Deconstructing triplet nucleon-nucleon scattering

Michael C Birse
The University of Manchester

Work in progress, based on:
Birse and McGovern, nucl-th/0307050
and DW renormalisation group:
Barford and Birse, hep-ph/0206146
Birse, nucl-th/0507077

Background

"Weinberg-van Kolck scheme"
[Weinberg (1991); van Kolck et al.; Epelbaum and Meissner; Kaiser; . . .]

- organise terms using perturbative "Weinberg" power counting
- simply count powers of low-energy scales Q leading order potential, Q^{0} : contact term and one-pion exchange (nonrelativistic NN loops of order Q, not Q^{2})
- need to iterate leading potential in S-waves (e.g. for deuteron)
- requires further IR enhancement
\rightarrow promote leading-order terms to order Q^{-1} (IR fixed point)
What new low-energy scales justify this?

Also, iterated tensor OPE in spin-triplet channels with $L \neq 0$

- strong cut-off dependence from bound states of attractive tensor potential
\rightarrow leading short-distance terms need to be promoted from order $Q^{2 L}$ to leading order
[Nogga, Timmermans and van Kolck nucl-th/0506005;
see also: Epelbaum and Meissner, nucl-th/0609037]
Breakdown of Weinberg counting?

Also, iterated tensor OPE in spin-triplet channels with $L \neq 0$

- strong cut-off dependence from bound states of attractive tensor potential
\rightarrow leading short-distance terms need to be promoted from order $Q^{2 L}$ to leading order
[Nogga, Timmermans and van Kolck nucl-th/0506005;
see also: Epelbaum and Meissner, nucl-th/0609037]
Breakdown of Weinberg counting?
Yes!

Also, iterated tensor OPE in spin-triplet channels with $L \neq 0$

- strong cut-off dependence from bound states of attractive tensor potential
\rightarrow leading short-distance terms need to be promoted from order $Q^{2 L}$ to leading order
[Nogga, Timmermans and van Kolck nucl-th/0506005;
see also: Epelbaum and Meissner, nucl-th/0609037]
Breakdown of Weinberg counting?
Yes! But there is a viable-consistent and useful—alternative!
(to take up challenge of Epelbaum and Meissner)

What are the low-energy scales for NN scattering?

Momenta, pion mass $m_{\pi} \quad$ (obviously for ChPT)
In S-waves: 1/a (low-energy bound/virtual states)

What are the low-energy scales for NN scattering?

Momenta, pion mass $m_{\pi} \quad$ (obviously for ChPT)
In S-waves: 1/a (low-energy bound/virtual states)
Strength of OPE set by scale

$$
\lambda_{\pi}=\frac{16 \pi F_{\pi}^{2}}{g_{A}^{2} M_{N}} \simeq 290 \mathrm{MeV}
$$

Built out of high-energy scales $\left(4 \pi F_{\pi}, M_{N}\right)$ but $\sim 2 m_{\pi}$

What are the low-energy scales for NN scattering?

Momenta, pion mass $m_{\pi} \quad$ (obviously for ChPT)
In S-waves: 1/a (low-energy bound/virtual states)
Strength of OPE set by scale

$$
\lambda_{\pi}=\frac{16 \pi F_{\pi}^{2}}{g_{A}^{2} M_{N}} \simeq 290 \mathrm{MeV}
$$

Built out of high-energy scales $\left(4 \pi F_{\pi}, M_{N}\right)$ but $\sim 2 m_{\pi}$
Identify λ_{π} as additional low-energy scale (cf. Weinberg: $1 / M_{N} \sim Q$)
\rightarrow leading OPE of order Q^{-1} (fixed point)
\rightarrow iterate OPE as in WvK scheme

Power counting

Schrödinger equation for spin-triplet channels at short distances

- dominated by $1 / r^{3}$ singularity of tensor OPE
- solutions satisfy (uncoupled waves)

$$
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{L(L+1)}{r^{2}}-\frac{\beta_{L J}}{r^{3}}\right] \psi_{0}(r)=0 \quad\left(\beta \propto \frac{1}{\lambda_{\pi}}\right)
$$

\rightarrow Bessel functions for $\beta<0$ (modified Bessel if $\beta>0$)

$$
\psi_{0}(r) \propto r^{-1 / 2}\left[\sin \alpha J_{2 L+1}\left(2 \sqrt{\frac{\left|\beta_{L J}\right|}{r}}\right)+\cos \alpha Y_{2 L+1}\left(2 \sqrt{\frac{\left|\beta_{L J}\right|}{r}}\right)\right]
$$

