More effective theory for nuclear forces

Mike Birse
The University of Manchester

Thanks to the INT, Seattle, and the organisers of the program INT-09-1 "Effective field theories and the many-body problem", April-June 2009

Problem with building an EFT for nuclear forces

Chiral perturbation theory

- expansion in powers of ratios of low-energy scales Q (momenta, m_{π}, \ldots)
to scales of underlying physics $\Lambda_{0}\left(m_{\rho}, M_{N}, 4 \pi F_{\pi}, \ldots\right)$
- terms organised by naive dimensional analysis aka "Weinberg power counting" (simply counts powers of low-energy scales)
- perturbative: works for weakly interacting systems (eg pions, photons and ≤ 1 nucleon)

Problem with building an EFT for nuclear forces

Chiral perturbation theory

- expansion in powers of ratios of low-energy scales Q (momenta, m_{π}, \ldots)
to scales of underlying physics $\Lambda_{0}\left(m_{\rho}, M_{N}, 4 \pi F_{\pi}, \ldots\right)$
- terms organised by naive dimensional analysis aka "Weinberg power counting" (simply counts powers of low-energy scales)
- perturbative: works for weakly interacting systems (eg pions, photons and ≤ 1 nucleon)
- but nucleons interact strongly at low-energies
- bound states exist (nuclei!)
\rightarrow need to treat some interactions nonperturbatively

Basic nonrelativistic loop diagram

$$
\frac{M}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} q}{p^{2}-q^{2}+\mathrm{i} \varepsilon}=-\mathrm{i} \frac{M p}{4 \pi}+\text { analytic }
$$

- of order Q [Weinberg (1991)]
- but potential starts at order Q^{0}
(OPE and simplest contact interaction)
- each iteration suppressed by power of Q / Λ_{0}
\rightarrow perturbative provided $Q<\Lambda_{0}$
- integral linearly divergent
\rightarrow cut off (or subtract) at $q=\Lambda$

- contributions multiplied by powers of Λ / Λ_{0}
\rightarrow again perturbative provided $\Lambda<\Lambda_{0}$

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in Q (and some of these depend on regulator)
- not necessarily a problem if these terms are small
- but what if we rely on them to generate bound states?

Has led to vigorous debate over the last 12+ years
EFT community has polarised around two philosophies:

Has led to vigorous debate over the last 12+ years
EFT community has polarised around two philosophies:

- Orthodox
"The Prophet of EFT gave us the Power Counting in the holy texts, Phys Lett B251 and Nucl Phys B363."

Has led to vigorous debate over the last 12+ years
EFT community has polarised around two philosophies:

- Orthodox
"The Prophet of EFT gave us the Power Counting in the holy texts, Phys Lett B251 and Nucl Phys B363."
- Liberal
"Let the renormalisation group decide!"

Has led to vigorous debate over the last 12+ years
EFT community has polarised around two philosophies:

- Orthodox
"The Prophet of EFT gave us the Power Counting in the holy texts, Phys Lett B251 and Nucl Phys B363."
- Liberal
"Let the renormalisation group decide!"
and the orthdox party seems to be winning the election, so far...

Renormalisation group

General tool for analysing scale-dependence

- first, identify all low-energy scales Q
- including ones to promote leading-order terms to order Q^{-1} (cancels Q from loop \rightarrow iterations not suppressed)
- can, and must, then be iterated to all orders

Renormalisation group

General tool for analysing scale-dependence

- first, identify all low-energy scales Q
- including ones to promote leading-order terms to order Q^{-1} (cancels Q from loop \rightarrow iterations not suppressed)
- can, and must, then be iterated to all orders

Examples of new scales

- S-wave scattering lengths $1 / a \lesssim 40 \mathrm{MeV}$ [van Kolck; KSW (1998)]
- "unnatural" strength of OPE set by scale

$$
\lambda_{N N}=\frac{16 \pi F_{\pi}^{2}}{g_{A}^{2} M_{N}} \simeq 290 \mathrm{MeV}
$$

built out of high-energy scales $\left(4 \pi F_{\pi}, M_{N}\right)$ but $\sim 2 m_{\pi}$

Then

- cut off at arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)

Then

- cut off at arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)
- "integrate out" physics by lowering Λ (don't even think about taking \wedge to infinity!)

