
Functions as vectors

A number of times in the early sections of the course we used functions as examples of vectors.
If we confine ourselves to, say, polynomials of a given order, we have a finite dimensional space.
But clearly without that restriction, the order is infinite, and that introduces new issues.

In the first two sections, we will consider functions as vectors. Then in the subsequent sections
we will find a way of mapping abstract vectors on to functions.

Shankar covers this material in a slightly different order. Other textbooks cover the material
but within the context of quantum mechanics from the start; see eg Griffiths Chapter 3.

2.1 Inner product for functions

Shankar p 59

So far we have not defined an inner product in a function space. The definition that we will
find useful is as follows. Given two complex functions of the real variable x ∈ R, f(x) and g(x),
both vectors in the space and so also written |f〉 and |g〉, then

〈f |g〉 =

∫ ∞
−∞

f ∗(x)g(x) dx |f |2 = 〈f |f〉 =

∫ ∞
−∞

f ∗(x)f(x) dx

It is easily seen that this satisfies the rules for an inner product; in particular as f ∗(x)f(x) ≥ 0,
if 〈f |f〉 = 0 then f(x) = 0 for all x—the zero function.

Take careful note that while f and g are functions of x, 〈f |g〉 is just a complex number, NOT
a function of x.

However this inner product is not defined for all functions, only those that are square in-
tegrable, that is 〈f |f〉 is finite. So the space of square-integrable functions of x ∈ R is an
inner-product or Hilbert space. (We note that the Schwartz inequality ensures 〈f |g〉 will be
finite if f and g are square integrable, and the triangle inequality ensures a linear combination
(“vector sum”) of square-integrable functions is also square integrable P.)

With an eye to the application to quantum mechanics, and with due disregard for mathematical
rigour, we will confine ourselves to the subspace of “well-behaved” continuous functions, for
which square-integrability also implies that f vanishes as x → ±∞. In most cases we will
require f ′(x) and xf(x) to be in the space as well; this restriction will be assumed in what
follows. One exception will be if the functions are required to vanish outside a finite range of
x.

Given an inner product we can find sets of functions which are orthogonal; an example is

{φ0(x) = N0e
−x2/2, φ1(x) = N12xe−x

2/2, φ2(x) = N2(4x
2−2)e−x

2/2, φ3(x) = N3(8x
3−12x)e−x

2/2}.
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(The numbers Nn are conventionally chosen to normalise the functions and make the set or-
thonormal.) Any finite set of course cannot be a basis, but an infinite set can; an example is
the set {φn(x) = NnHn(x)e−x

2/2} where Hn(x) is the nth Hermite polynomial, the first four of
which (n = 0, 1, 2, 3) give the previously listed set.

We will call the nth normalised member of an orthonormal basis φn(x) or |n〉, where by con-
vention and depending on the basis n = 0, 1, 2 . . . or n = 1, 2 . . .. So now |0〉 may represent a
basis vector, NOT the zero vector, which will be written 0.

Since this set is a basis, any f(x) in the space can be written f(x) =
∑

n fn|n〉 where the infinite
list of complex components {f0, f1, f2, . . .} is the infinite-length column vector which represents
|f〉 in this basis. As expected the following results hold P:

fn = 〈n|f〉 =

∫ ∞
−∞

φ∗n(x)f(x) dx; 〈f |g〉 =
∑
n

f ∗ngn; 〈f |f〉 =
∑
n

|fn|2 <∞.

2.2 Operators in function spaces

Shankar pp 63-64

Somewhat confusingly, the simplest kind of operator in function space is multiplication by
another function! In particular multiplication by x will give us another function in the space.
The new function xf(x) is written in abstract notation as X̂|f〉.
Another operator is differentiation: df/dx is another function in the space. In abstract nota-
tion, we write D̂|f〉.
X̂ is obviously Hermitian, since 〈f |X̂|g〉 can be written

∫
f ∗ × (xg) dx, but that is equivalent

to (
∫
g∗ × (xf) dx)∗ which is 〈g|X̂|f〉∗.

