

Deconstructing triplet nucleon-nucleon scattering

Michael C Birse

The University of Manchester

Work in progress, based on: Birse and McGovern, nucl-th/0307050 and DW renormalisation group: Barford and Birse, hep-ph/0206146 Birse, nucl-th/0507077

Background

"Weinberg-van Kolck scheme"

[Weinberg (1991); van Kolck et al.; Epelbaum and Meissner; Kaiser; ...]

- organise terms using perturbative "Weinberg" power counting
- simply count powers of low-energy scales Q leading order potential, Q⁰: contact term and one-pion exchange (nonrelativistic NN loops of order Q, not Q²)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

- need to iterate leading potential in S-waves (e.g. for deuteron)
- requires further IR enhancement
- \rightarrow promote leading-order terms to order Q⁻¹ (IR fixed point)

What new low-energy scales justify this?

Also, iterated tensor OPE in spin-triplet channels with $L \neq 0$

 strong cut-off dependence from bound states of attractive tensor potential

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

→ leading short-distance terms need to be promoted from order Q^{2L} to leading order
 [Nogga, Timmermans and van Kolck nucl-th/0506005; see also: Epelbaum and Meissner, nucl-th/0609037]

Breakdown of Weinberg counting?

Also, iterated tensor OPE in spin-triplet channels with $L \neq 0$

 strong cut-off dependence from bound states of attractive tensor potential

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

- → leading short-distance terms need to be promoted from order Q^{2L} to leading order [Nogga, Timmermans and van Kolck nucl-th/0506005;
 - see also: Epelbaum and Meissner, nucl-th/0609037]

Breakdown of Weinberg counting?

Yes!

Also, iterated tensor OPE in spin-triplet channels with $L \neq 0$

 strong cut-off dependence from bound states of attractive tensor potential

 → leading short-distance terms need to be promoted from order Q^{2L} to leading order [Nogga, Timmermans and van Kolck nucl-th/0506005; see also: Epelbaum and Meissner, nucl-th/0609037]

Breakdown of Weinberg counting?

Yes! But there is a viable—consistent and useful—alternative! (to take up challenge of Epelbaum and Meissner)

What are the low-energy scales for NN scattering?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Momenta, pion mass m_{π} (obviously for ChPT) In S-waves: 1/a (low-energy bound/virtual states)

What are the low-energy scales for NN scattering?

Momenta, pion mass m_{π} (obviously for ChPT) In S-waves: 1/a (low-energy bound/virtual states) Strength of OPE set by scale

$$\lambda_{\pi}=rac{16\pi F_{\pi}^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}}\simeq$$
 290 MeV

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Built out of high-energy scales $(4\pi F_{\pi}, M_{N})$ but $\sim 2m_{\pi}$

What are the low-energy scales for NN scattering?

Momenta, pion mass m_{π} (obviously for ChPT) In S-waves: 1/a (low-energy bound/virtual states) Strength of OPE set by scale

$$\lambda_{\pi}=rac{16\pi \mathcal{F}_{\pi}^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}}\simeq$$
 290 MeV

Built out of high-energy scales $(4\pi F_{\pi}, M_{N})$ but $\sim 2m_{\pi}$

Identify λ_{π} as additional low-energy scale (cf. Weinberg: $1/M_{\scriptscriptstyle N} \sim Q$)

- \rightarrow leading OPE of order Q⁻¹ (fixed point)
- → iterate OPE as in WvK scheme

Power counting

Schrödinger equation for spin-triplet channels at short distances

- dominated by $1/r^3$ singularity of tensor OPE
- solutions satisfy (uncoupled waves)

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r} - \frac{L(L+1)}{r^2} - \frac{\beta_{LJ}}{r^3}\right]\psi_0(r) = 0 \qquad \left(\beta \propto \frac{1}{\lambda_{\pi}}\right)$$

 $\rightarrow\,$ Bessel functions for $\beta<$ 0 (modified Bessel if $\beta>$ 0)

$$\psi_0(r) \propto r^{-1/2} \left[\sin \alpha J_{2L+1} \left(2\sqrt{\frac{|\beta_{LJ}|}{r}} \right) + \cos \alpha Y_{2L+1} \left(2\sqrt{\frac{|\beta_{LJ}|}{r}} \right) \right]$$

