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Problem with building an EFT for nuclear forces

Chiral perturbation theory

• expansion in powers of ratios of low-energy scales Q
(momenta, mπ, . . . )
to scales of underlying physics Λ0 (mρ, MN , 4πFπ, . . . )
• terms organised by naive dimensional analysis

aka “Weinberg power counting”
(simply counts powers of low-energy scales)
• perturbative: works for weakly interacting systems

(eg pions, photons and ≤ 1 nucleon)

• but nucleons interact strongly at low-energies
• bound states exist (nuclei!)
→ need to treat some interactions nonperturbatively
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Basic nonrelativistic loop diagram

M
(2π)3

∫ d3q
p2−q2 + iε

=−i
M p
4π

+ analytic

• of order Q [Weinberg (1991)]
• but potential starts at order Q0

(OPE and simplest contact interaction)
• each iteration suppressed by power of Q/Λ0

→ perturbative provided Q < Λ0

• integral linearly divergent
→ cut off (or subtract) at q = Λ
• contributions multiplied by powers of Λ/Λ0

→ again perturbative provided Λ < Λ0

−p p

−p p

−q q
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Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied and even more widely invoked

• but no clear power counting for observables
• resums subset of terms to all orders in Q

(and some of these depend on regulator)
• not necessarily a problem if these terms are small
• but what if we rely on them to generate bound states?
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Has led to vigorous debate over the last 12+ years

EFT community has polarised around two philosophies:

• Orthodox
“The Prophet of EFT gave us the Power Counting in the holy
texts, Phys Lett B251 and Nucl Phys B363.”
• Liberal

“Let the renormalisation group decide!”

and the orthdox party seems to be winning the election, so far...
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Renormalisation group

General tool for analysing scale-dependence

• first, identify all low-energy scales Q
• including ones to promote leading-order terms to order Q−1

(cancels Q from loop→ iterations not suppressed)
• can, and must, then be iterated to all orders

Examples of new scales

• S-wave scattering lengths 1/a . 40 MeV [van Kolck; KSW (1998)]
• “unnatural” strength of OPE set by scale

λNN =
16πF 2

π

g2
A MN

' 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ
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Then

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

����������������������������������

�
�
�
�
�
�

�
�
�
�
�
�

E

Q

Λ
0

Λ

• cut off at arbitary scale Λ between Q
and Λ0 (assumes good separation of
scales)

• “integrate out” physics by lowering Λ
(don’t even think about taking Λ to
infinity!)
• demand that physics be independent

of Λ (eg T matrix)

• look for fixed points (describe scale-free systems)
• expand around these using perturbations that scale like Λν

→ correspond to terms in EFT of order Qd where d = ν−1
(Λ: largest acceptable low-energy scale)
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Fixed points of short-range forces

Trivial: V0 = 0→ weak scattering, Weinberg counting

Nontrivial: V0(p,Λ) =− 2π2

MΛ

[
1− p

2Λ
ln

Λ + p
Λ−p

]−1

(sharp cutoff)

• order Q−1 (so must be iterated)
• describes “unitary limit”: scattering length a→ ∞

• expansion around this point

V (p,Λ) = V0(p,Λ) + V0(p,Λ)2 M
4π

(
− 1

a
+

1
2

re p2 + · · ·
)

• factor V 2
0 ∝ Λ−2 promotes terms by two orders compared to naive

expectation [van Kolck; Kaplan, Savage and Wise (1998)]
• effective-range expansion, “KSW” counting
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Enhancement follows from form of wave functions as r → 0

Two particles in unitary limit

• irregular solutions: ψ(r) ∝ r−1 (S wave)
• cutoff smears contact interaction over range R ∼ Λ−1

→ need extra factor Λ−2 to cancel cutoff dependence from
|ψ(R)|2 ∝ Λ2 in matrix elements of potential

3 bosons or 3 distinct fermions in unitary limit (triton)

• naive dimensional analysis→ leading contact term of order Q3

• as hyperradius R→ 0 wave functions behave like
ψ(R) ∝ R−2±is0 with s0 ' 1.006 [Efimov (1971)]

→ leading three-body force promoted to order Q−1

(limit cycle of RG) [Bedaque, Hammer and van Kolck (1999)]
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Effects of iterated one-pion exchange forces

Central OPE (spin-singlet waves)

• 1/r singularity – not enough to alter power-law forms of wave
functions at small r
• L≥ 1 waves: weak scattering→Weinberg power counting
• 1S0: similar to expansion around unitary fixed point
→ KSW-like power counting

Tensor OPE (spin-triplet waves)

