Nuclear physics and QCD

Michael C Birse

(The University of Manchester)

NuPECC long range plan 2004: Perspectives for nuclear physics research in Europe in the coming decade and beyond

- Chapter 4 Quantum Chromodynamics
- Chapter 5 Phases of nuclear matter

http://www.nupecc.org/nupecc/lrp02/

Nuclear physics is QCD

Quantum Chromodynamics (QCD) is the theory of the strong interaction – the force responsible for binding nuclei

Theory of quarks and gluons, carrying colour charges

- but these are trapped inside colour-singlet states: hadrons (at least in the vacuum surrounding us)
- mesons $(q\bar{q})$ and baryons (qqq)(plus clouds of gluons and $q\bar{q}$ pairs)

Nuclei: large numbers of quarks, but still strongly correlated in threes

 \rightarrow many properties can be understood just in terms of nucleons, interacting via phenomenological forces

But ...

We want to understand:

- the nature of colour confinement
- the mechanism of mass generation for hadrons
- the origin of the forces between nucleons

And to look for places where the standard picture breaks down:

- responses of nucleons to external fields (polarisabilities, three-body forces)
- existence of "exotic" states
 (glueballs, hybrids, "molecules", pentaquarks?)
- transitions to new phases of strongly interacting matter under extreme conditions of temperature and density (quark-gluon plasma, colour superconductors)

All of these need QCD degrees of freedom and symmetries

Outline

- Some rudiments of QCD
 - Lagrangian
 - Running coupling
 - Confinement
 - Hidden chiral symmetry
 - Phase diagram
- Hadrons in the ordinary vacuum
 - Chiral dynamics
 - Parton distributions
 - Heavy-quark states
- Strongly interacting matter
 - Quark-gluon plasma
 - Dense baryonic matter

Quantum Chromodynamics

QCD is a gauge theory (like electromagnetism)

- spin-1/2 particles: quarks
- interacting by exchange of spin-1 bosons: gluons

Gauge symmetry group is colour SU(3)

- quarks: triplets ("red, green, blue")
- gluons: octet
- nonabelian: when a quark emits a gluon, its colour changes
- \rightarrow gluons must carry colour \rightarrow must interact with each other

Lagrangian

$$\mathcal{L} = \sum_{f=u,d,\dots} \bar{q}_f \left[i\gamma^{\mu} \left(\partial_{\mu} - igt^a A^{a\mu} \right) - m_f \right] q_f - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu}$$

in terms of quark fields: $q_f(x)$, gluon fields: $A^a_\mu(x)$ (a = 1, ..., 8) and

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

 m_f : "current" masses, from EW Higgs mechanism

Quarks come in six flavours

Up, down: current masses $m_{u,d} \simeq 5-10$ MeV

- dominant constituents of ordinary matter
- form a pair under SU(2) isospin symmetry (weak interaction)

But also two extra heavier copies (generation problem)

- charm (1.3 GeV), strange (100 MeV)
- top (178 GeV), bottom (4.3 GeV)
- \rightarrow s, c and b quarks all form hadronic states
- \rightarrow s could play a role in normal matter virtual $s\bar{s}$ pairs
- $\rightarrow c$ and b can act as \sim static sources of gluon fields

(t decays too fast to do much in hadrons or nuclei)

Running coupling

Cloud of virtual gluons and quarks around colour charge \rightarrow antiscreening Strong coupling constant $\alpha_s = g^2/4\pi$ runs with momentum scale Q

High momenta, $Q \gg 1$ GeV

- asymptotic freedom [Gross, Politzer and Wilczek, 1973]
- perturbation theory can be used hard scattering processes, evolution of DIS structure functions

Low momenta, $Q \lesssim 1$ GeV (nuclear and hadron physics)

- QCD is nonperturbative
- "empty" space like a complicated condensed-matter system

Theoretical tools include

• lattice simulations

define fields on a discrete lattice in Euclidean space-time evaluate path integrals numerically using Monte-Carlo methods

- renormalisation group and effective field theory expand in powers of ratios of low- and high-momentum scales
- QCD-inspired models nonrelativistic quarks, bags, solitons, NJL, hadronic strings . . .

Confinement

Quarks and gluons trapped inside colour-singlet hadrons Emerging picture: dual superconductor

- vacuum is condensate of magnetic monopole-like gluon configurations
- Meissner effect confines colour electric fields to flux tubes
- \rightarrow linear potential between $Q\overline{Q}$ (hadronic string)

H. Ichie *et al*, DIK Collaboration, hep-lat/0212036Full QCD with 2 light flavoursMaximal Abelian gauge

Hidden chiral symmetry

u and d quarks almost massless in QCD Lagrangian

(EW Higgs not the origin of mass as we know it!)