α : fixes phase of short-distance oscillations (self-adjoint extension or leading short-distance parameter)

Perturbative treatment of tensor potential

- only possible if waves cannot resolve $1 / r^{3}$ singularity
- must be well below critical momentum: $p_{c} \sim[L(L+1)]^{3 / 2} /|\beta|$ (to avoid region where OPE \gtrsim centrifugal)
- $p_{c} \lesssim 3 m_{\pi}$ for $L \leq 2$ but $p_{c} \gtrsim 2 \mathrm{GeV}$ for $L \geq 3$
\rightarrow OPE nonperturbative in S-, P-, D-waves for momenta $\sim m_{\pi}$ perturbation theory should be valid for F-waves and above

Perturbative treatment of tensor potential

- only possible if waves cannot resolve $1 / r^{3}$ singularity
- must be well below critical momentum: $p_{c} \sim[L(L+1)]^{3 / 2} /|\beta|$ (to avoid region where OPE \gtrsim centrifugal)
- $p_{c} \lesssim 3 m_{\pi}$ for $L \leq 2$ but $p_{c} \gtrsim 2 \mathrm{GeV}$ for $L \geq 3$
\rightarrow OPE nonperturbative in S-, P-, D-waves for momenta $\sim m_{\pi}$ perturbation theory should be valid for F-waves and above

To renormalise S-, P-, D-waves up to lab energies $T \sim 300 \mathrm{MeV}$

- need to use cut-off in nonperturbative regime
\rightarrow renormalisation-group flow controlled by Bessel functions of $\sqrt{|\beta| / r}$ (tensor OPE), not usual (pr$)^{L}$ forms (centrifugal)

RG analysis with running cutoff applied to DW's of $1 / r^{3}$ potential
\rightarrow new power counting [nucl-th/0507077]

- leading contact interaction of order $Q^{-1 / 2}$ (weakly irrelevant)
- higher energy-dependent terms at orders $Q^{3 / 2}, Q^{7 / 2}, \ldots$
- same counting for both attractive and repulsive tensor potentials
- corresponds to DWBA amplitude expanded in powers of energy

RG analysis with running cutoff applied to DW's of $1 / r^{3}$ potential
\rightarrow new power counting [nucl-th/0507077]

- leading contact interaction of order $Q^{-1 / 2}$ (weakly irrelevant)
- higher energy-dependent terms at orders $Q^{3 / 2}, Q^{7 / 2}, \ldots$
- same counting for both attractive and repulsive tensor potentials
- corresponds to DWBA amplitude expanded in powers of energy

For values of α that give low-energy bound state/resonance ($\alpha \simeq \pi / 2$)

- leading contact interaction of order $Q^{-3 / 2}$ (relevant)
- corresponds to DW effective-range expansion
- relevant to ${ }^{3} S_{1}-{ }^{3} D_{1}$ and possibly ${ }^{3} P_{0}$ (other waves: only for very narrow ranges of α)

Deconstruction 1

Use distorted-wave methods (DWBA or DW ERE)

- extract effects of known long-range potentials from empirical phase shifts
- examine sizes, energy dependences of residual amplitudes [nucl-th/0307050; see also Epelbaum and Meissner]
\rightarrow define DW K-matrix (p: on-shell CM momentum)

$$
\widetilde{K}(p)=-\frac{4 \pi}{M p} \tan \left(\delta_{\mathrm{PWA}}(p)-\delta_{\mathrm{OPE}}(p)\right)
$$

"Data": $\delta_{\text {PWA }}(p)$ from four good- χ^{2} (but old!) Nijmegen analyses

- PWA93, Nijmegenl, Nijmegenll, Reid93 (uncoupled $n p$ waves: ${ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} D_{2},{ }^{3} F_{3},{ }^{3} G_{4}$)

Short-range potential: energy-dependent δ-shell form

$$
V_{S}(p, r)=\frac{1}{4 \pi R_{0}^{2}\left|\psi_{0}\left(R_{0}\right)\right|^{2}} \widetilde{V}(p) \delta\left(r-R_{0}\right)
$$

- to avoid $r \rightarrow 0$ (DW's either singular or vanishing) [contrast Ruiz Arriola and Pavón Valderrama, nucl-th/0504067]
- divide by energy-independent short-distance solution $\left|\psi_{0}\left(R_{0}\right)\right|^{2}$ to remove dependence of scattering on arbitrary R_{0}
- solutions normalised so that for large r they match on to short-distance form of free solutions $j_{L}(p r) / p^{L}$

$$
\psi_{0}(r) \sim \frac{r^{L}}{(2 L+1)!!} \quad \text { as } r \rightarrow \infty
$$

recover Weinberg counting in channels where scattering is weak

Weak short-range potentials can be determined directly from $\widetilde{K}(p)$ using DWBA

$$
\widetilde{V}(p)=\frac{\left|\psi_{0}\left(R_{0}\right)\right|^{2}}{\left|\Psi\left(p, R_{0}\right)\right|^{2}} \widetilde{K}(p)
$$

Leading OPE used for DW $\psi(p, r)$
\rightarrow residual interaction $\widetilde{V}^{(2)}(p)$ starts at order Q^{2} (Weinberg counting!)