What about D̂? Consider

〈f |D̂|g〉 =

∫ ∞
−∞

f ∗(x)
dg

dx
dx =

[
f ∗g
]∞
−∞
−
∫ ∞
−∞

df ∗

dx
g(x) dx = −〈g|D̂|f〉∗

where we have integrated by parts and used the fact that f and g vanish at ±∞. So D̂ is
antihermitian, but K̂ ≡ −iD̂ is Hermitian P. (Looking ahead, when we use these ideas in
quantum mechanics we will be using P̂ ≡ −i~D̂ instead, but the constant is irrelevant just
now.)

By integrating by parts twice we can show that D̂2 is Hermitian. So is K̂2.

From the fact that the Hermite polynomials are the solutions (with integer n ≥ 0) of the
equation

d2Hn

dx2
− 2x

dHn

dx
= −2nHn

we can show that the set {Hn(x)e−x
2/2} are eigenfunctions of the Hermitian operator K̂2 + X̂2

with eigenvalues 2n+ 1 P. As expected, the eigenvalues of the Hermitian operator are real and
the eigenvectors (eigenfunctions) are orthogonal. In this basis, K̂2 + X̂2 is represented by an
infinite-dimensional diagonal square matrix with matrix elements 〈m|K̂2+X̂2|n〉 = (2n+1)δmn.

The operators X̂ and D̂ do not commute: [X̂, D̂] 6= 0. If we consider an arbitrary function



f(x), then

[X̂, D̂]|f〉 ≡ X̂D̂|f〉 − D̂X̂|f〉 −→ x
df

dx
− d(xf)

dx
= −f(x)⇒ [X̂, D̂] = −1

Equivalently, [X̂, K̂] = i.

If Q(x) is a polynomial in x, and dQ/dx = R(x), we can also write down the operators
Q̂ = Q(X̂) and R̂ = R(X̂). Then P [Q̂, X̂] = 0 and [Q̂, K̂] = iR̂.

2.3 Eigenstates of X̂ and the x-representation

Shankar pp 57-70

Let us define eigenkets of X̂, denoted |x0〉, such that X̂|x0〉 = x0|x0〉, where x0 is a real number.
Clearly x0 can take any value at all, so there are uncountably many such kets, including |2.5〉,
| − 53.34〉, |

√
2〉, |π〉 . . . . Often we don’t want to specify the value but keep it general, giving

X̂|x〉 = x|x〉 for any x. Different eigenkets are orthogonal: 〈x|x′〉 = 0 if x 6= x′. The set {|x〉}
is called the x-basis. The completeness relation for the identity now involves a sum over all
these states, but a sum over a continuous variable is an integral, so we have∫ ∞

−∞
|x〉〈x| dx = Î

We will often use x′ or even x′′ as the variable of integration.

Now consider 〈x|f〉. This is the x component of an abstract vector |f〉, which is a complex
number that varies with x, i.e. a function of x which we can call f(x). So if we haven’t already
specified the type of object that |f〉 is, the x-basis gives us a way of associating a function f(x)
with it. In this way of looking at things, f(x) is the representation of |f〉 in the x-basis:

|f〉 −→
x

f(x).

It follows (using the expresson above for the identity operator) that

|f〉 =

∫ ∞
−∞
|x〉〈x|f〉 dx =

∫ ∞
−∞

f(x)|x〉 dx; 〈f |g〉 =

∫ ∞
−∞
〈f |x〉〈x|g〉 dx

∫ ∞
−∞

f ∗(x)g(x) dx;

with the latter equation giving the expected definition of the inner product for functions.

But what is the function associated with the ket |x0〉, 〈x|x0〉? We already know that it is a
rather strange object: somehow it only“knows about” the specific point x = x0. Consider the
following:

f(x) = 〈x|f〉 = 〈x|
(∫ ∞
−∞
|x′〉〈x′| dx′

)
|f〉 =

∫ ∞
−∞
〈x|x′〉f(x′) dx′

We should recognise this type of expression: for this to work, we must have 〈x|x′〉 = δ(x− x′),
the Dirac delta function. The delta function is real and symmetric, δ(x− x′) = δ(x′− x), so as
required 〈x′|x〉 = 〈x|x′〉∗. This fixes the normalisation of the kets |x〉, and it is different from
〈n|n〉 = 1, which is appropriate for a countable (discrete) basis.

