Epelbaum, Meissner, .. .|
but no clear power counting for observables
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Better: identify new low-energy scales

e promote leading-order terms to order Q'
(cancels Q from loop — iterations not suppressed)
— can, and must, then be iterated to all orders
(all other terms: perturbations)
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Better: identify new low-energy scales

e promote leading-order terms to order Q'
(cancels Q from loop — iterations not suppressed)
— can, and must, then be iterated to all orders
(all other terms: perturbations)

Examples of new scales

e S-wave scattering lengths 1/a < 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]
— for p << my: “pionless EFT” = effective-range expansion
[Bethe (1949)]

5/23



One-pion exchange

..»L.

order @Q° in chiral counting

treat as a perturbation [Kaplan, Savage and Wise (1998)]

S waves: series coverges slowly, if at all

OPE “unnaturally” strong

(cf successes of older phenomenology and Weinberg’s scheme)
strength of OPE set by scale

16mFZ

Ay =
NN gf MN

~ 290 MeV

built out of high-energy scales (41tF;, M,) but ~ 2my
another low-energy scale?
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Other schemes:

e iterate OPE in chiral limit (m; = 0)
then expand perturbatively in powers of my [Beane et al (2001)]
e iterate tensor OPE in attractive spin-triplet waves
— new power counting for contact interactions
[Nogga, Timmermans and van Kolck (2005)]

(> 4 proposed schemes, ~ 15 years of acrimonious debate)
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Other schemes:

e iterate OPE in chiral limit (m; = 0)
then expand perturbatively in powers of my [Beane et al (2001)]
e iterate tensor OPE in attractive spin-triplet waves
— new power counting for contact interactions
[Nogga, Timmermans and van Kolck (2005)]

(> 4 proposed schemes, ~ 15 years of acrimonious debate)

General tool to analyse dependence on low-energy scales
and determine power counting: renormalisation group
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Renormalisation group

Scattering by contact interactions ill-defined — need to renormalise

e couple to virtual states with arbitrarily high —P p
momenta
e basic loop diagram for S waves behaves as
-qa q
g?dq
p2 _ q2

~ —M/dq for large q



Procedure
e identify all relevant low-energy scales Q

E
e cut off at arbitary scale A between Q = A
and Ag (assumes good separation of 0
scales)
e demand that physics be independent ¢ A
of A (eg T-matrix)
—— @

e rescale: express all dimensioned quantities in units of A
(potential and all low-energy scales)
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Follow flow as A — 0; look for fixed points

e rescaled theories independent of A
e correspond to scale-free systems
e endpoints of RG flow

e stable fixed point e unstable fixed point
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Expand around fixed point using perturbations that scale like AY

e v < 0 relevant or superrenormalisable
(unstable; eg masses in QFTs)
e v > Qirrelevant or nonrenormalisable
(stable; eg mesonic ChPT)
e v =0 marginal or renormalisable
(— In/A\ scale dependence; eg couplings in QED, QCD)
— EFT with power counting: QY where d =v — 1
(rescaling — power of A counts low-energy scales)
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RG for short-range potential
General S-wave contact interaction, in momentum space

V(K ,k,p) = Coo + Cao(k? + k'?) + Coa p° - --

e k, k': initial and final relative momenta
e energy-dependence in terms of the on-shell momentum

p=+vVME
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RG for short-range potential

General S-wave contact interaction, in momentum space

V(K k,p) = Coo+ Cao(K? + k'®) + Coa p? - --

e k, k': initial and final relative momenta
e energy-dependence in terms of the on-shell momentum

=V/ME

Rescaled potential ¥ = MAV//(2n?) satisfies RG equation

oV BV P %1% %1% 1
N—=K— — —+ V+ V(K 1,p,A

N a Stk Y +Ph=x 9% +V+V( P )
— two fixed points (independent of A\)

o irivial V=0— perturbative power counting (Weinberg)

e nontrivial [Birse, McGovern, Richardson (1998)]

~ ‘A/ 17R,ﬁaA
— ( )
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Solution to RG equation near nontrivial fixed point