 α : fixes phase of short-distance oscillations (self-adjoint extension or leading short-distance parameter)

Perturbative treatment of tensor potential

- only possible if waves cannot resolve $1/r^3$ singularity
- must be well below critical momentum: $\rho_c \sim [L(L+1)]^{3/2}/|\beta|$ (to avoid region where OPE \gtrsim centrifugal)
- $ho_c \lesssim 3m_\pi$ for L \leq 2 but $ho_c \gtrsim$ 2 GeV for L \geq 3
- \rightarrow OPE nonperturbative in *S*-, *P*-, *D*-waves for momenta $\sim m_{\pi}$ perturbation theory should be valid for *F*-waves and above

Perturbative treatment of tensor potential

- only possible if waves cannot resolve $1/r^3$ singularity
- must be well below critical momentum: $\rho_c \sim [L(L+1)]^{3/2}/|\beta|$ (to avoid region where OPE \gtrsim centrifugal)
- $ho_c \lesssim 3m_\pi$ for L \leq 2 but $ho_c \gtrsim$ 2 GeV for L \geq 3
- \rightarrow OPE nonperturbative in *S*-, *P*-, *D*-waves for momenta $\sim m_{\pi}$ perturbation theory should be valid for *F*-waves and above

To renormalise S-, P-, D-waves up to lab energies $T \sim 300 \text{ MeV}$

- need to use cut-off in nonperturbative regime
- → renormalisation-group flow controlled by Bessel functions of $\sqrt{|\beta|/r}$ (tensor OPE), not usual $(\rho r)^L$ forms (centrifugal)

RG analysis with running cutoff applied to DW's of $1/r^3$ potential

- \rightarrow new power counting [nucl-th/0507077]
 - leading contact interaction of order Q^{-1/2} (weakly irrelevant)
 - higher energy-dependent terms at orders $Q^{3/2}$, $Q^{7/2}$, ...
 - same counting for both attractive and repulsive tensor potentials
 - corresponds to DWBA amplitude expanded in powers of energy

RG analysis with running cutoff applied to DW's of $1/r^3$ potential

- \rightarrow new power counting [nucl-th/0507077]
 - leading contact interaction of order Q^{-1/2} (weakly irrelevant)
 - higher energy-dependent terms at orders $Q^{3/2}$, $Q^{7/2}$, ...
 - same counting for both attractive and repulsive tensor potentials
 - corresponds to DWBA amplitude expanded in powers of energy

For values of α that give low-energy bound state/resonance ($\alpha \simeq \pi/2$)

- leading contact interaction of order $Q^{-3/2}$ (relevant)
- corresponds to DW effective-range expansion
- relevant to ${}^{3}S_{1} {}^{3}D_{1}$ and possibly ${}^{3}P_{0}$ (other waves: only for very narrow ranges of α)

Deconstruction 1

Use distorted-wave methods (DWBA or DW ERE)

- extract effects of known long-range potentials from empirical phase shifts
- examine sizes, energy dependences of residual amplitudes [nucl-th/0307050; see also Epelbaum and Meissner]
- → define DW K-matrix (p: on-shell CM momentum)

$$\widetilde{\kappa}({m
ho}) = - rac{4\pi}{M\!
ho} an\Bigl(\delta_{\scriptscriptstyle ext{PWA}}({m
ho}) - \delta_{\scriptscriptstyle ext{OPE}}({m
ho}) \Bigr)$$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

"Data": $\delta_{\text{PWA}}(\rho)$ from four good- χ^2 (but old!) Nijmegen analyses

 PWA93, NijmegenI, NijmegenII, Reid93 (uncoupled *np* waves: ³P₀, ³P₁, ³D₂, ³F₃, ³G₄) Short-range potential: energy-dependent δ -shell form

$$V_{S}(p,r) = \frac{1}{4\pi R_{0}^{2} |\psi_{0}(R_{0})|^{2}} \widetilde{V}(p) \,\delta(r-R_{0})$$

to avoid r → 0 (DW's either singular or vanishing)
 [contrast Ruiz Arriola and Pavón Valderrama, nucl-th/0504067]

