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Background

Ideas of effective field theory and renormalisation group

• well-developed for few-nucleon and few-atom systems
• rely on separation of scales
• Wilsonian RG used to derive power counting
→ classify terms as perturbations around fixed point (or limit cycle)

Many unsuccessful attempts to extend to dense matter

• but no separation of scales
• other EFT’s for interacting Fermi systems exist

(Landau Fermi liquid, Ginsburg-Landau theory)
• but parameters have no simple connection to underlying forces
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EFTs based on contact interactions

• not well suited for standard many-body methods
→ switch to lattice simulation [Lee et al ]

or look for some more heuristic approach
• based on field theory
• can be matched onto EFT’s for few-body systems

(input from 2- and 3-body systems in vacuum)

Try functional renormalisation group (“exact” RG)

• based on Wilsonian RG approach to field theories
• successfully applied to various systems in for condensed-matter

physics to quantum gravity
[version due to Wetterich (1993)]
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Outline

• Functional RG
• Spin- 1

2 fermions
• 4-body systems: dimer-dimer scattering
• Unitary limit: scaling
• Summary
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Functional RG

Version based on the effective action Γ[φc]
• start from generating function W [J] defined by

eiW [J] =
Z

Dφei(S[φ]+J·φ− 1
2 φ·R·φ)

• R(q,k): regulator function
suppresses modes with momenta q . k (“cutoff scale”)

• only modes with q & k integrated out
• W [J] becomes full generating function as k → 0

Legendre transform → effective action

Γ[φc] = W [J]− J ·φc +
1
2

φc ·R ·φc where φc =
δW
δJ

(generating function for 1-particle-irreducible diagrams)
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Γ evolves with scale k according to

∂k Γ =− i
2

Tr

[
(∂k R)

(
Γ

(2)−R
)−1

]
where Γ

(2) =
δ2Γ

δφcδφc

(Γ(2)−R)−1: propagator of boson in background field φc

(one-loop structure but still exact)

Evolution interpolates between “bare” classical action at large scale K
and full 1PI effective action as k → 0 (thresholds etc ...)

Functional differential equation

• hard/impossible solve in general
→ work with tructated ansatz for Γ

• local action expanded in powers of derivatives
(cf low-energy EFTs, but don’t know a priori if we have a
consistent power counting)
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Derivative expansion may be good at starting scale K

• use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)

• but no guarantee that it remains good for k → 0
(can’t be for scattering amplitudes at energies above threshold:
cuts → nonanalytic behaviour)

→ need consistency checks:
stability against adding extra terms to ansatz
stability against changes in form of regulator

• use this to optimise choice of regulator [Litim, Pawlowski]
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Two species of fermion

Fermion field: ψ(x) (spin- 1
2 atoms or neutrons)

Boson “dimer” field: φ(x) (strongly interacting pairs)
Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

Γ[ψ,ψ†,φ,φ†;k ]

=
Z

d4x

[
ψ(x)†

(
i∂0 +

∇2

2M

)
ψ(x)

+Zφ(k)φ(x)†
(

i∂0 +
∇2

4M

)
φ(x)−u1(k)φ(x)†

φ(x)

−g

(
i
2

φ(x)†
ψ(x)T

σ2ψ(x)+H c

)]
g: AA→D coupling
u1(k): dimer self-energy (u1/g2: only physical parameter)
Zφ(k): dimer wave-function renormalisation
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Evolution equation

∂k Γ = +
i
2

Tr
[
(∂k RF )

(
(Γ(2)−R)−1

)
FF

]
− i

2
Tr

[
(∂k RB)

(
(Γ(2)−R)−1

)
BB

]
Γ

(2): matrix of second derivatives of the action
(Gorkov-like form: ψ and ψ† as independent variables → factors of 1

2 )

“Skeleton” diagram for driving terms in evolution of 2-body parameters

(need to insert ∂k RF on one internal line)
Expand in powers of energy → ∂k u1, ∂k Zφ
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3-body sector: AD contact interaction

Γ[ψ,ψ†,φ,φ†;k ] = · · ·−λ(k)
Z

d4x ψ
†(x)φ†(x)φ(x)ψ(x)

Evolution of λ driven by terms corresponding to skeletons

• AD contact interaction
• single-A exchange between dimers

(cf Faddeev and STM equations)
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4-body sector: DD→DD, DD→DAA, DAA→DAA terms
[cf Schmidt and Moroz (2009): bosonic case]

Γ[ψ,ψ†,φ,φ†;k ] = · · ·−
Z

d4x

[
1
2

u2(k)
(
φ

†
φ
)2

+
1
4

v(k)
(
φ

†2
φψ

T
ψ+H c

)
+

1
4

w(k)φ
†
φψ

†
ψ

†T
ψ

T
ψ

]
• dimer “breakup” terms allow 3-body physics to feed in properly

(cf Faddeev-Yakubovski)
→ coupled evolution equations for u2, v , w (27 distinct skeletons)
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Regulators

• fermions: sharp cutoff

RF (q,k) =
k2−q2

2M
θ(k−q)