The matrix elements of any operator Â in the x-basis are 〈x|Â|x′〉. This is obviously a function
of two variables. However many operators vanish unless x = x′; these are called local. An
example is X̂ itself: 〈x|X̂|x′〉 = x′δ(x− x′) (or equivalently xδ(x− x′)).



Finally let us consider D̂. We want the representation of D̂|f〉 to be |df/dx〉, i.e.

〈x|D̂|f〉 =
df

dx
=

d

dx
〈x|f〉.

Then

〈x|D̂|x′〉 =
d

dx
〈x|x′〉 =

d

dx
δ(x− x′).

Note that, as expected since D̂ is antihermitian, (d/dx)δ(x− x′) = −(d/dx′)δ(x− x′).
If the delta function is weird, its derivative is even weirder. But remember, both only have
meaning within an integral (technically speaking, they are distributions rather than func-
tions). So

〈x|D̂|f〉 =

∫ ∞
−∞
〈x|D̂|x′〉〈x′|f〉 dx′ =

∫ ∞
−∞

dδ(x− x′)
dx

f(x′) dx′

= −
∫ ∞
−∞

dδ(x− x′)
dx′

f(x′) dx′ =

∫ ∞
−∞

δ(x− x′) df

dx′
dx′ =

df

dx

as expected.

Note D̂ is also local.

For local operators, it is very common to drop the delta function and just write, say, X̂ −→
x

x,

D̂ −→
x

d/dx, K̂ −→
x
−id/dx, and we will use this freely in the future.

2.4 Eigenstates of K̂ and the k-representation

Shankar pp 136-137

Recall that we have defined K̂ = −iD̂ to get a Hermitian operator.

We denote eigenkets of K̂ as |k0〉, with K̂|k0〉 = k0|k0〉 for some specific value k0, or more
generally K̂|k〉 = k|k〉 if we don’t want to specify the value. Since K̂ is Hermitian, allowed
values of k0 must be real.

What is the functional form of |k〉, 〈x|k〉? It turns out to be confusing to call this k(x), so we
will call it φk(x). In the x-basis, the eigenvalue equation is

〈x|K̂|k〉 = k〈x|k〉 = k φk(x)

but also, from the x-representation of the operator K̂,

〈x|K̂|k〉 = −idφk
dx

Equating the two right-hand sides, we have a familiar differential equation for φk(x), whose
solution is

〈x|k〉 ≡ φk(x) =
√

1
2π

eikx,

where the choice of normalisation will be justified shortly.



Two states of different k must be orthogonal. In fact

〈k|k′〉 =

∫ ∞
−∞
〈k|x〉〈x|k′〉 dx =

1

2π

∫ ∞
−∞

e−ikxeik
′x dx =

1

2π

∫ ∞
−∞

ei(k
′−k)x dx = δ(k − k′)

and this justifies the choice of normalisation.

This gives us another version of the identity operator∫ ∞
−∞
|k〉〈k| dk = Î .

By the same argument as used above, for some arbitrary ket |f〉, 〈k|f〉 is a function of k, which
we will call F (k). Then

F (k) ≡ 〈k|f〉 =

∫ ∞
−∞
〈k|x〉〈x|f〉 dx =

√
1
2π

∫ ∞
−∞

e−ikxf(x) dx

Thus F (k) is the Fourier transform of f(x). Both are representations of the same abstract ket
|f〉.
Similarly, we can show that

f(x) =
√

1
2π

∫ ∞
−∞

eikxF (k) dk

which is the inverse Fourier transform.