1T M[A p|/\+p] M[1 1

—_—— —_—— —_— 2 .«
V(p,A) 2m2 A—p a 2Pt

4T

e first term: fixed point of RG (bound state at zero energy)

e RG eigenvaluesv=—1, +1, ...
correspond to @2, Q°, ... (shifted by —2 from naive)
[van Kolck; Kaplan, Savage and Wise (1998)]

o coefficients of perturbations directly related to observables:
effective-range expansion

e power counting for potential — counting for observables
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Similar results in presence of long-range potential of order Q"
[Barford and Birse (2002), Birse (2007)]

short-range potential related to distorted-wave observables
trivial fixed point — DWBA expanded in powers of energy
nontrivial fixed point — DW effective-range expansion

power counting determined by singularity of potential as r — 0
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[Barford and Birse (2002), Birse (2007)]
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(except for a log divergence — marginal term in ERE)
KSW-like counting for short-range potential in 'Sy channel
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Similar results in presence of long-range potential of order Q"
[Barford and Birse (2002), Birse (2007)]

short-range potential related to distorted-wave observables
trivial fixed point — DWBA expanded in powers of energy
nontrivial fixed point — DW effective-range expansion

power counting determined by singularity of potential as r — 0
Coulomb or Yukawa: similar to counting for pure short-range
(except for a log divergence — marginal term in ERE)

— KSWe-like counting for short-range potential in 'Sy channel

L > 0 spin-singlet channels: Weinberg counting
(no low-lying resonances)

tensor OPE ~1/r3asr—0

— NTvK counting in spin-triplet channels L <2
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Deconstructing 'Sy NN scattering 1

e iterate OPE (justified if we treat A,y as a low-energy scale)

e use distorted-wave effective-range expansion to extract effects of
OPE from empirical phase shifts Spwa (p)
(four good-x? Nijmegen analyses: PWA93, Nijmegenl,
Nijmegenll, Reid93)

Q>
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Deconstructing 'Sy NN scattering 1

e iterate OPE (justified if we treat A,y as a low-energy scale)
e use distorted-wave effective-range expansion to extract effects of

OPE from empirical phase shifts Spwa (p)
(four good-x? Nijmegen analyses: PWA93, Nijmegenl,
Nijmegenll, Reid93)

Solve radial Schrédinger equation with central OPE

d?u

_ - 2 _ MN Tlab
dr?

+ My Ve (r)u(r) = p2u(r),  p >

— regular solution: ug(r) (— sin(pr+ s ))
and irregular: uy(r) (— —cos(pr-+ o))

15/23



Use these to construct solution with observed phase shift

u(r) = cos3(p) ua(p) — sind(p) ui(p)

and find short-range potential that generates additional phase
6(10) = 5PWA(p) - 8OPE(p)

e choose &-shell form Vs(r,p) = ;= Véz)(p) 8(r—R)
e take u(r) for r > Rand ug(r) forr <R
e match u(R) = ug(R) and use discontinuity in derivatives

to determine strength

_ 4nR? U (R) — ug(R)

V) =

[Shukla et al (2008): similar philosophy but conical well of radius R]
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1 My [ 1 5
——+— | = — M\f5,,In(Ru) | for R=1.6,0.8,0.4,0.2,0.1 fm
V(2) T | R

s (p) .

Linear (1/R) and log (mZIn(R)) divergences correspond
to those in KSW counting, removed for ease of plotting
Shape converges as R — 0 (to DW effective-range expansion)
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Deconstructing 'Sy NN scattering 2

Two-pion exchange
e |eading orders Q%2 [Kaiser et al (1997), Rentmeester et al (1999)]
e plus order-Q? relativistic correction to OPE [Friar 91999)]
and my-exchange van Kolck et al (1996)]
e perturbations: treat at first order — subtract DWBA matrix
elements
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Deconstructing 'Sy NN scattering 2

Two-pion exchange

e leading orders Q%2 [Kaiser et al (1997), Rentmeester et al (1999)]
e plus order-Q? relativistic correction to OPE [Friar 91999)]
and my-exchange van Kolck et al (1996)]
e perturbations: treat at first order — subtract DWBA matrix
elements

But matrix elements diverge

— need to renormalise them first
e cut off radial integrals at R (same as for 6-shell)
e identify and subtract divergent pieces
e use perturbation theory for remaining finite quantities
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Strongest divergences from r—® term in order-Q® TPE potential
and irregular parts of wave functions

e leading terms at each order in energy p?