- \rightarrow interactions with gluons preserve quarks' helicity
- \rightarrow hence conserve chirality (handedness)

Theory \sim symmetric under two copies of isospin: right- and left-handed

- $q \rightarrow \exp\left[i\alpha \cdot \boldsymbol{\tau}(1 \pm \gamma_5)\right] q$
- chiral symmetry group $SU(2)_R \times SU(2)_L$

But at low energies

- quarks seem to have masses $\sim 300~{\rm MeV}$
- hadron spectrum shows no sign of this symmetry (no parity doublets)

⇒ Symmetry is hidden (spontaneously broken)

QCD vacuum contains a condensate of quark-antiquark pairs

 $\langle 0|\overline{q}_L q_R + \overline{q}_R q_L|0 \rangle \simeq -3 \text{ fm}^{-3}$

Odd chirality $(q_R \leftrightarrow q_L) \rightarrow$ quarks get dynamical masses Potential energy: "Mexican hat" (like Higgs in EW sector)

Exact chiral symmetry $(m_{u,d} = 0)$

- → massless pions (Goldstone bosons)
- \rightarrow pion interactions vanish at threshold

Real world: current masses break symmetry explicitly

- \rightarrow small pion masses $m_{\pi}^2 \propto m_{u,d} \ (m_{\pi} \simeq 140 \text{ MeV} \ll m_{
 ho}, M_N)$
- \rightarrow pions interact weakly at low energies

QCD phase diagram

Vacuum surrounding us now

- quarks and gluons are confined ("monopole" condensate)
- chiral symmetry is hidden (quark condensate)

Extreme temperatures or densities can destroy condensates \rightarrow new phases

Lattice methods work well for $T \neq 0$, $\mu_B = 0$

- For two flavours of light quark (u, d), and one lightish (s)
- → rapid crossover at $T_c \simeq 175$ MeV, energy density $\epsilon_c \simeq 0.7$ GeV/fm³ (no sharp phase transition)
- \rightarrow unconfined quarks and restored chiral symmetry
 - a quark-gluon plasma
 - above T_c : energy density $\epsilon(T) \propto T^4$ (ideal massless plasma)
 - but growing evidence for strong $q \bar{q}$ correlations up to $T \sim 1.5 T_c$

Lattice extrapolations to $\mu_B \neq 0$, $T \neq 0$ becoming more reliable \rightarrow hints of critical point at $\mu_B \sim 400$ MeV

Cold dense matter: no lattice calculations (sign problem)

- only models (or perturbative QCD at asymptotic densities)
- transition to unconfined quark matter expected
- attractive forces between quarks \rightarrow pairing \rightarrow colour superconductivity
- wide variety of possible phases (2SC, CFL, LOFF, ...)

Chiral dynamics

Small pion mass \rightarrow pions play important roles in nuclear physics

- structure of nucleon pion cloud \rightarrow EM form factors, negative $\langle r^2 \rangle_c$ for neutron
- nuclear forces

pion exchange \rightarrow longest-range forces between nucleons

At energies $\sim m_{\pi}$ quarks and gluons interact strongly

But chiral symmetry \rightarrow interactions of pions are rather weak

 \rightarrow systematic expansion in powers of pion mass and momenta: chiral perturbation theory

Example of an "effective field theory":

- embodies all symmetries of QCD (eg: $SU(2)_R \times SU(2)_L$)
- in terms of low-energy degrees of freedom: pions, nonrelativistic nucleons
- \bullet nonrenormalisable \rightarrow infinite number of couplings
- but at each order only a finite subset contribute

Can provide a bridge between experiment and lattice QCD

- extraction of relevant low-energy parameters from data
- extrapolation of lattice results from $m_q \sim m_s~(m_\pi \sim 400 \text{ MeV})$ to realistic u, d masses ($m_\pi = 140 \text{ MeV}$)

Important applications

- $\gamma \gamma \rightarrow \pi \pi$ and $\pi \pi$ scattering
- photo- and electroproduction of pions from nucleons
- responses of nucleons to EM fields

Example: low-energy Compton scattering from proton

→ electric and magnetic polarisabilities Beane et al, nucl-th/0403088 $\alpha_p = 12.1 \pm 1.1 \pm 0.5 \times 10^{-4} \text{ fm}^3$ $\beta_p = 3.4 \pm 1.1 \pm 0.1 \times 10^{-4} \text{ fm}^3$

Also polarised Compton scattering \rightarrow 4 spin-dependent polarisabilities and virtual Compton scattering $ep \rightarrow e'p\gamma \rightarrow$ "generalised" polarisabilities (form factors for these responses) \rightarrow demand high-precision experiments MAMI, ELSA, Jlab

Parton distributions

Deep-inelastic scattering $e + p \rightarrow e' + X$

Bjorken region: large momentum transfer Q^2 and energy transfer ω , finite

$$x = \frac{Q^2}{2M_N\omega}$$
 (~ momentum fraction of struck parton)