- divide by energy-independent short-distance solution $|\psi_0(R_0)|^2$ to remove dependence of scattering on arbitrary R_0
- solutions normalised so that for large *r* they match on to short-distance form of free solutions $j_L(pr)/p^L$

$$\psi_0(r) \sim rac{r^L}{(2L+1)!!}$$
 as $r
ightarrow \infty$

recover Weinberg counting in channels where scattering is weak

Weak short-range potentials can be determined directly from $\widetilde{K}(p)$ using DWBA

$$\widetilde{V}(p) = \frac{|\psi_0(R_0)|^2}{|\psi(p,R_0)|^2} \widetilde{K}(p)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Leading OPE used for DW $\psi(p, r)$

→ residual interaction $\widetilde{V}^{(2)}(p)$ starts at order Q^2 (Weinberg counting!) Weak short-range potentials can be determined directly from $\widetilde{K}(p)$ using DWBA

$$\widetilde{V}(p) = \frac{|\psi_0(R_0)|^2}{|\psi(p,R_0)|^2} \widetilde{K}(p)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Leading OPE used for DW $\psi(p, r)$

→ residual interaction $\widetilde{V}^{(2)}(p)$ starts at order Q^2 (Weinberg counting!)

Results

- for lab energies $T \leq 300 \text{ MeV} (p \leq 375 \text{ MeV})$
- $R_0 = 0.1$ fm (needs to be $\lesssim 0.6$ fm)
- $\alpha = 0$ in waves where OPE is attractive, except ${}^{3}P_{0}$

Short-distance interaction $\widetilde{V}^{(2)}(p)$ (fm^{2L+2}) against lab kinetic energy T (MeV) for the channels (a) ${}^{3}P_{1}$, (b) ${}^{3}D_{2}$, (c) ${}^{3}F_{3}$, (d) ${}^{3}G_{4}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

 ${}^{3}P_{0}$ short-distance interaction $\widetilde{V}^{(2)}(p)$ (fm⁴) for two choices of short-distance phase: (a) $\alpha = 0$, (b) $\alpha = 0.54$

 $^{3}P_{0}$ short-distance interaction $\widetilde{V}^{(2)}(p)$ (fm⁴) for two choices of short-distance phase: (a) $\alpha = 0$, (b) $\alpha = 0.54$

Notes

- strong energy dependences for $T \lesssim 100 \text{ MeV}$
- $\rightarrow~$ need to remove order- $Q^{2,3}$ OPE and TPE
 - ³ P_0 residual interaction very strong
- \rightarrow may need to iterate by taking $\alpha \neq 0$
 - uncertainties in PWA's for low energies and large L's

Deconstruction 2

Two-pion exchange starts at order-Q²

- perturbative \rightarrow subtract DWBA matrix elements
- use order-Q^{2,3} potentials [Rentmeester et al., nucl-th/9901054]

Corresponding relativistic correction to OPE [Friar, nucl-th/9901082]

- order-Q² in Weinberg counting (order-Q¹ in new counting?)

$$V_{1\pi}^{(2)}(r) = -\frac{p^2}{2M^2} \left[V_{1\pi}^{(LO)}(r) \right]$$

Residual short-distance interaction starts at order Q⁴

$$\widetilde{V}^{(4)}(p) = \frac{|\Psi_0(R_0)|^2}{|\Psi(p,R_0)|^2} \left(\widetilde{K}(p) - \langle \Psi(p) | V_{1\pi}^{(2)} + V_{2\pi}^{(2,3)} + V_{\pi\gamma} | \Psi(p) \rangle \right)$$

DWBA matrix elements diverge at small r

– potentials for $r \rightarrow 0$ behave as

$$V_{2\pi}^{(3)} \propto \frac{1}{r^6}$$
 $V_{1\pi}^{(2)}(r) \propto \frac{p^2}{r^3}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

- short-distance wave functions $\psi_0(r) \propto r^{-1/4} \sin\left(2\sqrt{|\beta|/r}\right)$
- cut off integrals at $r = R_0$ (same as in V_S)
- → energy-independent divergences (including ones with powers of m_{π} and λ_{π}) one energy-dependent divergence $\propto p^2$