* 1 * 111
/szdfrfeuf(f)z ~ /r2drr6[r2,p2,p4r2,p6r4,---

R
il &2 p: Rp%....
RS? RS? R? p7

e renormalise with counterterms proportional to p°, p?, p* only
e of orders @2, Q°, @? around nontrivial solution of RG
— terms with orders d < 2 renormalise order-Q® TPE potential
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Strongest divergences from r—® term in order-Q® TPE potential
and irregular parts of wave functions

e leading terms at each order in energy p?

* 1 * 111
/szdfrfeuf(")z ~ /rzdfre[rg>PzaP4f27P6f4,'“

R
il &2 p: Rp%....
RS? RS? R’ p7

e renormalise with counterterms proportional to p°, p?, p* only
e of orders @2, Q°, @? around nontrivial solution of RG
— terms with orders d < 2 renormalise order-Q® TPE potential
e power counting works
(trivial FP: divergences ~ R~3, R~"'p? only — orders Q°, Q°)
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Renormalise by subtracting all p°, p?, p* pieces from integrals

Subtract renormalised matrix element
(WP VR + V& + Vi y(p))

from DW ERE potential Véz)(p)
(— residual potential containing long-range effects starting at Q*)

Look at 1/ Vs(p) expanded to first order:

2
1 1 1 (2) | /(23)
— = — + | = <W(P)|V0PE+VTPE +V7w‘\i’(p)>ren
v ()  VP(p) (vé%))

(again, subtract 1/R and In R terms for convenience in plotting)
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For R=1.6,0.8,0.4,0.2, 0.1 fm
4t

3

(=Y

<—w 200 300 |

-1

e no effect at very low energies since terms up to p* subtracted
e p® and higher terms grow rapidly above T = 100 MeV
— breakdown scale p ~ 270 MeV (cf Ay, My — M,)
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Summary

Trust the RG!

e identify low-energy scales and find a fixed point
e determine power counting around that point
e then use resulting EFT to “deconstruct” data:
either DWBA (peripheral waves)
or DW effective-range expansion (S waves)
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Summary

Trust the RG!

o identify low-energy scales and find a fixed point

e determine power counting around that point

e then use resulting EFT to “deconstruct” data:
either DWBA (peripheral waves)
or DW effective-range expansion (S waves)

e can use different regulator
(eg radial cut-off may be more convenient)

e can take cutoff above underlying scale
(disentangle physics from artefacts of finite cutoff)
but do not try to iterate perturbations
[cf Phillips, Beane and Cohen (1997)]

— if expansion breaks down: that’s physics!
(missing low-energy scales or no separation of scales)
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RG provides power countings to use with iterated OPE
o 1Sy: KSW-like
e [ > 0 spin-singlet channels: Weinberg (perturbative)
e [ < 2 spin-triplet channels: NTvK
— terms required by power counting do renormalise divergent
matrix elements of TPE potential
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RG provides power countings to use with iterated OPE
o 1Sy: KSW-like
e [ > 0 spin-singlet channels: Weinberg (perturbative)
e [ < 2 spin-triplet channels: NTvK
— terms required by power counting do renormalise divergent
matrix elements of TPE potential

Butin 'S channel ...
e expansion seems to break down for p = 270 MeV
o still need to examine scales in coefficients of p®, p®
o coefficient of r=®exp(—2myr) contains Ayy, c3 =~ —5 GeV ™"
— “high-energy” scale

1/4

(16m)2£2

Ny = (2“ ~ 115 MeV
14495/ cs| My

— need to include A?
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