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Background

“Weinberg–van Kolck scheme”
[Weinberg (1991); van Kolck et al.; Epelbaum and Meissner; Kaiser; . . . ]

– organise terms using perturbative “Weinberg” power counting
– simply count powers of low-energy scales Q

leading order potential, Q0: contact term and one-pion exchange
(nonrelativistic NN loops of order Q, not Q2)

– need to iterate leading potential in S-waves (e.g. for deuteron)
– requires further IR enhancement
→ promote leading-order terms to order Q−1 (IR fixed point)

What new low-energy scales justify this?



Also, iterated tensor OPE in spin-triplet channels with L 6= 0

– strong cut-off dependence from bound states of attractive tensor
potential

→ leading short-distance terms need to be promoted
from order Q2L to leading order
[Nogga, Timmermans and van Kolck nucl-th/0506005;

see also: Epelbaum and Meissner, nucl-th/0609037]

Breakdown of Weinberg counting?
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– strong cut-off dependence from bound states of attractive tensor
potential
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from order Q2L to leading order
[Nogga, Timmermans and van Kolck nucl-th/0506005;

see also: Epelbaum and Meissner, nucl-th/0609037]

Breakdown of Weinberg counting?

Yes!



Also, iterated tensor OPE in spin-triplet channels with L 6= 0

– strong cut-off dependence from bound states of attractive tensor
potential

→ leading short-distance terms need to be promoted
from order Q2L to leading order
[Nogga, Timmermans and van Kolck nucl-th/0506005;

see also: Epelbaum and Meissner, nucl-th/0609037]

Breakdown of Weinberg counting?

Yes! But there is a viable—consistent and useful—alternative!
(to take up challenge of Epelbaum and Meissner)



What are the low-energy scales for NN scattering?

Momenta, pion mass mπ (obviously for ChPT)

In S-waves: 1/a (low-energy bound/virtual states)
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What are the low-energy scales for NN scattering?

Momenta, pion mass mπ (obviously for ChPT)

In S-waves: 1/a (low-energy bound/virtual states)

Strength of OPE set by scale

λπ =
16πF 2

π
g2

A MN

' 290 MeV

Built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

Identify λπ as additional low-energy scale (cf. Weinberg: 1/MN ∼ Q)

→ leading OPE of order Q−1 (fixed point)
→ iterate OPE as in WvK scheme



Power counting

Schrödinger equation for spin-triplet channels at short distances

– dominated by 1/r3 singularity of tensor OPE
– solutions satisfy (uncoupled waves)
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α: fixes phase of short-distance oscillations (self-adjoint extension or
leading short-distance parameter)



Perturbative treatment of tensor potential

– only possible if waves cannot resolve 1/r3 singularity
– must be well below critical momentum: pc ∼ [L(L+1)]3/2/|β|

(to avoid region where OPE & centrifugal)
– pc . 3mπ for L ≤ 2 but pc & 2 GeV for L ≥ 3
→ OPE nonperturbative in S-, P-, D-waves for momenta ∼ mπ

perturbation theory should be valid for F -waves and above
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– must be well below critical momentum: pc ∼ [L(L+1)]3/2/|β|

(to avoid region where OPE & centrifugal)
– pc . 3mπ for L ≤ 2 but pc & 2 GeV for L ≥ 3
→ OPE nonperturbative in S-, P-, D-waves for momenta ∼ mπ

perturbation theory should be valid for F -waves and above

To renormalise S-, P-, D-waves up to lab energies T ∼ 300 MeV

– need to use cut-off in nonperturbative regime
→ renormalisation-group flow controlled by Bessel functions of√

|β|/r (tensor OPE), not usual (pr)L forms (centrifugal)



RG analysis with running cutoff applied to DW’s of 1/r3 potential

→ new power counting [nucl-th/0507077]

– leading contact interaction of order Q−1/2 (weakly irrelevant)
– higher energy-dependent terms at orders Q3/2, Q7/2, . . .
– same counting for both attractive and repulsive tensor potentials
– corresponds to DWBA amplitude expanded in powers of energy



RG analysis with running cutoff applied to DW’s of 1/r3 potential

→ new power counting [nucl-th/0507077]

– leading contact interaction of order Q−1/2 (weakly irrelevant)
– higher energy-dependent terms at orders Q3/2, Q7/2, . . .
– same counting for both attractive and repulsive tensor potentials
– corresponds to DWBA amplitude expanded in powers of energy

For values of α that give low-energy bound state/resonance (α ' π/2)

– leading contact interaction of order Q−3/2 (relevant)
– corresponds to DW effective-range expansion
– relevant to 3S1–3D1 and possibly 3P0

(other waves: only for very narrow ranges of α)



Deconstruction 1

Use distorted-wave methods (DWBA or DW ERE)

– extract effects of known long-range potentials from empirical
phase shifts

– examine sizes, energy dependences of residual amplitudes
[nucl-th/0307050; see also Epelbaum and Meissner]

→ define DW K-matrix (p: on-shell CM momentum)

K̃ (p) = −
4π
Mp

tan
(

δPWA(p)−δOPE(p)
)

“Data”: δPWA(p) from four good-χ2 (but old!) Nijmegen analyses

– PWA93, NijmegenI, NijmegenII, Reid93
(uncoupled np waves: 3P0, 3P1, 3D2, 3F3, 3G4)