• 1/r3 singularity
• wave functions ψ(r) ∝ r−1/4 multiplied by either sine or

exponential function of 1/
√

λNNr
→ new counting needed [Nogga, Timmermans and van Kolck (2005)]
• leading contact interaction of order Q−1/2 in waves with L≥ 1
• very slowly converging expansion→ better to iterate
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Importance of tensor OPE does depend on cutoff Λ

• higher partial waves protected by centrifugal barrier
• only waves above critical momentum resolve singularity
→ OPE not perturbative
• L≥ 3: pc & 2 GeV→Weinberg counting OK for Λ . 600 MeV
• L≤ 2: pc . 3mπ → NTvK counting needed
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Three-body forces

Two-pion exchange

• purely long-range interactions
→ not renormalised (start at order Q3)

One-pion exchange (“cD”)

• contains two-body contact vertices like
(N†N)(N†σN) ·∇π

• promoted in same way as contact interactions
for L≤ 2

Contact interaction (“cE ”)

• counting still not known:
need to solve 3-body problem with 1/r3 potentials [L Platter]
• expect to be promoted→ order Qd , −1 < d < 3?
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A new road map for nuclear EFT

To order Q3 (N2LO in Weinberg’s counting)

Order NN NNN
Q−1 1S0, 3S1 C0’s, LO OPE

Q−1/2 3PJ , 3DJ C0’s
Q0 1S0 C2

Q1/2 3S1 C2

Q1 1S0 CD0 OPE
Q3/2 3PJ , 3DJ C2’s 3S1 CD0 OPE
Q2 1S0 C4, 1P1 C0,

NLO OPE, LO TPE
Q5/2 3S1 C4

3PJ , 3DJ CD0’s OPE
Q3 NLO TPE 1S0 CD2 OPE, LO 3N TPE
Q? CE

• orange terms absent from “N2LO chiral potential”

• red terms absent from “N3LO”

• order Q−1: have to iterate; order Q−1/2: probably better to
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Can I iterate my full potential?

To use it in standard few-/many-body methods

Yes, provided you are careful . . .

• resumming subset of higher-order terms
• without the counterterms needed to renormalise them
→ dangerous: can alter form of short-distance wave functions

and destroy power counting (or, at best, change it)
• but problems don’t arise, provided higher-order terms are small
• general way to ensure this: keep cutoff small, Λ < Λ0

• introduces artefacts ∝ (Q/Λ)n → radius of convergence Λ not Λ0

• want to keep Λ as large as possible
→ leaves only a narrow window: Λ just below Λ0

14 / 16



Can I iterate my full potential?

To use it in standard few-/many-body methods

Yes, provided you are careful . . .

• resumming subset of higher-order terms
• without the counterterms needed to renormalise them
→ dangerous: can alter form of short-distance wave functions

and destroy power counting (or, at best, change it)
• but problems don’t arise, provided higher-order terms are small

• general way to ensure this: keep cutoff small, Λ < Λ0

• introduces artefacts ∝ (Q/Λ)n → radius of convergence Λ not Λ0

• want to keep Λ as large as possible
→ leaves only a narrow window: Λ just below Λ0

14 / 16



Can I iterate my full potential?

To use it in standard few-/many-body methods

Yes, provided you are careful . . .

• resumming subset of higher-order terms
• without the counterterms needed to renormalise them
→ dangerous: can alter form of short-distance wave functions

and destroy power counting (or, at best, change it)
• but problems don’t arise, provided higher-order terms are small
• general way to ensure this: keep cutoff small, Λ < Λ0

• introduces artefacts ∝ (Q/Λ)n → radius of convergence Λ not Λ0

• want to keep Λ as large as possible
→ leaves only a narrow window: Λ just below Λ0

14 / 16



What happens if I take my cutoff above Λ0?

To keep cutoff artefacts small, maximise radius of convergence of EFT

Nothing, provided you respect the power counting

• renormalise all potentially divergent integrals
• iterate all fixed-point or marginal terms, order Q−1

• do not iterate irrelevant terms, order Qd with d ≥ 0
• otherwise . . .
→ if very lucky, might discover a new power counting

eg tensor OPE in low partial waves [NTvK]
→ more generally, lose any consistent counting

eg effective-range term in short-range potential
[Phillips, Beane and Cohen (1997); and many others]
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Effective potential and scattering observables

Contact interactions directly related to “observables” (phase shifts)

• distorted-wave K matrix K̃ (p) =− 4π

M p
tan
(
δPWA(p)−δOPE(p)

)
→ either DWBA: expand K̃ (p) in powers of energy (peripheral w’s)
• or DW effective-range expansion: expand 1/K̃ (p) (S waves)
• need to work with finite radial cutoff

since OPE and centrifugal barrier both singular as r → 0
(but can take this to be very small, provided we keep to our power
counting)
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