Weak short-range potentials can be determined directly from $\widetilde{K}(p)$ using DWBA

$$
\widetilde{V}(p)=\frac{\left|\psi_{0}\left(R_{0}\right)\right|^{2}}{\left|\psi\left(p, R_{0}\right)\right|^{2}} \widetilde{K}(p)
$$

Leading OPE used for DW $\psi(p, r)$
\rightarrow residual interaction $\widetilde{V}^{(2)}(p)$ starts at order Q^{2} (Weinberg counting!)

Results

- for lab energies $T \leq 300 \mathrm{MeV}(p \leq 375 \mathrm{MeV})$
- $R_{0}=0.1 \mathrm{fm}$ (needs to be $\lesssim 0.6 \mathrm{fm}$)
$-\alpha=0$ in waves where OPE is attractive, except ${ }^{3} P_{0}$

Short-distance interaction $\widetilde{V}^{(2)}(p)\left(\mathrm{fm}^{2 L+2}\right)$ against lab kinetic energy $T(\mathrm{MeV})$ for the channels (a) ${ }^{3} P_{1}$, (b) ${ }^{3} D_{2}$, (c) ${ }^{3} F_{3}$, (d) ${ }^{3} G_{4}$

${ }^{3} P_{0}$ short-distance interaction $\widetilde{V}^{(2)}(p)\left(f m^{4}\right)$ for two choices of short-distance phase: (a) $\alpha=0$, (b) $\alpha=0.54$

${ }^{3} P_{0}$ short-distance interaction $\widetilde{V}^{(2)}(p)\left(f m^{4}\right)$ for two choices of short-distance phase: (a) $\alpha=0$, (b) $\alpha=0.54$

Notes

- strong energy dependences for $T \lesssim 100 \mathrm{MeV}$
\rightarrow need to remove order- $Q^{2,3}$ OPE and TPE
$-{ }^{3} P_{0}$ residual interaction very strong
\rightarrow may need to iterate by taking $\alpha \neq 0$
- uncertainties in PWA's for low energies and large L's

Deconstruction 2

Two-pion exchange starts at order- Q^{2}

- perturbative \rightarrow subtract DWBA matrix elements
- use order- $Q^{2,3}$ potentials [Rentmeester et al., nucl-th/9901054]

Corresponding relativistic correction to OPE [Friar, nucl-th/9901082]

- order- Q^{2} in Weinberg counting (order- Q^{1} in new counting?)

$$
V_{1 \pi}^{(2)}(r)=-\frac{p^{2}}{2 M^{2}}\left[V_{1 \pi}^{(L O)}(r)\right]
$$

Residual short-distance interaction starts at order Q^{4}

$$
\widetilde{V}^{(4)}(p)=\frac{\left|\psi_{0}\left(R_{0}\right)\right|^{2}}{\left|\psi\left(p, R_{0}\right)\right|^{2}}\left(\widetilde{K}(p)-\langle\psi(p)| V_{1 \pi}^{(2)}+V_{2 \pi}^{(2,3)}+V_{\pi \gamma}|\psi(p)\rangle\right)
$$

DWBA matrix elements diverge at small r

- potentials for $r \rightarrow 0$ behave as

$$
V_{2 \pi}^{(3)} \propto \frac{1}{r^{6}} \quad V_{1 \pi}^{(2)}(r) \propto \frac{p^{2}}{r^{3}}
$$

- short-distance wave functions $\psi_{0}(r) \propto r^{-1 / 4} \sin (2 \sqrt{|\beta| / r})$
- cut off integrals at $r=R_{0}$ (same as in V_{S})
\rightarrow energy-independent divergences (including ones with powers of m_{π} and λ_{π}) one energy-dependent divergence $\propto p^{2}$

Renormalised by order- $Q^{-1 / 2}$ and $Q^{3 / 2}$ contact terms Up to order Q^{4} new counting also contains order- $Q^{7 / 2}$ term ($\propto p^{4}$)