Short-range potential: energy-dependent δ-shell form

VS(p, r) =
1

4πR2
0 |ψ0(R0)|2

Ṽ (p)δ(r −R0)

– to avoid r → 0 (DW’s either singular or vanishing)
[contrast Ruiz Arriola and Pavón Valderrama, nucl-th/0504067]

– divide by energy-independent short-distance solution |ψ0(R0)|
2

to remove dependence of scattering on arbitrary R0

– solutions normalised so that for large r they match on to
short-distance form of free solutions jL(pr)/pL

ψ0(r) ∼
rL

(2L+1)!! as r → ∞

recover Weinberg counting in channels where scattering is weak



Weak short-range potentials can be determined directly from K̃ (p)
using DWBA

Ṽ (p) =
|ψ0(R0)|

2

|ψ(p,R0)|2
K̃ (p)

Leading OPE used for DW ψ(p, r)

→ residual interaction Ṽ (2)(p) starts at order Q2

(Weinberg counting!)
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Leading OPE used for DW ψ(p, r)

→ residual interaction Ṽ (2)(p) starts at order Q2

(Weinberg counting!)

Results

– for lab energies T ≤ 300 MeV (p ≤ 375 MeV)
– R0 = 0.1 fm (needs to be . 0.6 fm)
– α = 0 in waves where OPE is attractive, except 3P0
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Notes

– strong energy dependences for T . 100 MeV
→ need to remove order-Q2,3 OPE and TPE
– 3P0 residual interaction very strong
→ may need to iterate by taking α 6= 0
– uncertainties in PWA’s for low energies and large L’s



Deconstruction 2

Two-pion exchange starts at order-Q2

– perturbative → subtract DWBA matrix elements
– use order-Q2,3 potentials [Rentmeester et al., nucl-th/9901054]

Corresponding relativistic correction to OPE [Friar, nucl-th/9901082]

– order-Q2 in Weinberg counting (order-Q1 in new counting?)

V
(2)
1π (r) = −

p2

2M2

[
V

(LO)
1π (r)

]

Residual short-distance interaction starts at order Q4

Ṽ (4)(p) =
|ψ0(R0)|

2

|ψ(p,R0)|2

(
K̃ (p)−〈ψ(p)|V

(2)
1π +V

(2,3)
2π +Vπγ|ψ(p)〉

)



DWBA matrix elements diverge at small r

– potentials for r → 0 behave as

V
(3)
2π ∝

1

r6
V

(2)
1π (r) ∝

p2

r3

– short-distance wave functions ψ0(r) ∝ r−1/4 sin
(

2
√
|β|/r

)

– cut off integrals at r = R0 (same as in VS)
→ energy-independent divergences

(including ones with powers of mπ and λπ)
one energy-dependent divergence ∝ p2



Renormalised by order-Q−1/2 and Q3/2 contact terms

Up to order Q4 new counting also contains order-Q7/2 term (∝ p4)

Remove all these to leave order-Q4 interaction in new counting

– fit quadratic in energy to Ṽ (4)(p) over range T = 100−200 MeV
– subtract

(still take R0 = 0.1 fm)



Renormalised by order-Q−1/2 and Q3/2 contact terms

Up to order Q4 new counting also contains order-Q7/2 term (∝ p4)

Remove all these to leave order-Q4 interaction in new counting

– fit quadratic in energy to Ṽ (4)(p) over range T = 100−200 MeV
– subtract

(still take R0 = 0.1 fm)

Repulsive channel 3P1: no divergences

– wave functions ψ0(r) ∝ r−1/4 exp
(
−2
√
|β|/r

)
as r → 0

– matrix elements all finite
but still depend strongly on R0 in range 0.1−0.6 fm

→ analyse using new power counting
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Conclusions (provisional)

Using DWBA method to extract OPE and TPE effects from Nijmegen
PWA’s, find:

peripheral waves 3F3 and 3G4 can be analysed using strict
Weinberg counting for T . 300 MeV
(perturbative OPE and contact terms starting at order Q2L)
3P0 and 3D2 need nonperturbative treatment of OPE and new
power counting for T ∼ 100 MeV and cut-offs R . 0.6 fm
(Λ & 300 MeV): contact terms starting at order Q−1/2

3P1 intermediate but new counting seems to work better
3P0 leading contact term may need to be iterated
strong energy dependences for T . 100 MeV well described by
order-Q2,3 OPE and TPE
exception is 3D2: missing attraction?



Critical relative momenta in chiral limit

Channel pc
3S1–3D1 66 MeV

3P0 182 MeV
3P1 365 MeV

3P2–3F2 470 MeV
3D2 403 MeV

3D3–3G3 382 MeV
3F3 2860 MeV

3F4–3H4 2330 MeV
3G4 1870 MeV
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Wave functions ψ(r)/pL for (a) 3P0, (b) 3P1, (c) 3D2, (d) 3G4.
Short-dashed lines: T = 5 MeV; long-dashed lines: T = 300 MeV;
solid lines: energy-independent asymptotic form
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No sign of divergences for R0 & 0.05 MeV
(results independent of R0 for R0 . 0.6 fm)

→ consistent with Weinberg counting
(or zero given uncertainties in 3G4 PWA’s)