Then

- cut off at arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)
- "integrate out" physics by lowering Λ (don't even think about taking \wedge to infinity!)
- demand that physics be independent of Λ (eg T matrix)

Then

- cut off at arbitary scale Λ between Q and Λ_{0} (assumes good separation of scales)
- "integrate out" physics by lowering Λ (don't even think about taking \wedge to infinity!)
- demand that physics be independent of Λ (eg T matrix)
- look for fixed points (describe scale-free systems)
- expand around these using perturbations that scale like Λ^{v}
\rightarrow correspond to terms in EFT of order Q^{d} where $d=v-1$ (\wedge : largest acceptable low-energy scale)

Fixed points of short-range forces

Trivial: $V_{0}=0 \rightarrow$ weak scattering, Weinberg counting
Nontrivial: $V_{0}(p, \Lambda)=-\frac{2 \pi^{2}}{M \Lambda}\left[1-\frac{p}{2 \Lambda} \ln \frac{\Lambda+p}{\Lambda-p}\right]^{-1}$ (sharp cutoff)

- order Q^{-1} (so must be iterated)
- describes "unitary limit": scattering length $a \rightarrow \infty$

Fixed points of short-range forces

Trivial: $V_{0}=0 \rightarrow$ weak scattering, Weinberg counting
Nontrivial: $V_{0}(p, \Lambda)=-\frac{2 \pi^{2}}{M \Lambda}\left[1-\frac{p}{2 \Lambda} \ln \frac{\Lambda+p}{\Lambda-p}\right]^{-1}$ (sharp cutoff)

- order Q^{-1} (so must be iterated)
- describes "unitary limit": scattering length $a \rightarrow \infty$
- expansion around this point

$$
V(p, \Lambda)=V_{0}(p, \Lambda)+V_{0}(p, \Lambda)^{2} \frac{M}{4 \pi}\left(-\frac{1}{a}+\frac{1}{2} r_{e} p^{2}+\cdots\right)
$$

- factor $V_{0}^{2} \propto \Lambda^{-2}$ promotes terms by two orders compared to naive expectation [van Kolck; Kaplan, Savage and Wise (1998)]
- effective-range expansion, "KSW" counting

Enhancement follows from form of wave functions as $r \rightarrow 0$
Two particles in unitary limit

- irregular solutions: $\psi(r) \propto r^{-1}$ (S wave)
- cutoff smears contact interaction over range $R \sim \Lambda^{-1}$
\rightarrow need extra factor Λ^{-2} to cancel cutoff dependence from $|\psi(R)|^{2} \propto \Lambda^{2}$ in matrix elements of potential

Enhancement follows from form of wave functions as $r \rightarrow 0$
Two particles in unitary limit

- irregular solutions: $\psi(r) \propto r^{-1}$ (S wave)
- cutoff smears contact interaction over range $R \sim \Lambda^{-1}$
\rightarrow need extra factor Λ^{-2} to cancel cutoff dependence from $|\psi(R)|^{2} \propto \Lambda^{2}$ in matrix elements of potential

3 bosons or 3 distinct fermions in unitary limit (triton)

- naive dimensional analysis \rightarrow leading contact term of order Q^{3}
- as hyperradius $R \rightarrow 0$ wave functions behave like $\psi(R) \propto R^{-2 \pm i s_{0}}$ with $s_{0} \simeq 1.006$ [Efimov (1971)]
\rightarrow leading three-body force promoted to order Q^{-1} (limit cycle of RG) [Bedaque, Hammer and van Kolck (1999)]

Effects of iterated one-pion exchange forces

Central OPE (spin-singlet waves)

- $1 / r$ singularity - not enough to alter power-law forms of wave functions at small r
- $L \geq 1$ waves: weak scattering \rightarrow Weinberg power counting
- ${ }^{1} S_{0}$: similar to expansion around unitary fixed point
\rightarrow KSW-like power counting

Effects of iterated one-pion exchange forces

Central OPE (spin-singlet waves)

- $1 / r$ singularity - not enough to alter power-law forms of wave functions at small r
- $L \geq 1$ waves: weak scattering \rightarrow Weinberg power counting
- ${ }^{1} S_{0}$: similar to expansion around unitary fixed point
\rightarrow KSW-like power counting

Tensor OPE (spin-triplet waves)

- $1 / r^{3}$ singularity
- wave functions $\psi(r) \propto r^{-1 / 4}$ multiplied by either sine or exponential function of $1 / \sqrt{\lambda_{N N} r}$
\rightarrow new counting needed [Nogga, Timmermans and van Kolck (2005)]
- leading contact interaction of order $Q^{-1 / 2}$ in waves with $L \geq 1$
- very slowly converging expansion \rightarrow better to iterate

Importance of tensor OPE does depend on cutoff Λ

- higher partial waves protected by centrifugal barrier
- only waves above critical momentum resolve singularity
\rightarrow OPE not perturbative
- $L \geq 3: p_{c} \gtrsim 2 \mathrm{GeV} \rightarrow$ Weinberg counting OK for $\Lambda \lesssim 600 \mathrm{MeV}$
- $L \leq 2: p_{c} \lesssim 3 m_{\pi} \rightarrow$ NTvK counting needed

Three-body forces
Two-pion exchange

- purely long-range interactions
\rightarrow not renormalised (start at order Q^{3})

Three-body forces

Two-pion exchange

- purely long-range interactions
\rightarrow not renormalised (start at order Q^{3})
One-pion exchange (" C_{D} ")
- contains two-body contact vertices like $\left(N^{\dagger} N\right)\left(N^{\dagger} \sigma N\right) \cdot \nabla \pi$
- promoted in same way as contact interactions for $L \leq 2$

Three-body forces

Two-pion exchange

- purely long-range interactions
\rightarrow not renormalised (start at order Q^{3})
One-pion exchange (" C_{D} ")
- contains two-body contact vertices like $\left(N^{\dagger} N\right)\left(N^{\dagger} \sigma N\right) \cdot \nabla \pi$
- promoted in same way as contact interactions for $L \leq 2$

Contact interaction (" C_{E} ")

- counting still not known:
need to solve 3-body problem with $1 / r^{3}$ potentials [L Platter]
- expect to be promoted \rightarrow order $Q^{d},-1<d<3$?

