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Background

Ideas of effective field theory and renormalisation group

o well-developed for few-nucleon and few-atom systems
e rely on separation of scales
e Wilsonian RG used to derive power counting
— classify terms as perturbations around fixed point (or limit cycle)
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Ideas of effective field theory and renormalisation group

o well-developed for few-nucleon and few-atom systems
e rely on separation of scales
e Wilsonian RG used to derive power counting
— classify terms as perturbations around fixed point (or limit cycle)

Many unsuccessful attempts to extend to dense matter

e but no separation of scales
e other EFT’s for interacting Fermi systems exist
(Landau Fermi liquid, Ginsburg-Landau theory)
e but parameters have no simple connection to underlying forces



EFTs based on contact interactions

e not well suited for standard many-body methods
— switch to lattice simulation [Lee et al]
or look for some more heuristic approach
e based on field theory
e can be matched onto EFT’s for few-body systems
(input from 2- and 3-body systems in vacuum)

Try functional renormalisation group (“exact” RG)

e based on Wilsonian RG approach to field theories

e successfully applied to various systems in for condensed-matter
physics to quantum gravity
[version due to Wetterich (1993)]
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Outline

e Functional RG

Spin-% fermions

4-body systems: dimer-dimer scattering
Unitary limit: scaling

Summary
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Functional RG

Version based on the effective action I'[¢]
e start from generating function W[J] defined by

Wl — / Do &/(SI0+50-30-R0)

e R(q,k): regulator function
suppresses modes with momenta q < k (“cutoff scale”)

e only modes with q 2 k integrated out
e W/[J] becomes full generating function as k — 0

Legendre transform — effective action
ow

F[q)c] = W[J]—J-Q)c—i—%(])c-ﬂ-(l)c where ¢C:87J

(generating function for 1-particle-irreducible diagrams)
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I" evolves with scale k according to

__ 1 @_g)" @_ T
WL =—2 T [(ak,‘?) (r R) where T®) = o

(I® — R)~": propagator of boson in background field ¢
(one-loop structure but still exact)

Evolution interpolates between “bare” classical action at large scale K
and full 1PI effective action as k — 0 (thresholds etc ...)
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I" evolves with scale k according to

__ 1 @_g)" @_ T
WL =—2 T [(ak,‘?) (r R) where T®) = o

(I® — R)~": propagator of boson in background field ¢
(one-loop structure but still exact)

Evolution interpolates between “bare” classical action at large scale K
and full 1PI effective action as k — 0 (thresholds etc ...)

Functional differential equation

e hard/impossible solve in general
— work with tructated ansatz for I
e |ocal action expanded in powers of derivatives
(cf low-energy EFTs, but don’t know a priori if we have a
consistent power counting)



Derivative expansion may be good at starting scale K
e use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)
e but no guarantee that it remains good for k — 0

(can’t be for scattering amplitudes at energies above threshold:

cuts — nonanalytic behaviour)
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Derivative expansion may be good at starting scale K

e use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)

e but no guarantee that it remains good for k — 0
(can’t be for scattering amplitudes at energies above threshold:
cuts — nonanalytic behaviour)

— need consistency checks:

stability against adding exira terms to ansatz
stability against changes in form of regulator

e use this to optimise choice of regulator [Litim, Pawlowski]
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Two species of fermion

Fermion field: y(x) (spin-% atoms or neutrons)
Boson “dimer” field: ¢(x) (strongly interacting pairs)
Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

vy, 0,074

—/d4 [ <lao+2';> w(x)

2

+24(0000 (130 + 4y, ) 000 () 001) o0

~o (000 v oxy(x) +o) |

g: AA—D coupling
uy (k): dimer self-energy (u1/g?: only physical parameter)
Zy(k): dimer wave-function renormalisation
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Evolution equation

3 = —i—éTr[(akR,:) (0@ —r)")

—% Tr [(akRB) ((r(2> - R)’1)

['®: matrix of second derivatives of the action
(Gorkov-like form: y and y' as independent variables — factors of %)

e

o)

“Skeleton” diagram for driving terms in evolution of 2-body parameters

(need to insert dxRF on one internal line)
Expand in powers of energy — dxuy, dxZy
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3-body sector: AD contact interaction

Ty '0.07:K = - = 2(k) [ %y (08" (x)0(x)w(x)

Evolution of A driven by terms corresponding to skeletons

A / / \ ‘
} 1 % 4
N ) ) /

e AD contact interaction
e single-A exchange between dimers
(cf Faddeev and STM equations)

>
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4-body sector: DD—DD, DD—DAA, DAA—DAA terms
[cf Schmidt and Moroz (2009): bosonic case]

F[W? ‘VTvq)aq)T = /d4 |: ¢T¢)

+ % v(k) (0™0y y+Hc)

1
+ o wk) ooy Tyl
e dimer “breakup” terms allow 3-body physics to feed in properly
(cf Faddeev-Yakubovski)
— coupled evolution equations for u», v, w (27 distinct skeletons)
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Regulators
e fermions: sharp cutoff
k2 _ q2

Re(q.k) = —

0(k—q)

pushes states with g > k up to energy k?/2M
nonrelativistic version of “optimised” cutoff [Litim (2001)]
fastest convergence at this level of truncation

bosons

RB(qa k) = Z¢(k)

e cg: relative scale of boson cutoff
e optimised choice ¢g = 1 [cf Pawlowski (2007)]
(no mismatch between fermion and boson cutoffs)

Also examined smooth cutoffs — more convenient in dense matter
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Initial conditions
As k — oo boson field purely auxiliary
o Zy(k) =0
e u;(K) chosen so that in physical limit (k — 0)

Mg?

t(0) = 4mar

ar: AA scattering length

e other couplings A, up, v, w also vanish as k — oo
— either set Zy(K) = 0 etc at large starting scale K
or match on to K~ behaviour in scaling regime K > 1/ag
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Initial conditions
As k — oo boson field purely auxiliary
o Zy(k) =0
e u;(K) chosen so that in physical limit (k — 0)

Mg?

