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Outline

• Background: effective field theories for few-body systems
• Determining power counting from wave functions near origin

(renormalisation group)
• Extension to coupled channels
• Application to p + 7Li↔ n + 7Be

state of 8Be ∼ at n + 7Be threshold
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Effective field theory

• no model assumptions – just low-energy degrees of freedom and
symmetries
• systematic expansion in powers of ratios of low-energy scales Q

to scales of underlying physics Λ0

• interactions with ranges ∼ 1/Λ0 not resolved at scales Q
→ replaced by contact interactions
• works provided we have a a good separation of scales
• estimates of errors and theory will tell you if it breaks down

(no convergence)
• consistency of effective operators and interactions

[cf talk by Higa]
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Works well for purely pionic and πN systems

• pions ∼ Goldstone bosons of hidden chiral symmetry
– strong interactions weak at low energies

→ chiral perturbation theory
• expansion in ratios of low-energy scales:

momenta, mπ, typically ∼ 200 MeV
to QCD scales: mρ, MN , 4πFπ, . . . & 700 MeV?
• terms organised by naive dimensional analysis

aka “Weinberg power counting”
(simply counts powers of low-energy scales Q)
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Extensions to few-body systems

Nuclear EFT

• two- and three-nucleon forces
• long-range parts from ChPT
• short-range: contact interactions

“Cluster EFT” (aka “halo EFT”)

• weakly bound nuclei with two- or three-cluster structures
• clusters treated as structureless objects
• assumes excitation energies of clusters� energies of interest
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Extensions to ≥ 2 nucleons or clusters raise new problems

• nucleons (and nuclei) interact strongly at low energies
• simply counting powers of low-energy scales: perturbative
• works for weakly interacting systems

(eg pions, photons and ≤ 1 nucleon)

• but cannot generate bound states or resonances
→ need to treat some interactions nonperturbatively

But...

• basic nonrelativistic loop diagram of order Q [Weinberg (1991)]
• and potential starts at order Q0 (simplest contact interaction)
• each iteration suppressed by power of Q/Λ0

→ still perturbative (provided Q < Λ0)
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Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied, and even more widely invoked

• but no clear power counting for observables
• resums subset of terms to all orders in Q

(and some of these depend on regulator)
• not necessarily a problem if these terms are small
• but what if we rely on them to generate bound states?
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How to iterate interactions consistently

Identify new low-energy scales

• promote leading-order terms to order Q−1

(cancels Q from loop→ iterations not suppressed)
→ iterate to all orders

Then use renormalisation group (or equivalent)

→ find fixed point and its “relevant” operators
→ terms that can, and must, be iterated to all orders

(treat other “irrelevant” operators as perturbations)

Example of new scales in NN system

• S-wave scattering lengths→ 1/a . 40 MeV
→ for p�mπ: “pionless EFT” (≡ effective-range expansion)

[van Kolck; Kaplan, Savage and Wise (1998)]
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Effective-range expansion

Expansion of inverse of on-shell K matrix in powers of energy
(like T matrix but standing-wave bc’s – real, analytic)

1
K (p)

=
M
4π

(
− 1

a
+

1
2

re p2 + · · ·
)

• expansion around “unitary limit” 1/K (p) = 0
(bound state at threshold)
• low-energy scale: 1/a∼ Q
• remaining terms assumed to be “natural”: re ∼ 1/Λ0

K (p) =
4π

M

(
−a− 1

2
re a2p2 + · · ·

)
→ leading term of order Q−1

other terms promoted by two orders in Q
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Enhancement follows from form of wave functions as r → 0

• unitary limit→ irregular solutions: ψ(r) ∝ r−1 (S wave)
• cutoff at scale Λ smears contact interaction over range R ∼ Λ−1

→ need extra factor Λ−2 in potential to cancel cutoff dependence
from |ψ(R)|2 ∝ Λ2 in matrix elements
(assuming 1/a� Λ� Λ0)

Complete approach is to use the renormalisation group

• demand observables to be independent of cutoff Λ
→ two fixed points (scale-free systems)
• trivial: noninteracting system→ “Weinberg” power counting
• nontrivial: unitary limit→ effective-range expansion
• results agree with simple arguments based on wave functions

(even for systems with 1/r2 or 1/r3 potentials)
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Two coupled channels

Three fixed points of potential (2×2 matrix)

• trivial in both channels (boring)
• bound states at threshold in both channels (very unlikely)

[Cohen, Gelman and van Kolck (2004)]
• one bound state at threshold

Last one is of most interest

• starting point for EFT describing systems with a single
low-energy bound or virtual state
• need to use effective-range expansion in one channel

but Weinberg power counting in the other
• and channels are mixtures of the two asymptotic ones
→ can’t simply expand either K or K−1
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System with two channels, separated by energy ∆

• S waves, one low-energy state, momenta p�mπ

Small scales Q

• on-shell momenta p1 =
√

2M1E , p2 =
√

2M2(E−∆)
(Mi : reduced masses)
• inverse scattering length in strongly interacting channel 1/aα

“Underlying” high-energy scales Λ0

• range of forces mπ

• inverse sizes of clusters 1/Ri

• excitations of clusters
√

2MiEex,i

Expand in powers of Q/Λ0
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Asymptotic channels both couple to low-energy state

