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Problem with building an EFT for nuclear forces

Chiral perturbation theory

e expansion in powers of ratios of low-energy scales Q
(momenta, my, ...)
to scales of underlying physics Ag (my, My, 4TtFy, ...)
e terms organised by naive dimensional analysis
aka “Weinberg power counting”
(simply counts powers of low-energy scales)
e perturbative: works for weakly interacting systems
(eg pions, photons and < 1 nucleon)
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Problem with building an EFT for nuclear forces

Chiral perturbation theory

e expansion in powers of ratios of low-energy scales Q
(momenta, my, ...)
to scales of underlying physics Ag (my, My, 4TtFy, ...)

e terms organised by naive dimensional analysis
aka “Weinberg power counting”
(simply counts powers of low-energy scales)

e perturbative: works for weakly interacting systems
(eg pions, photons and < 1 nucleon)

e but nucleons interact strongly at low-energies

e bound states exist (nucleil)

— need to treat some interactions nonperturbatively
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Basic nonrelativistic loop diagram

M &g  Mp .
(@) / Poiie —i I + analytic
e of order Q [Weinberg (1991)]

e but potential starts at order Q°

(OPE and simplest contact interaction)

each iteration suppressed by power of Q/Ag
perturbative provided Q < Ag

integral linearly divergent

cut off (or subtract) at g = A

contributions multiplied by powers of A/Ag
again perturbative provided A < A

L ol ol o
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Workaround: “Weinberg prescription”

e expand potential to some order in Q

e then iterate to all orders in favourite dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

e widely applied and even more widely invoked
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Workaround: “Weinberg prescription”

e expand potential to some order in Q

e then iterate to all orders in favourite dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

e widely applied and even more widely invoked

e but no clear power counting for observables

e resums subset of terms to all orders in Q
(and some of these depend on regulator)

e not necessarily a problem if these terms are small

e but what if we rely on them to generate bound states?
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Has led to vigorous debate over the last 12+ years

EFT community has polarised around two philosophies:
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Has led to vigorous debate over the last 12+ years

EFT community has polarised around two philosophies:

e Orthodox
“The Prophet of EFT gave us the Power Counting in the holy
texts, Phys Lett B251 and Nucl Phys B363.”

e Liberal
“Let the renormalisation group decide!”

and the orthdox party seems to be winning the election, so far...



Renormalisation group

General tool for analysing scale-dependence

e first, identify all low-energy scales Q

e including ones to promote leading-order terms to order Q'
(cancels Q from loop — iterations not suppressed)

e can, and must, then be iterated to all orders
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Renormalisation group

General tool for analysing scale-dependence

e first, identify all low-energy scales Q

e including ones to promote leading-order terms to order Q'
(cancels Q from loop — iterations not suppressed)

e can, and must, then be iterated to all orders

Examples of new scales

e S-wave scattering lengths 1/a < 40 MeV [van Kolck; KSW (1998)]
e ‘“unnatural” strength of OPE set by scale
16mFZ
)\'NN - 2_7:
M

gy My

~ 290 MeV

built out of high-energy scales (41tF;, M) but ~ 2my
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Then

e cut off at arbitary scale A between Q
and A\ (assumes good separation of
N, scales)

E

T

o
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Then

e cut off at arbitary scale A between Q

E .
) . and Ag (assumes good separation of
= W scaleso)( ’ ’
0
e “integrate out” physics by lowering A
A (don’t even think about taking A to
¢ infinity!)
—
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Then

e cut off at arbitary scale A between Q
and A\ (assumes good separation of
A, scales)
e “integrate out” physics by lowering A
A (don’t even think about taking A to
¢ infinity!)
Q e demand that physics be independent
— of A (eg T matrix)

e look for fixed points (describe scale-free systems)
e expand around these using perturbations that scale like A
— correspond to terms in EFT of order Q° where d = v — 1
(A: largest acceptable low-energy scale)
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Fixed points of short-range forces

Trivial: Vo = 0 — weak scattering, Weinberg counting

on? p . A+p]"
Nontrivial: Vo(p,A) = —— |1 — — In—— h ff
ontrivial: Vo(p,A) o [ oA nA_p (sharp cutoff)
e order Q' (so must be iterated)

e describes “unitary limit”: scattering length a — oo



Fixed points of short-range forces

Trivial: Vo = 0 — weak scattering, Weinberg counting

on? A -
Nontrivial: Vo(p,\) = — WA [1 — % In /\i_’;] (sharp cutoff)
e order Q' (so must be iterated)
e describes “unitary limit”: scattering length a — oo

e expansion around this point
V(p,\) = Vo(p,A) + Vo( /\)2M LR
p, = Volp, olp, AT a 2 eP

e factor V§ o \~2 promotes terms by two orders compared to naive
expectation [van Kolck; Kaplan, Savage and Wise (1998)]
e cffective-range expansion, “KSW” counting
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Enhancement follows from form of wave functionsas r — 0

Two particles in unitary limit

e irregular solutions: y(r) o< r~ (S wave)
e cutoff smears contact interaction over range R ~ A~
— need extra factor A=2 to cancel cutoff dependence from
|W(R)|? =< A2 in matrix elements of potential
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Enhancement follows from form of wave functionsas r — 0

Two particles in unitary limit

e irregular solutions: y(r) o< r~ (S wave)
e cutoff smears contact interaction over range R ~ A~
— need extra factor A=2 to cancel cutoff dependence from
|W(R)|? =< A2 in matrix elements of potential

