

Coupled-channel effective field theory and proton-⁷Li scattering

Vadim Lensky and Mike Birse The University of Manchester

Eur Phys J A 47 (2011) 142 [arXiv:1109.2797]

Outline

- Background: effective field theories for few-body systems
- Determining power counting from wave functions near origin (renormalisation group)
- Extension to coupled channels
- Application to p+⁷Li ↔ n+⁷Be state of ⁸Be ~ at n+⁷Be threshold

Effective field theory

- no model assumptions just low-energy degrees of freedom and symmetries
- systematic expansion in powers of ratios of low-energy scales Q to scales of underlying physics Λ_0
- interactions with ranges ~ 1/Λ₀ not resolved at scales Q
 → replaced by contact interactions
- works provided we have a a good separation of scales
- estimates of errors and theory will tell you if it breaks down (no convergence)
- consistency of effective operators and interactions [cf talk by Higa]

Works well for purely pionic and πN systems

- pions \sim Goldstone bosons of hidden chiral symmetry
 - strong interactions weak at low energies
- \rightarrow chiral perturbation theory
 - expansion in ratios of low-energy scales: momenta, m_{π} , typically $\sim 200 \text{ MeV}$ to QCD scales: m_{ρ} , M_N , $4\pi F_{\pi}$, ... $\gtrsim 700 \text{ MeV}$?
 - terms organised by naive dimensional analysis aka "Weinberg power counting" (simply counts powers of low-energy scales *Q*)

Extensions to few-body systems

Nuclear EFT

- two- and three-nucleon forces
- long-range parts from ChPT
- short-range: contact interactions

"Cluster EFT" (aka "halo EFT")

- weakly bound nuclei with two- or three-cluster structures
- clusters treated as structureless objects
- assumes excitation energies of clusters \gg energies of interest

Extensions to \geq 2 nucleons or clusters raise new problems

- nucleons (and nuclei) interact strongly at low energies
- simply counting powers of low-energy scales: perturbative
- works for weakly interacting systems (eg pions, photons and ≤ 1 nucleon)

Extensions to \geq 2 nucleons or clusters raise new problems

- nucleons (and nuclei) interact strongly at low energies
- simply counting powers of low-energy scales: perturbative
- works for weakly interacting systems (eg pions, photons and ≤ 1 nucleon)
- but cannot generate bound states or resonances
- \rightarrow need to treat some interactions nonperturbatively

But...

Extensions to \geq 2 nucleons or clusters raise new problems

- nucleons (and nuclei) interact strongly at low energies
- simply counting powers of low-energy scales: perturbative
- works for weakly interacting systems (eg pions, photons and ≤ 1 nucleon)
- but cannot generate bound states or resonances
- \rightarrow need to treat some interactions nonperturbatively

But...

- basic nonrelativistic loop diagram of order *Q* [Weinberg (1991)]
- and potential starts at order Q⁰ (simplest contact interaction)
- each iteration suppressed by power of Q/Λ_0
- \rightarrow still perturbative (provided $Q < \Lambda_0$)

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied, and even more widely invoked

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied, and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in *Q* (and some of these depend on regulator)

Workaround: "Weinberg prescription"

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied, and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in *Q* (and some of these depend on regulator)
- not necessarily a problem if these terms are small
- but what if we rely on them to generate bound states?

How to iterate interactions consistently

Identify new low-energy scales

- promote leading-order terms to order Q⁻¹ (cancels Q from loop → iterations not suppressed)
- \rightarrow iterate to all orders

How to iterate interactions consistently

Identify new low-energy scales

- promote leading-order terms to order Q⁻¹ (cancels Q from loop → iterations not suppressed)
- \rightarrow iterate to all orders

Then use renormalisation group (or equivalent)

- $\rightarrow\,$ find fixed point and its "relevant" operators
- → terms that can, and must, be iterated to all orders (treat other "irrelevant" operators as perturbations)

How to iterate interactions consistently

Identify new low-energy scales

- promote leading-order terms to order Q⁻¹ (cancels Q from loop → iterations not suppressed)
- \rightarrow iterate to all orders

Then use renormalisation group (or equivalent)

- $\rightarrow\,$ find fixed point and its "relevant" operators
- → terms that can, and must, be iterated to all orders (treat other "irrelevant" operators as perturbations)

Example of new scales in NN system

- S-wave scattering lengths $\rightarrow 1/a \lesssim 40 \text{ MeV}$
- → for $p \ll m_{\pi}$: "pionless EFT" (\equiv effective-range expansion) [van Kolck; Kaplan, Savage and Wise (1998)]