Systematic expansion in powers of $1/Q^2$ (soft-collinear effective theory) Leading (twist-2) terms \rightarrow parton distributions $q(x, Q^2)$

- logarithmic evolution with Q^2 calculable from perturbative QCD
- but initial shapes at low Q^2 given by nonperturbative physics

Moments of these distributions $\int_0^1 x^n q(x) dx$

- matrix elements of local operators
- \rightarrow another bridge between experiment and lattice
 - include operators not coupled to EW fields

Important example: flavour-singlet axial coupling

- total quark spin in proton $\Delta \Sigma = \Delta u + \Delta d + \Delta s$ $(\Delta q = q_{\uparrow} q_{\downarrow})$
- polarised DIS $\rightarrow \Delta \Sigma \sim 0.13 \pm 0.10 \pm 0.10$ SMC (naive analogy with $g_A = \Delta u - \Delta d = 1.26 \rightarrow \Delta \Sigma \sim 0.6$)

Questions:

- what carries remaining angular momentum $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$?
 - gluons ΔG ?
 - orbital motion of quarks L_z ?
- is $\Delta\Sigma$ small because of polarised strange sea $\Delta s < 0$?

First information on ΔG coming from evolution of $\Delta \Sigma$ More direct probe: photon-gluon fusion $\gamma^*g \rightarrow q\bar{q}$ $\rightarrow D\bar{D}$ or high- p_T pair of light hadrons HERMES, COMPASS Deeply virtual Compton scattering $ep \rightarrow e'p\gamma$

- \rightarrow generalised parton distributions (\leftrightarrow form factors)
 - some of these sensitive to L_z HERMES, CLAS

Heavy-quark states

- c, b quarks act as slow (nonrelativistic) sources of gluon fields
- ightarrow expansions in powers of $1/m_Q$
 - $(Q\bar{q}: heavy-quark effective theory; Q\bar{Q}: NRQCD)$
 - third bridge to lattice calculations
 - \bullet spectrum of excited states \rightarrow quark-antiquark forces

Charmonium region

- bound states below $D\bar{D}$ threshold very sharp
- states above threshold can also be narrow if $L \neq 0$
- new states not reachable from e^+e^- (CLEO) now being found $\eta'_c(2^1S_0)$ 3638 MeV; $h_c({}^1P_1)$ 3526 MeV; X 3872 MeV Belle, ...
- possible hybrid states with $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}$ not allowed for $Q\bar{Q}$
- narrow $Q\bar{Q}$ states \rightarrow cleaner region to hunt for glueballs

Mapping out this spectrum calls for

- production in $p\bar{p}$ annihilation (all quantum numbers)
- very good beam resolution (narrow states)
- a catch-all detector **GSI/PANDA**

Quark-gluon plasma

Primordial matter: high temperature, very small baryon density

- hope to recreate in ultrarelativistic heavy-ion collisions $E/A \gtrsim 100 \text{ GeV}$ RHIC, LHC/ALICE

Immediate questions:

- what energy densities are reached?
- does matter reach thermal equilibrium?
- at what temperature?

Answers so far:

- transverse energy \rightarrow initial $\epsilon \gtrsim 5 \text{ GeV/fm}^3$ (well above ϵ_c) RHIC
- large elliptic flow (sideways expansion) \rightarrow hydrodynamics
 - \rightarrow high degree of thermalisation at early stage
- hadron yields \rightarrow "chemical" freezeout at $T\simeq$ 160 MeV, $\mu_B\sim$ 25 MeV
- \rightarrow all suggest RHIC is reaching relevant region for QGP formation

Dense baryonic matter

Very dense cold matter exists inside neutron stars

- baryon densities several times nuclear matter, $T \lesssim 10~{\rm MeV}$
- could be colour superconducting quark matter (quark stars?)
- but hard to probe inside these objects
- not possible to recreate conditions on Earth

Instead use relativistic heavy ions with $E/A \sim 20$ GeV SPS, GSI/CBM

- \rightarrow dense, warm matter: $\rho_B \sim$ few times nuclear matter, $T \gtrsim 100$ MeV
- \rightarrow look for signals of
 - first-order transition (collective flow effects)
 - possible critical phenomena (event-by-event fluctuations)
 - changes to hadron properties in dense matter (reduced masses)

Summary

Nonperturbative nature of QCD vacuum

- lot of interesting physics (confinement, hidden chiral symmetry)
- determines the structure and interactions of hadrons
- rich phase diagram
- still not well understood theoretically
- experiments only starting to probe with any precision

Important physics:

- controls structure of nuclei and nuclear reactions
- needed in astrophysical systems (early universe, neutron stars)
- origin of our mass

As universe cooled from Planck temperature $T \sim 10^{19}$ GeV various phase transitions in gauge theories expected to have occurred

- $\bullet~\mathsf{QCD} \to \mathsf{only}$ one we can hope to recreate here on Earth
- and study related condensation phenomena in any detail