3 bosons or 3 distinct fermions in unitary limit (triton)

e naive dimensional analysis — leading contact term of order Q®
e as hyperradius R — 0 wave functions behave like
W(R) o< R~2%i% with sy ~ 1.006 [Efimov (1971)]
— leading three-body force promoted to order Q"
(limit cycle of RG) [Bedaque, Hammer and van Kolck (1999)]



Effects of iterated one-pion exchange forces

Central OPE (spin-singlet waves)

e 1/r singularity — not enough to alter power-law forms of wave
functions at small r
e [ > 1 waves: weak scattering — Weinberg power counting
e 'Sy: similar to expansion around unitary fixed point
— KSW-like power counting
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Effects of iterated one-pion exchange forces

Central OPE (spin-singlet waves)
e 1/r singularity — not enough to alter power-law forms of wave
functions at small r
e [ > 1 waves: weak scattering — Weinberg power counting
e 'Sy: similar to expansion around unitary fixed point
— KSW-like power counting

Tensor OPE (spin-triplet waves)
e 1/r3 singularity
e wave functions y(r) e r~'/* multiplied by either sine or
exponential function of 1/v/Ar
— new counting needed [Nogga, Timmermans and van Kolck (2005)]
e leading contact interaction of order Q'/2 in waves with L > 1
e very slowly converging expansion — better to iterate
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Importance of tensor OPE does depend on cutoff A
e higher partial waves protected by centrifugal barrier
e only waves above critical momentum resolve singularity
— OPE not perturbative
e [ >3: p. 22 GeV — Weinberg counting OK for A < 600 MeV
o L <2:p. < 3my — NTVK counting needed
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Three-body forces

Two-pion exchange

e purely long-range interactions
— not renormalised (start at order Q%)
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Three-body forces

Two-pion exchange

e purely long-range interactions
— not renormalised (start at order Q%)

One-pion exchange (“cp”)
e contains two-body contact vertices like
(N'N)(NTGN) - Vz
e promoted in same way as contact interactions
forL<2
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Three-body forces

Two-pion exchange

e purely long-range interactions
— not renormalised (start at order Q%)

One-pion exchange (“cp”)
e contains two-body contact vertices like
(N'N)(NToN) -V N
e promoted in same way as contact interactions
forL<2

Contact interaction (“cg”)

e counting still not known:
need to solve 3-body problem with 1/r3 potentials [L Platter]

e expect to be promoted — order Q% —1<d<3?
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A new road map for nuclear EFT
To order @® (N2LO in Weinberg’s counting)

Order NN NNN
Q T 130, 331 Co'S, LO OPE
Q1?2 3Py, %D, Co's
Q° 1Sy Co
01/2 331 Co
Q' 1Sy Cpo OPE
Q3/2 3p,, %D, Co's 88 Cpo OPE
@? 'Sy Cs, TPy Co,
NLO OPE, LO TPE
Q%2 35 C4 3p,,3D, Cpy’'s OPE
Q® NLO TPE 'Sy Cpe OPE, LO 3N TPE
Q’ Ce
e orange terms absent from “N2LO chiral potential”
e red terms absent from “N3LO”
e order @ ': have to iterate; order Q~'/2: probably better to
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Can | iterate my full potential?

To use it in standard few-/many-body methods
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Can | iterate my full potential?
To use it in standard few-/many-body methods

Yes, provided you are careful . ..

e resumming subset of higher-order terms
e without the counterterms needed to renormalise them
— dangerous: can alter form of short-distance wave functions
and destroy power counting (or, at best, change it)
e but problems don'’t arise, provided higher-order terms are small
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Can | iterate my full potential?
To use it in standard few-/many-body methods

Yes, provided you are careful . ..

e resumming subset of higher-order terms
e without the counterterms needed to renormalise them
— dangerous: can alter form of short-distance wave functions
and destroy power counting (or, at best, change it)
but problems don'’t arise, provided higher-order terms are small
general way to ensure this: keep cutoff small, A < Ag
introduces artefacts o« (Q/A)" — radius of convergence A not Ag
want to keep A as large as possible
— leaves only a narrow window: A just below Ag
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What happens if | take my cutoff above A\y?

To keep cutoff artefacts small, maximise radius of convergence of EFT
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What happens if | take my cutoff above A\y?
To keep cutoff artefacts small, maximise radius of convergence of EFT

Nothing, provided you respect the power counting

e renormalise all potentially divergent integrals

e iterate all fixed-point or marginal terms, order Q™"
e do not iterate irrelevant terms, order Q? with d > 0
e otherwise ...
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What happens if | take my cutoff above A\y?
To keep cutoff artefacts small, maximise radius of convergence of EFT

Nothing, provided you respect the power counting

renormalise all potentially divergent integrals

iterate all fixed-point or marginal terms, order Q"

do not iterate irrelevant terms, order Q° with d > 0

otherwise ...

— if very lucky, might discover a new power counting
eg tensor OPE in low partial waves [NTvK]

— more generally, lose any consistent counting

eg effective-range term in short-range potential

[Phillips, Beane and Cohen (1997); and many others]
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Effective potential and scattering observables

Contact interactions directly related to “observables” (phase shifts)
~ 4T
e distorted-wave K matrix K(p) = — Vo tan (Spwa () — Sore(P))

— either DWBA: expand R(p) in powers of energy (peripheral w’s)
e or DW effective-range expansion: expand 1/}~<(p) (S waves)
e need to work with finite radial cutoff
since OPE and centrifugal barrier both singular as r — 0
(but can take this to be very small, provided we keep to our power
counting)
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