Effective-range expansion

Expansion of inverse of on-shell K matrix in powers of energy (like T matrix but standing-wave bc's – real, analytic)

$$\frac{1}{K(p)} = \frac{M}{4\pi} \left(-\frac{1}{a} + \frac{1}{2} r_e p^2 + \cdots \right)$$

- expansion around "unitary limit" 1/K(p) = 0 (bound state at threshold)
- low-energy scale: $1/a \sim Q$
- remaining terms assumed to be "natural": $r_e \sim 1/\Lambda_0$

Effective-range expansion

Expansion of inverse of on-shell K matrix in powers of energy (like T matrix but standing-wave bc's – real, analytic)

$$\frac{1}{K(p)} = \frac{M}{4\pi} \left(-\frac{1}{a} + \frac{1}{2} r_e p^2 + \cdots \right)$$

- expansion around "unitary limit" 1/K(p) = 0 (bound state at threshold)
- low-energy scale: $1/a \sim Q$
- remaining terms assumed to be "natural": $r_e \sim 1/\Lambda_0$

$$K(p) = \frac{4\pi}{M} \left(-a - \frac{1}{2} r_e a^2 p^2 + \cdots \right)$$

 \rightarrow leading term of order Q^{-1}

other terms promoted by two orders in Q

Enhancement follows from form of wave functions as $r \rightarrow 0$

- unitary limit \rightarrow irregular solutions: $\psi(r) \propto r^{-1}$ (S wave)
- cutoff at scale Λ smears contact interaction over range $R \sim \Lambda^{-1}$
- → need extra factor Λ^{-2} in potential to cancel cutoff dependence from $|\psi(R)|^2 \propto \Lambda^2$ in matrix elements (assuming $1/a \ll \Lambda \ll \Lambda_0$)

Enhancement follows from form of wave functions as $r \rightarrow 0$

- unitary limit \rightarrow irregular solutions: $\psi(r) \propto r^{-1}$ (S wave)
- cutoff at scale Λ smears contact interaction over range $R \sim \Lambda^{-1}$
- → need extra factor Λ^{-2} in potential to cancel cutoff dependence from $|\psi(R)|^2 \propto \Lambda^2$ in matrix elements (assuming $1/a \ll \Lambda \ll \Lambda_0$)

Complete approach is to use the renormalisation group

- demand observables to be independent of cutoff Λ
- \rightarrow two fixed points (scale-free systems)
 - trivial: noninteracting system → "Weinberg" power counting
 - nontrivial: unitary limit \rightarrow effective-range expansion
 - results agree with simple arguments based on wave functions (even for systems with $1/r^2$ or $1/r^3$ potentials)

Two coupled channels

Three fixed points of potential $(2 \times 2 \text{ matrix})$

- trivial in both channels (boring)
- bound states at threshold in both channels (very unlikely) [Cohen, Gelman and van Kolck (2004)]
- one bound state at threshold

Two coupled channels

Three fixed points of potential $(2 \times 2 \text{ matrix})$

- trivial in both channels (boring)
- bound states at threshold in both channels (very unlikely) [Cohen, Gelman and van Kolck (2004)]
- one bound state at threshold

Last one is of most interest

- starting point for EFT describing systems with a single low-energy bound or virtual state
- need to use effective-range expansion in one channel but Weinberg power counting in the other
- and channels are mixtures of the two asymptotic ones
- $\rightarrow\,$ can't simply expand either K or K^{-1}

System with two channels, separated by energy Δ

• S waves, one low-energy state, momenta $p \ll m_{\pi}$

Small scales Q

- on-shell momenta $p_1 = \sqrt{2M_1E}$, $p_2 = \sqrt{2M_2(E \Delta)}$ (M_i : reduced masses)
- inverse scattering length in strongly interacting channel $1/a_{\alpha}$

System with two channels, separated by energy Δ

• S waves, one low-energy state, momenta $p \ll m_{\pi}$

Small scales Q

- on-shell momenta $p_1 = \sqrt{2M_1E}$, $p_2 = \sqrt{2M_2(E \Delta)}$ (M_i : reduced masses)
- inverse scattering length in strongly interacting channel $1/a_{\alpha}$

"Underlying" high-energy scales Λ_0

- range of forces m_π
- inverse sizes of clusters 1/R_i
- excitations of clusters $\sqrt{2M_i E_{\text{ex},i}}$

Expand in powers of Q/Λ_0

Asymptotic channels both couple to low-energy state

- strongly interacting channel defined by $\mathbf{u}_{\alpha} = \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$
- weakly interacting channel by orthogonal vector $\mathbf{u}_{\boldsymbol{\beta}}$