• pushes states with q > k up to energy k2/2M
• nonrelativistic version of “optimised” cutoff [Litim (2001)]
• fastest convergence at this level of truncation
• bosons

RB(q,k) = Zφ(k)
(cB k)2−q2

4M
θ(cB k−q)

• cB: relative scale of boson cutoff
• optimised choice cB = 1 [cf Pawlowski (2007)]

(no mismatch between fermion and boson cutoffs)

Also examined smooth cutoffs – more convenient in dense matter
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Initial conditions
As k → ∞ boson field purely auxiliary

• Zφ(k)→ 0
• u1(K ) chosen so that in physical limit (k → 0)

u1(0) =− M g2

4πaF
aF : AA scattering length

• other couplings λ, u2, v , w also vanish as k → ∞

→ either set Zφ(K ) = 0 etc at large starting scale K
or match on to K−n behaviour in scaling regime K � 1/aF

Expansion point: dimer binding energy ED =−1/(M a2
F )

• external boson lines carry P0 = ED

• external fermion lines carry P0 = ED/2
(below all thresholds)
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Results: DD scattering length
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• black: “minimal” action – only two-body and DD vertex u2

• red adds three-body coupling λ

• green: full local four-body action, includes v , w
• purple: similar but using smooth cutoff
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Comments

• results seem to converge as more terms are included
• converge to value only weakly dependent on cutoff

(very liitle variation over range 0≤ cB . 2)
• stationary very close to expected “optimum” cB = 1
• incomplete actions → strong dependence on cB around cB = 1

Final result

• aB/aF ' 0.58±0.02
• agrees well with full few-body result aB/aF = 0.6

[Petrov, Salomon and Shlyapnikov (2004)]
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Unitary limit

Tune u1(K ) so that u1(k)→ 0 as k → 0 (1/aF = 0)
Evolution equation for 3-body coupling λ

∂k λ =
28k

125g2 M
λ

2 +
156

125k
λ+

128g2 M
125k3

Rescale: λ̂ =
k2

g2 M
λ

• dimensionless equation

k∂k λ̂ =
28
125

λ̂
2 +

406
125

λ̂+
128
125

→ two fixed point solutions (roots of RHS)
• expand around IR stable point: λ̂− λ̂0 ∝ kν with ν = 3.10355
• compare exact solution: ν = 4.33244

[Griesshammer (2005); Werner and Castin; Birse (2006)]

16 / 20



Bosons (or ≥ 3 species of fermion in symmetric channel)
Very similar action and evolution equations

• different numerical coefficients
∂k λ term linear in λ gets factor of −2 (cf Faddeev equation)

• rescaled equation

k∂k λ̂ =
56
125

λ̂
2− 62

125
λ̂+

256
125

→ two complex roots – fixed points
• expand around either: λ̂− λ̂0 ∝ k±2is0

• imaginary exponent → limit cycle of Efimov effect
• real solutions periodic under scaling k by factor eπ/s0

where s0 = 0.92503 [Schmidt and Moroz (2009)]
• agrees with Efimov s0 = 1.00624 to ∼ 5%
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4-body systems
Rescaled evolution equations for u2, v , w
Fermions

• 4 fixed-point solutions
• only one IR stable
• smallest eigenvalue ν = 4.19149 (irrelevant)
• compare with result from system in harmonic trap ν = 5.0184

[Stecher and Greene (2009)]

Bosons

• 4 complex fixed points (since λ complex)
• only one IR stable
• eigenvalue with smallest real part ν = 0.055165+3.50440i
→ very weakly irrelevant ??
• couplings flow to cycle driven by 3-body sector λ(k)
• no sign of 4-body bound states at this truncation
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Summary

First full applications of functional RG to 3- and 4-body systems

• local truncation, “optimised” cutoff
→ results for dimer-dimer scattering length

stable against variation of cutoff
agree with direct few-body calculations

• unitary limit: scaling behaviours agree with exact 3-body
qualitatively for 2 species of fermion
much more accurately for bosons

• estimates of anomalous dimensions for four-body forces

Future work

• use these 3-, 4-body interactions as input into calculations of
dense matter [Floerchinger, talk at this meeting]

• 4 species of fermion (nucleons)
SU(4) symmetry: evolution same as either bosons or 2 species
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3-body physics in unitary limit
Momentum space: one-variable integral equation

[Skornyakov and Ter-Martirosian (1956)]
Faddeev equation in hyperspherical coordinates
(R2 = |r1− r2|2 + |r2− r3|2 + |r3− r1|2)

• Schrödinger equation with 1/R2 potential [Efimov, 1971]

− 1
M

[
d2

dR2 +
1
R

d
dR

− ν2

R2

]
u(r) = p2 u(R)

• hyperangular eigenvalue ν2 fixed by boundary condition
(S-waves)

1 = σ
4√
3π ν

Γ
(

1−ν

2

)
Γ

(
1+ν

2

)
Γ

(
3
2

) sin
(

πν

6

)
• spatially symmetric: σ = +1; mixed-symmetry σ =−1

2
(“particle-exchange interaction” between pair and third particle)
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