Remove all these to leave order- Q^{4} interaction in new counting

- fit quadratic in energy to $\widetilde{V}^{(4)}(p)$ over range $T=100-200 \mathrm{MeV}$
- subtract (still take $R_{0}=0.1 \mathrm{fm}$)

Renormalised by order- $Q^{-1 / 2}$ and $Q^{3 / 2}$ contact terms Up to order Q^{4} new counting also contains order- $Q^{7 / 2}$ term ($\propto p^{4}$)

Remove all these to leave order- Q^{4} interaction in new counting

- fit quadratic in energy to $\widetilde{V}^{(4)}(p)$ over range $T=100-200 \mathrm{MeV}$
- subtract (still take $R_{0}=0.1 \mathrm{fm}$)

Repulsive channel ${ }^{3} P_{1}$: no divergences

- wave functions $\psi_{0}(r) \propto r^{-1 / 4} \exp (-2 \sqrt{|\beta| / r})$ as $r \rightarrow 0$
- matrix elements all finite but still depend strongly on R_{0} in range $0.1-0.6 \mathrm{fm}$
\rightarrow analyse using new power counting

Short-distance interactions $\widetilde{V}^{(4)}(p)\left(\mathrm{fm}^{4}\right)$ for ${ }^{3} P_{0}$ with $\alpha=0.54$ (a) unsubtracted, (b) quadratic fit subtracted

Short-distance interactions $\widetilde{V}^{(4)}(p)\left(\mathrm{fm}^{6}\right)$ for ${ }^{3} D_{2}$ with $\alpha=0$

Short-distance interaction $\widetilde{V}^{(4)}(p)\left(\mathrm{fm}^{4}\right)$ for ${ }^{3} P_{1}$
(a) unsubtracted, (b) quadratic fit subtracted

Conclusions (provisional)

Using DWBA method to extract OPE and TPE effects from Nijmegen PWA's, find:

- peripheral waves ${ }^{3} F_{3}$ and ${ }^{3} G_{4}$ can be analysed using strict Weinberg counting for $T \lesssim 300 \mathrm{MeV}$ (perturbative OPE and contact terms starting at order $Q^{2 L}$)
- ${ }^{3} P_{0}$ and ${ }^{3} D_{2}$ need nonperturbative treatment of OPE and new power counting for $T \sim 100 \mathrm{MeV}$ and cut-offs $R \lesssim 0.6 \mathrm{fm}$ $(\Lambda \gtrsim 300 \mathrm{MeV})$: contact terms starting at order $Q^{-1 / 2}$
- ${ }^{3} P_{1}$ intermediate but new counting seems to work better
- ${ }^{3} P_{0}$ leading contact term may need to be iterated
- strong energy dependences for $T \lesssim 100 \mathrm{MeV}$ well described by order- $Q^{2,3}$ OPE and TPE
- exception is ${ }^{3} D_{2}$: missing attraction?

Critical relative momenta in chiral limit

Channel	p_{c}
${ }^{3} S_{1}{ }^{3} D_{1}$	66 MeV
${ }^{3} P_{0}$	182 MeV
${ }^{3} P_{1}$	365 MeV
${ }^{3} P_{2}-{ }^{3} F_{2}$	470 MeV
${ }^{3} D_{2}$	403 MeV
${ }^{3} D_{3}{ }^{3} G_{3}$	382 MeV
${ }^{3} F_{3}$	2860 MeV
${ }^{3} F_{4}{ }^{3} H_{4}$	2330 MeV
${ }^{3} G_{4}$	1870 MeV

Wave functions $\psi(r) / p^{L}$ for (a) ${ }^{3} P_{0}$, (b) ${ }^{3} P_{1}$, (c) ${ }^{3} D_{2}$, (d) ${ }^{3} G_{4}$. Short-dashed lines: $T=5 \mathrm{MeV}$; long-dashed lines: $T=300 \mathrm{MeV}$; solid lines: energy-independent asymptotic form

Short-distance interaction $\widetilde{V}^{(4)}(p)\left(\mathrm{fm}^{2 L+2}\right)$ for $(\mathrm{a})^{3} F_{3},(\mathrm{~b}){ }^{3} G_{4}$
No sign of divergences for $R_{0} \gtrsim 0.05 \mathrm{MeV}$ (results independent of R_{0} for $R_{0} \lesssim 0.6 \mathrm{fm}$)
\rightarrow consistent with Weinberg counting (or zero given uncertainties in ${ }^{3} G_{4}$ PWA's)