Asymptotic channels both couple to low-energy state

- strongly interacting channel defined by $\mathbf{u}_{\alpha} = \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$
- weakly interacting channel by orthogonal vector $\mathbf{u}_{\boldsymbol{\beta}}$

Parameters of resulting EFT

Order	Parameter
Q^{-1}	large scattering length a_{α}
	mixing angle φ
Q^0	small scattering length a_{β}
	effective range in strongly interacting channel r_{α}
Q^1	"off-diagonal" effective range $r_{\rm m}$ (energy-dependent mixing)

(subleading terms enhanced by two orders in α channel, off-diagonal by one order, no enhancement in $\beta)$

To order Q (NNLO)

$$\begin{split} \mathbf{T} &= -2\pi \mathbf{M}^{-1/2} \Biggl\{ \Biggl[-\frac{1}{a_{\alpha}} + \frac{r_{\alpha}}{2} p_{2}^{2} - ip_{\alpha} \\ &- a_{\beta} \left[\left(1 - ia_{\beta} p_{\beta} \right) p_{m}^{2} - ir_{\alpha} p_{2}^{2} p_{m} \right] \Biggr]^{-1} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\dagger} \\ &- a_{\beta} \Biggl[1 - ia_{\beta} p_{\beta} + a_{\beta} p_{m}^{2} \left(-\frac{1}{a_{\alpha}} - ip_{\alpha} \right)^{-1} \Biggr] \mathbf{u}_{\beta} \mathbf{u}_{\beta}^{\dagger} \\ &+ a_{\beta} \Biggl[ip_{m} \left[\left(-\frac{1}{a_{\alpha}} - ip_{\alpha} \right) \left(1 + ia_{\beta} p_{\beta} \right) + \frac{r_{\alpha}}{2} p'^{2} - a_{\beta} p_{m}^{2} \right]^{-1} \\ &+ \frac{r_{m}}{2} p_{2}^{2} \left(-\frac{1}{a_{\alpha}} - ip_{\alpha} \right)^{-1} \Biggr] \left(\mathbf{u}_{\alpha} \mathbf{u}_{\beta}^{\dagger} + \mathbf{u}_{\beta} \mathbf{u}_{\alpha}^{\dagger} \right) \Biggr\} \mathbf{M}^{-1/2} \end{split}$$

Orders of terms follow from RG analysis: $r_{\rm m}$ multiplies $a_{\alpha}p_2^2 \sim \mathcal{O}(Q)$

Combinations of momenta above thresholds from finite parts of loop integrals:

$$\begin{array}{lll} \rho_{\alpha} & = & \theta(p_1^2)p_1\cos^2\phi + \theta(p_2^2)p_2\sin^2\phi \\ \rho_{\beta} & = & \theta(p_1^2)p_1\sin^2\phi + \theta(p_2^2)p_2\cos^2\phi \\ \rho_{m} & = & \left(\theta(p_1^2)p_1 - \theta(p_2^2)p_2\right)\sin\phi\cos\phi \end{array}$$

(divergent parts $M\Lambda/(2\pi^2)$ cancelled by renormalisation)

Combinations of momenta above thresholds from finite parts of loop integrals:

$$\begin{array}{lll} \rho_{\alpha} & = & \theta(p_1^2) p_1 \cos^2 \phi + \theta(p_2^2) p_2 \sin^2 \phi \\ \rho_{\beta} & = & \theta(p_1^2) p_1 \sin^2 \phi + \theta(p_2^2) p_2 \cos^2 \phi \\ \rho_{m} & = & \left(\theta(p_1^2) p_1 - \theta(p_2^2) p_2\right) \sin \phi \cos \phi \end{array}$$

(divergent parts $M\Lambda/(2\pi^2)$ cancelled by renormalisation)

Charged particles \rightarrow need to use Coulomb distorted waves

- new low-energy scales: inverse Bohr radii κ_{1,2}
- no change to basic power counting (1/r not singular enough to change behaviour of wave functions)
- replace ip_i by finite parts of integrals with DWs $j_i(p_i) = \kappa_i (2h(\eta_i) + i C_{\eta_i}^2/\eta_i), \quad \eta_i = \kappa_i/p_i$