U (0) - 4T ar

ar: AA scattering length

e other couplings A, up, v, w also vanish as k — oo
— either set Zy(K) = 0 etc at large starting scale K
or match on to K~ behaviour in scaling regime K > 1/ag

Expansion point: dimer binding energy Ep = —1/(Ma2)
e external boson lines carry Py = ‘Ep

e external fermion lines carry Py = Ep/2
(below all thresholds)
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Results: DD scattering length

2

8.01 ‘ 01 ‘ 1 ‘ 10 ‘ 100

black: “minimal” action — only two-body and DD vertex u»
red adds three-body coupling A

green: full local four-body action, includes v, w

purple: similar but using smooth cutoff
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Comments

e results seem to converge as more terms are included
e converge to value only weakly dependent on cutoff
(very liitle variation over range 0 < cg < 2)
e stationary very close to expected “optimum” cg = 1
e incomplete actions — strong dependence on cg around cg = 1
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Comments
e results seem to converge as more terms are included
e converge to value only weakly dependent on cutoff
(very liitle variation over range 0 < cg < 2)
e stationary very close to expected “optimum” cg = 1
e incomplete actions — strong dependence on cg around cg = 1

Final result

e ag/arF ~0.58+0.02
e agrees well with full few-body result ag/ar = 0.6
[Petrov, Salomon and Shlyapnikov (2004)]
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Unitary limit

Tune vy (K) so that uy(k) - 0as k— 0 (1/ar = 0)
Evolution equation for 3-body coupling A

28k 2. 156 12892 M
12592 M 125k 1253

Ok =

. 2
Rescale: A = 2—7»
g-M

e dimensionless equation

~ 28 ~, 406~ 128
KOh= — AN+ — A+ —
=15t TisM 128
— two fixed point solutions (roots of RHS)
e expand around IR stable point: A —Aq o< kY with v = 3.10355
e compare exact solution: v = 4.33244
[Griesshammer (2005); Werner and Castin; Birse (2006)]
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Bosons (or > 3 species of fermion in symmetric channel)
Very similar action and evolution equations

...l

different numerical coefficients
dikA term linear in A gets factor of —2 (cf Faddeev equation)
rescaled equation

ko= 2 j2_ B25 256
125 125 125

two complex roots — fixed points
expand around either: A — Ag o< k+2i%
imaginary exponent — limit cycle of Efimov effect
real solutions periodic under scaling k by factor e™/s0
where sy = 0.92503 [Schmidt and Moroz (2009)]
agrees with Efimov s = 1.00624 to ~ 5%
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4-body systems
Rescaled evolution equations for us, v, w
Fermions

4 fixed-point solutions

only one IR stable

smallest eigenvalue v = 4.19149 (irrelevant)

compare with result from system in harmonic trap v = 5.0184
[Stecher and Greene (2009)]

Bosons
e 4 complex fixed points (since A complex)
e only one IR stable
e eigenvalue with smallest real part v = 0.055165 + 3.50440i
— very weakly irrelevant 77
e couplings flow to cycle driven by 3-body sector A(k)
e no sign of 4-body bound states at this truncation
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Summary

First full applications of functional RG to 3- and 4-body systems

—

local truncation, “optimised” cutoff

results for dimer-dimer scattering length

stable against variation of cutoff

agree with direct few-body calculations

unitary limit: scaling behaviours agree with exact 3-body
qualitatively for 2 species of fermion

much more accurately for bosons

estimates of anomalous dimensions for four-body forces
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Summary

First full applications of functional RG to 3- and 4-body systems

e |ocal truncation, “optimised” cutoff
— results for dimer-dimer scattering length

stable against variation of cutoff
agree with direct few-body calculations

e unitary limit: scaling behaviours agree with exact 3-body
qualitatively for 2 species of fermion
much more accurately for bosons

e estimates of anomalous dimensions for four-body forces

Future work

e use these 3-, 4-body interactions as input into calculations of
dense matter [Floerchinger, talk at this meeting]

e 4 species of fermion (nucleons)
SU(4) symmetry: evolution same as either bosons or 2 species
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3-body physics in unitary limit

Momentum space: one-variable integral equation
[Skornyakov and Ter-Martirosian (1956)]

Faddeev equation in hyperspherical coordinates

(Hz = ’r1 - r2‘2 + ’rg — I’3‘2 + ’r3 — Iy ‘2)

e Schrédinger equation with 1/R? potential [Efimov, 1971]

1[d® 1.d V?

R S e 2
M |dme T RaR RZ]”(') P u(R)

e hyperangular eigenvalue v? fixed by boundary condition
(S-waves)

e spatially symmetric: 6 = 41; mixed-symmetry ¢ = —%
(“particle-exchange interaction” between pair and third particle)
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