A new road map for nuclear EFT

To order Q^{3} (N2LO in Weinberg's counting)

Order	NN	NNN
Q^{-1}	${ }^{1} S_{0},{ }^{3} S_{1} C_{0}{ }^{\prime}$, LO OPE	
$Q^{-1 / 2}$	${ }^{3} P_{J},{ }^{3} D_{J} C_{0}{ }^{\prime} \mathrm{s}$	
Q^{0}	${ }^{0} S_{0} C_{2}$	
$Q^{1 / 2}$	${ }^{3} S_{1} C_{2}$	
Q^{1}	${ }^{3} P_{J}{ }^{3} D_{J} C_{2}{ }^{\prime} \mathrm{s}$	${ }^{3} C_{D 0}$ OPE
$Q^{3 / 2} C_{D 0}$ OPE		
Q^{2}	${ }^{1} S_{0} C_{4},{ }^{1} P_{1} C_{0}$,	
$Q^{5 / 2}$	NLO OPE, LO TPE	
Q^{3}	${ }^{3} S_{1} C_{4}$	${ }^{3} P_{J},{ }^{3} D_{J} C_{D 0}$'s OPE
$Q^{?}$	NLO TPE	${ }^{1} S_{0} C_{D 2}$ OPE, LO 3N TPE

- orange terms absent from "N2LO chiral potential"
- red terms absent from "N3LO"
- order Q^{-1} : have to iterate; order $Q^{-1 / 2}$: probably better to

Can I iterate my full potential?

To use it in standard few-/many-body methods

Can I iterate my full potential?

To use it in standard few-/many-body methods
Yes, provided you are careful ...

- resumming subset of higher-order terms
- without the counterterms needed to renormalise them
\rightarrow dangerous: can alter form of short-distance wave functions and destroy power counting (or, at best, change it)
- but problems don't arise, provided higher-order terms are small

Can I iterate my full potential?

To use it in standard few-/many-body methods
Yes, provided you are careful ...

- resumming subset of higher-order terms
- without the counterterms needed to renormalise them
\rightarrow dangerous: can alter form of short-distance wave functions and destroy power counting (or, at best, change it)
- but problems don't arise, provided higher-order terms are small
- general way to ensure this: keep cutoff small, $\Lambda<\Lambda_{0}$
- introduces artefacts $\propto(Q / \Lambda)^{n} \rightarrow$ radius of convergence Λ not Λ_{0}
- want to keep Λ as large as possible
\rightarrow leaves only a narrow window: Λ just below Λ_{0}

What happens if I take my cutoff above Λ_{0} ?

To keep cutoff artefacts small, maximise radius of convergence of EFT

What happens if I take my cutoff above Λ_{0} ?

To keep cutoff artefacts small, maximise radius of convergence of EFT
Nothing, provided you respect the power counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, order Q^{-1}
- do not iterate irrelevant terms, order Q^{d} with $d \geq 0$
- otherwise ...

What happens if I take my cutoff above Λ_{0} ?

To keep cutoff artefacts small, maximise radius of convergence of EFT
Nothing, provided you respect the power counting

- renormalise all potentially divergent integrals
- iterate all fixed-point or marginal terms, order Q^{-1}
- do not iterate irrelevant terms, order Q^{d} with $d \geq 0$
- otherwise ...
\rightarrow if very lucky, might discover a new power counting eg tensor OPE in low partial waves [NTvK]
\rightarrow more generally, lose any consistent counting eg effective-range term in short-range potential [Phillips, Beane and Cohen (1997); and many others]

Effective potential and scattering observables

Contact interactions directly related to "observables" (phase shifts)

- distorted-wave K matrix $\widetilde{K}(p)=-\frac{4 \pi}{M p} \tan \left(\delta_{\text {PWA }}(p)-\delta_{\text {OPE }}(p)\right)$
\rightarrow either DWBA: expand $\widetilde{K}(p)$ in powers of energy (peripheral w's)
- or DW effective-range expansion: expand $1 / \widetilde{K}(p)$ (S waves)
- need to work with finite radial cutoff since OPE and centrifugal barrier both singular as $r \rightarrow 0$ (but can take this to be very small, provided we keep to our power counting)