Note that ∫ ∞
−∞

f ∗(x)g(x) dx = 〈f |g〉 =

∫ ∞
−∞
〈f |k〉〈k|g〉 dk =

∫ ∞
−∞

F ∗(k)G(k) dk

which is Parsival’s theorem. So if f(x) is square-integrable, so is F (k), and if one is normalised
so is the other. The k-basis then maps vectors into an alternative Hilbert space, that of complex
square-integrable functions of the real variable k.

We can show that

〈k|K̂|k′〉 = kδ(k − k′) and 〈k|X̂|k′〉 = i
dδ(k − k′)

dk

so both operators are local in the k-basis (or k-representation) as well, and we often write
K̂ −→

k
k and X̂ −→

k
id/dk.

Note that now we have at least three possible representations of |f〉: as an infinite list of
coefficients {f0, f1, f2 . . .} in a basis such as the one introduced at the start, as f(x), or as F (k).
All encode the same information about |f〉, and it is natural to think of |f〉 as primary, rather
than any of the representations.

2.5 Functions in 3-D space

The extension to functions of three coordinates x, y and z is is straightforward. There are
operators associated with each, X̂, Ŷ and Ẑ, which commute, and corresponding differential



operators K̂x, K̂y and K̂z, which also commute. Between the two sets the the only non-vanishing

commutators are [X̂, K̂x] = [Ŷ , K̂y] = [Ẑ, K̂z] = i.

In a more compact notation, we introduce the position operator in 3-d space, X̂, which will be
X̂ex + Ŷ ey + Ẑez in a particular coordinate system, and similarly K̂. Boldface now indicates a
vector operator, i.e. a triplet of operators. (We have written the 3-D basis vectors {ex, ey, ez}
instead of {i, j,k}.)
The state |x, y, z〉 ≡ |r〉 is an eigenstate of position:

X̂|r〉 =
(
X̂ex + Ŷ ey + Ẑez

)
|r〉 =

(
x ex + y ey + z ez

)
|r〉 = r|r〉

K̂|k〉 =
(
K̂x ex + K̂y ey + K̂z ez

)
|k〉 =

(
kx ex + ky ey + kz ez

)
|k〉 = k|k〉

In position space, X̂ −→ r and K̂ −→ −i∇.

In 3-D, we have

〈f |g〉 =

∫ ∞
−∞

f ∗(r)g(r)d3r; 〈r|r′〉 = δ(r− r′) = δ(x− x′)δ(y − y′)δ(z − z′)

The structure of this space is a direct product space: we could write |x, y, z〉 = |x〉 ⊗ |y〉 ⊗ |z〉,
and x̂1 as X̂⊗ Î⊗ Î. We almost never do, as it is usually not helpful for problems with spherical
symmetry. But it enables us to see that the states {|m,n, p〉} whose wave functions are

〈r|m,n, p〉 = Hm(x)e−x
2/2Hn(y)e−y

2/2Hp(z)e−z
2/2 = Hm(x)Hn(y)Hp(z)e−r

2/2

are basis functions in the space.

The generalisation of φk(x) is

φk(r) = 〈r|k〉 =
(

1
2π

)3/2
eik·r,

which is a plane wave travelling in the direction of k.

Caveats

Though we glossed over the fact, the states |x〉 and |k〉 do not correspond to functions in the
Hilbert space, because they are not square integrable. It is particularly easy to see that φk(x),
which is a plane wave of unit magnitude everywhere, is not normalisable, and both 〈k|k〉 and
〈x|x〉 are infinite. The x- and k-representations, though, are still extremely useful because
they allow us to associate functions and their Fourier transforms with abstract vectors and vice
versa. The identity operators are particularly useful for this purpose.

In physical applications the most usual solution to this problem is to imagine the system of
interest is in a large box, and require the functions either to vanish at the boundaries, or to
be periodic. Then of course only discrete values of the wave vector k are allowed, but these
will be so finely spaced that sums over allowed values can be replaced by integrals, and any
dependence on the size of the box drops out. The density of states in statistical physics uses
these ideas.

A proper mathematical treatment of functional spaces is well beyond the scope of this course.
Griffiths, chapter 3, says a little more about which results of finite-dimensional vector spaces
can safely be carried over to infinite-dimensional ones.
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