$p + {}^7\text{Li} \leftrightarrow n + {}^7\text{Be}$ coupled channels

Ideal test case for EFT

- $n + {}^{7}\text{Be}$ threshold at $\Delta = 1.6442$ MeV above $p + {}^{7}\text{Li}$
- $J^P = 2^-$ excited state of ⁸Be within ~ 10 keV of threshold
- → huge cross section for ${}^{7}\text{Be}(n, p){}^{7}\text{Li}$ at thermal energies (crucial for BBN of ${}^{7}\text{Li}$ but very well measured)
 - $\frac{5}{2}^{-}$ excited states of A = 7 nuclei at ~ 7 MeV

Data (and phenomenological analyses)

- $p + {}^{7}\text{Li} {}^{5}S_{2}$ phase shift from PWA and *R*-matrix fits [Brown *et al* (1973)]
- cross section for ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$ [Koehler *et al* (1988)]
- R-matrix fits [Adahchour and Descouvemont (2003)]

 $^{7}\text{Be}(n,p)^{7}\text{Li}$ reduced cross section $\sigma_{np}^{\text{red}} = \sigma_{np}\sqrt{E-\Delta}$

Circles: (n,p) data from Koehler *et al*; triangles: old data on (p,n) EFT fits at different orders \sim indistinguishable

$p + {}^{7}\text{Li} {}^{5}S_{2}$ phase shift

Diamonds: PWA of Brown *et al* (our estimate of uncertainties) EFT fits: LO dot-dashed, NLO dashed, NNLO solid

Scattering parameters

Order	<i>a</i> _α [fm]	ø	<i>a</i> _β [fm]	<i>r</i> _α [fm]	<i>r</i> _m [fm]
LO	-17.76	46.63°	—	—	—
NLO	-19.37	51.82°	-1.96	3.79	—
NNLO	-19.11	50.45°	-1.07	2.58	-5.42

EFT looks convergent, underlying scale $\Lambda_0 \sim 100 \; \text{MeV} \; (2 \; \text{fm})^{-1}$

- σ_{np}^{red} : only threshold value matters
- phase shift below threshold not sensitive to rm
- PWA above threshold relies on old $(p, n) \rightarrow$ not fitted
- \rightarrow really only NLO parameters reliable (NNLO χ^2 very flat)
 - expansion of T matrix \rightarrow unitarity not guaranteed
- → NNLO fits unstable unless we impose unitarity constraint or use *R*-matrix results to fix σ_{no}^{red} above 0.1 MeV

$$J^P = 2^-$$
 state of ⁸Be

T matrix pole at complex energy $E = E_r - i\Gamma/2$ with

$$E_r = 1.71 \text{ MeV} = \Delta + 0.07 \text{ MeV}$$

 $\Gamma = 0.12 \text{ MeV}$

- lies on 4th Riemann sheet: $\text{Im}[p_1] > 0$, $\text{Im}[p_2] < 0$
- partial widths Γ_p = 2.47 MeV, Γ_n = 0.34 MeV (~ virtual state not a resonance → don't add up to Γ)
- similar to results of *R*-matrix fits

Conclusions

Cluster (halo) EFT applied to coupled-channel systems

- interesting fixed point of RG: single low-energy state
- expansion mixture of effective-range and perturbation theory
- illustrates enhancements expected from RG (short-distance behaviour of wave functions)

Conclusions

Cluster (halo) EFT applied to coupled-channel systems

- interesting fixed point of RG: single low-energy state
- expansion mixture of effective-range and perturbation theory
- illustrates enhancements expected from RG (short-distance behaviour of wave functions)

 $p + {}^7\text{Li} \leftrightarrow n + {}^7\text{Be}$ ideal candidate

- $J^P = 2^-$ state of ⁸Be close to $n + {}^7$ Be threshold
- ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$ well described at any order in EFT
- S-wave phase shift below threshold well described at NLO (NNLO fit needs better PWA above threshold)
- $\rightarrow\,$ convergent expansion with underlying scale $\Lambda_0 \sim 100~MeV$

Conclusions

Cluster (halo) EFT applied to coupled-channel systems

- interesting fixed point of RG: single low-energy state
- expansion mixture of effective-range and perturbation theory
- illustrates enhancements expected from RG (short-distance behaviour of wave functions)

 $p + {}^7\text{Li} \leftrightarrow n + {}^7\text{Be}$ ideal candidate

- $J^P = 2^-$ state of ⁸Be close to $n + {}^7$ Be threshold
- ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$ well described at any order in EFT
- S-wave phase shift below threshold well described at NLO (NNLO fit needs better PWA above threshold)
- $\rightarrow\,$ convergent expansion with underlying scale $\Lambda_0 \sim 100~MeV$

EFT can provide a more systematic alternative to *R*-matrix analyses