Renormalised by order- $Q^{-1/2}$ and $Q^{3/2}$ contact terms Up to order Q^4 new counting also contains order- $Q^{7/2}$ term ($\propto p^4$) Remove all these to leave order- Q^4 interaction in new counting

- fit quadratic in energy to $\widetilde{V}^{(4)}(p)$ over range T = 100 200 MeV
- subtract

(still take $R_0 = 0.1$ fm)

Renormalised by order- $Q^{-1/2}$ and $Q^{3/2}$ contact terms Up to order Q^4 new counting also contains order- $Q^{7/2}$ term ($\propto p^4$) Remove all these to leave order- Q^4 interaction in new counting

- fit quadratic in energy to $\widetilde{V}^{(4)}(p)$ over range T = 100 - 200 MeV

ヘロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト

- subtract

(still take $R_0 = 0.1$ fm)

Repulsive channel ³P₁: no divergences

- wave functions $\psi_0(r) \propto r^{-1/4} \exp\left(-2\sqrt{|\beta|/r}\right)$ as $r \to 0$
- matrix elements all finite

but still depend strongly on R_0 in range 0.1 - 0.6 fm

 \rightarrow analyse using new power counting

Short-distance interactions $\widetilde{V}^{(4)}(p)$ (fm⁴) for ³*P*₀ with $\alpha = 0.54$ (a) unsubtracted, (b) quadratic fit subtracted

Short-distance interactions $\widetilde{V}^{(4)}(p)$ (fm⁶) for ³D₂ with $\alpha = 0$

(日) (個) (目) (目) (目) (目)

Short-distance interaction $\widetilde{V}^{(4)}(p)$ (fm⁴) for ³*P*₁ (a) unsubtracted, (b) quadratic fit subtracted

Conclusions (provisional)

Using DWBA method to extract OPE and TPE effects from Nijmegen PWA's, find:

- peripheral waves ${}^{3}F_{3}$ and ${}^{3}G_{4}$ can be analysed using strict Weinberg counting for $T \leq 300$ MeV (perturbative OPE and contact terms starting at order Q^{2L})
- ³*P*₀ and ³*D*₂ need nonperturbative treatment of OPE and new power counting for *T* ~ 100 MeV and cut-offs $R \lesssim 0.6$ fm ($\Lambda \gtrsim 300$ MeV): contact terms starting at order Q^{-1/2}
- ³P₁ intermediate but new counting seems to work better
- ${}^{3}P_{0}$ leading contact term may need to be iterated
- strong energy dependences for $T \lesssim 100$ MeV well described by order-Q^{2,3} OPE and TPE
- exception is ³D₂: missing attraction?

Critical relative momenta in chiral limit

Channel	$ ho_c$
${}^{3}S_{1}-{}^{3}D_{1}$	66 MeV
${}^{3}P_{0}$	182 MeV
³ P ₁	365 MeV
${}^{3}P_{2}-{}^{3}F_{2}$	470 MeV
³ D ₂	403 MeV
${}^{3}D_{3}-{}^{3}G_{3}$	382 MeV
³ F ₃	2860 MeV
${}^{3}F_{4}-{}^{3}H_{4}$	2330 MeV
³ G ₄	1870 MeV

Wave functions $\psi(r)/\rho^{L}$ for (a) ${}^{3}P_{0}$, (b) ${}^{3}P_{1}$, (c) ${}^{3}D_{2}$, (d) ${}^{3}G_{4}$. Short-dashed lines: T = 5 MeV; long-dashed lines: T = 300 MeV; solid lines: energy-independent asymptotic form

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Short-distance interaction $\widetilde{V}^{(4)}(p)$ (fm^{2L+2}) for (a) ${}^{3}F_{3}$, (b) ${}^{3}G_{4}$

No sign of divergences for $R_0 \gtrsim 0.05$ MeV (results independent of R_0 for $R_0 \lesssim 0.6$ fm)

 \rightarrow consistent with Weinberg counting (or zero given uncertainties in ${}^{3}G_{4}$ PWA's)