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Maths of Vector Spaces

This section is designed to be read in conjunction with chapter 1 of Shankar’s Principles of
Quantum Mechanics, which will be the principal course text book. Other on-line resources are
linked from the course home page.

Another source that covers most of the material at the right level is Griffiths’ Introduction to
Quantum Mechanics, which has an appendix on linear algebra.

Riley’s Mathematical Methods for the Physical Sciences is available as an ebook, and chapter
8 covers much of the material too. This is particularly recommended if Shankar seems initially
intimidating. Unfortunately Riley does not use Dirac notation except for inner products, using
boldface a where we would use |a〉, but if you understand the concepts from that book, the
notation used here should not be a barrier. Some further comments on Riley’s notation can be
found in section 1.4. Riley (or a similar text such as Boas) should be consulted for revision on
finding the eigenvalues and eigenvectors of matrices.

This outline omits proofs, but inserts the symbol P to indicate where they are missing. In the
early stages the proofs are extremely simple and largely consist of assuming the opposite and
demonstrating a contradiction with the rules of vector spaces or with previous results. Many
are in Shankar but some are left by him as exercises, though usually with hints. By the time
we get on the properties of operators (existence of inverses, orthogonality of eigenstates) some
of the proofs are more involved. Some of the principal proofs are on the examples sheet. Proofs
from this section are not examinable, but you are advised to tackle some of them to make sure
you understand the ideas.
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1.1 Vector Spaces

Definition
Shankar pp 1-3, Riley 8.1, Griffiths A.1

A linear vector space is a set V of elements called vectors, {|v〉, |w〉...}, for which
I) An operation, “+”, is defined, which for any |v〉 and |w〉 specifies how to form |v〉+ |w〉
II) Multiplication by a scalar is also defined, specifying α|v〉
and these operations obey the following rules:

1. The result of these operations is another member of V (closure).

2. |v〉+ |w〉 = |w〉+ |v〉 (vector addition is commutative)

3. (|u〉+ |v〉) + |w〉 = |u〉+ (|v〉+ |w〉) (vector addition is associative)

4. α(β|v〉) = (αβ)|v〉 (scalar multiplication is associative)

5. 1 |v〉 = |v〉

6. α(|v〉+ |w〉) = α|v〉+ α|w〉 (distributive rule 1)

7. (α + β)|v〉 = α|v〉+ β|v〉 (distributive rule 2)

8. The null or zero vector is written as |0〉 (or often, just 0), with |0〉+ |v〉 = |v〉

9. For every vector |v〉 there is another, denoted |−v〉, such that |v〉+ |−v〉 = |0〉

Note in the definition of |−v〉 the minus sign is just part of the name of the inverse vector.

The zero vector is unique. 0|v〉 = |0〉 for any |v〉 P.
The inverse is unique and given by |−v〉 = (−1)|v〉 P.
We use “minus” in the following sense: |v〉 − |w〉 = |v〉+ (−1)|w〉 = |v〉+ |−w〉.
If the scalars α, β... are complex (written α, β ∈ C), we have a complex vector space, otherwise
(α, β ∈ R) we have a real one. If we want to distinguish we write V(C) and V(R), but if we
don’t specify we assume it is complex. (C or R is called the field of the space).

These rules just confirm what you do naturally, but:

• You should not assume anything about abstract vectors that is not given in the definition.

• The rules apply to many things apart from traditional “arrow” vectors.

• So far there is no concept of “angle” between vectors, nor any way to measure “length”.

Examples

• Ordinary 3D “arrow” vectors belong to a real vector space.1

1“arrow” vectors have length and direction in 3D, but they do not have a fixed starting point, so two vectors
are added by placing the tail of second at the tip of the first; multiplication by a scalar changes the length but
not the direction. In physics, displacement vectors are a better picture to keep in mind than positions.



• Real numbers form a (very simple) real vector space.

• The set RN (CN) of sequences of N real (complex) numbers, such as |c〉 = (c1, c2, . . . cN)
form a real (complex) vector space, where ‘+’ is ordinary matrix addition, |0〉 = (0, 0, . . . 0)
and the inverse is |−c〉 = (−c1,−c2, . . .− cN).

• The set of all polynomials such as f(x) = a0 + a1x+ a2x
2 + . . . , with ai ∈ C and x ∈ R,

forms a complex vector space; |0〉 is the polynomial with all coefficients ai equal to zero.