• strongly interacting channel defined by uα =

(
cosφ

sinφ

)
• weakly interacting channel by orthogonal vector uβ

Parameters of resulting EFT

Order Parameter
Q−1 large scattering length aα

mixing angle φ

Q0 small scattering length aβ

effective range in strongly interacting channel rα

Q1 “off-diagonal” effective range rm (energy-dependent mixing)

(subleading terms enhanced by two orders in α channel,
off-diagonal by one order, no enhancement in β)
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To order Q (NNLO)

T =−2πM−1/2

{[
− 1

aα

+
rα

2
p2

2− ipα

−aβ

[(
1− iaβpβ

)
p2

m− irα p2
2pm
]]−1

uαu†
α

−aβ

[
1− iaβpβ + aβp2

m

(
− 1

aα

− ipα

)−1]
uβu†

β

+ aβ

[
ipm

[(
− 1

aα

− ipα

)(
1 + iaβpβ

)
+

rα

2
p′2−aβp2

m

]−1

+
rm

2
p2

2

(
− 1

aα

− ipα

)−1
]

(uαu†
β

+ uβu†
α)

}
M−1/2

Orders of terms follow from RG analysis: rm multiplies aαp2
2 ∼ O(Q)

14 / 21



Combinations of momenta above thresholds from finite parts
of loop integrals:

pα = θ(p2
1)p1 cos2

φ + θ(p2
2)p2 sin2

φ

pβ = θ(p2
1)p1 sin2

φ + θ(p2
2)p2 cos2

φ

pm =
(
θ(p2

1)p1−θ(p2
2)p2

)
sinφcosφ

(divergent parts MΛ/(2π2) cancelled by renormalisation)

Charged particles→ need to use Coulomb distorted waves

• new low-energy scales: inverse Bohr radii κ1,2

• no change to basic power counting
(1/r not singular enough to change behaviour of wave functions)
• replace ipi by finite parts of integrals with DWs

ji(pi) = κi
(
2h(ηi) + iC2

ηi
/ηi
)
, ηi = κi/pi
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p +7 Li↔ n + 7Be coupled channels

Ideal test case for EFT

• n + 7Be threshold at ∆ = 1.6442 MeV above p + 7Li
• JP = 2− excited state of 8Be within ∼ 10 keV of threshold
→ huge cross section for 7Be(n,p)7Li at thermal energies

(crucial for BBN of 7Li but very well measured)
• 5

2
−

excited states of A = 7 nuclei at ∼ 7 MeV

Data (and phenomenological analyses)

• p + 7Li 5S2 phase shift from PWA and R-matrix fits
[Brown et al (1973)]
• cross section for 7Be(n,p)7Li [Koehler et al (1988)]
• R-matrix fits [Adahchour and Descouvemont (2003)]
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7Be(n,p)7Li reduced cross section σred
np = σnp
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E−∆

1e-08 1e-06 0.0001 0.01 1
E

cm
-∆ [MeV]

1

2

3

4

5

6

7

8

9

10

σ npre
d  [

b 
M

eV
1/

2 ]

Circles: (n,p) data from Koehler et al ; triangles: old data on (p,n)
EFT fits at different orders ∼ indistinguishable
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p + 7Li 5S2 phase shift
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Diamonds: PWA of Brown et al (our estimate of uncertainties)
EFT fits: LO dot-dashed, NLO dashed, NNLO solid
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Scattering parameters

Order aα [fm] φ aβ [fm] rα [fm] rm [fm]
LO −17.76 46.63◦ − − −

NLO −19.37 51.82◦ −1.96 3.79 −
NNLO −19.11 50.45◦ −1.07 2.58 −5.42

EFT looks convergent, underlying scale Λ0 ∼ 100 MeV (2 fm)−1

• σred
np : only threshold value matters

• phase shift below threshold not sensitive to rm
• PWA above threshold relies on old (p,n)→ not fitted
→ really only NLO parameters reliable (NNLO χ2 very flat)
• expansion of T matrix→ unitarity not guaranteed
→ NNLO fits unstable unless we impose unitarity constraint

or use R-matrix results to fix σred
np above 0.1 MeV
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JP = 2− state of 8Be

T matrix pole at complex energy E = Er − iΓ/2 with

Er = 1.71 MeV = ∆ + 0.07 MeV

Γ = 0.12 MeV

• lies on 4th Riemann sheet: Im[p1] > 0, Im[p2] < 0
• partial widths Γp = 2.47 MeV, Γn = 0.34 MeV

(∼ virtual state not a resonance→ don’t add up to Γ)
• similar to results of R-matrix fits
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Conclusions

Cluster (halo) EFT applied to coupled-channel systems

• interesting fixed point of RG: single low-energy state
• expansion – mixture of effective-range and perturbation theory
• illustrates enhancements expected from RG

(short-distance behaviour of wave functions)

p +7 Li↔ n + 7Be ideal candidate

• JP = 2− state of 8Be close to n + 7Be threshold
• 7Be(n,p)7Li well described at any order in EFT
• S-wave phase shift below threshold well described at NLO

(NNLO fit needs better PWA above threshold)
→ convergent expansion with underlying scale Λ0 ∼ 100 MeV

EFT can provide a more systematic alternative to R-matrix analyses
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