• The set of 2 × 2 complex matrices

(
a b
c d

)
, with a, b, c, d ∈ C, form a complex vector

space under matrix addition (in fact any such set of n×m matrices gives a vector space).

Ket Notation
Shankar p 3, Griffiths A.1

Here we are using the Dirac notation for vectors, with the object |v〉 also being called a
ket. The text between the “|” and the “〉” is just a name or label for the ket, which can take
many forms—we will see letters, numbers, symbols (|+〉, |♥〉), reminders of how the vector was
formed (|αv〉 for α|v〉).... Sensible choices of names can help make the algebra easy to follow.
The notation prevents abstract vectors being confused with simple numbers.

1.2 Linear Independence, bases and dimensions

Linear Independence
Shankar p 4, Riley 8.1.1, Griffiths A.1

Since there are infinitely many scalars, all vector spaces have infinitely many members.

If from V we pick n vectors {|x1〉, |x2〉, . . . , |xn〉}, the set is said to be linearly dependent if
it is possible to write

∑n
i=1 ai|xi〉 = |0〉 where the coefficients ai are not all zero. It follows that

at least one of the vectors can be written as a sum over the others P.

If this is not possible, the set is linearly independent. Any two non-parallel “arrow” vectors
are linearly independent; any three arrow vectors in a plane are linearly dependent.

Dimensions and Bases
Shankar pp 5-7, Riley 8.1.1, Griffiths A.1

A vector space has dimension N if it can accommodate a maximum of N linearly-independent
vectors. It is infinite-dimensional if there is no maximum. We use VN if we want to specify the
dimension.

A basis in a vector space V is a set {|x1〉, |x2〉, . . . , |xN〉} ≡ {|xi〉} of linearly-independent
vectors such that every vector in V is a linear combination of the basis vectors |xi〉; that is, for



an arbitrary vector |v〉,

|v〉 =
N∑
i=1

vi|xi〉

where vi are suitable coefficients (or components or coordinates). For a given basis and
vector |v〉, these components are unique P. However in different bases, a given vector will have
different components.

In general components are complex, but for a real vector space (with a suitable choice of basis)
they are real.

Example: In real 3-D space, using the usual notation, the vectors {i, j,k} form a basis . (These
may also be written {x̂, ŷ, ẑ} or {ex, ey, ez}.) So does any other set of three non-coplanar
vectors.

Every basis in VN has N elements; conversely any set of N linearly-independent vectors in VN

forms a basis P.

When we add vectors, the coordinates add: if |w〉 = α|u〉 + β|v〉, with |u〉 =
∑
ui|xi〉, |v〉 =∑

vi|xi〉 and |w〉 =
∑
wi|xi〉, then wi = αui + βvi

P.

Any set of at least N vectors which includes a basis as a subset is said to span the space;
obviously a basis spans the space.

For convenience, we will often write a basis as {|i〉} ≡ {|1〉, |2〉, . . . |N〉}. Recall that what is
written inside the ket is just a label. Numbers-as-labels in kets will be widely used, so it is
important to remember they have no other significance. |1〉+ |2〉 6= |3〉!

Representations
Shankar pp 10-11, Riley 8.3, Griffiths A.1

For a given basis {|xi〉}, and a vector |v〉 =
∑N

i=1 vi|xi〉, the list of components vi is a repre-
sentation of the abstract vector |v〉. We write this as a vertical list (or column vector):

|v〉 −→
x

( v1
v2
...
vN

)
.

The symbol −→
x

means “is represented by”, with the x being a name or label for the basis

(which will be omitted if the basis is obvious).

Note that in their own representation the basis vectors are simple:

|x1〉 −→
x

(
1
0
...
0

)
, |x2〉 −→

x

(
0
1
...
0

)
, . . . |xN〉 −→

x

(
0
0
...
1

)
.

If ui, vi and wi are the components of |u〉, |v〉 and |w〉 in this basis, and |w〉 = α|u〉+ β|v〉,

|w〉 −→
x


αu1 + βv1

αu2 + βv2
...

αuN + βvN





Hence all manipulations (addition, multiplication by a scalar) of the abstract vectors or kets
are mirrored in corresponding manipulations of the column vectors. A fancy way of saying the
same this is that all N -dimensional vector spaces are homomorphic to CN , and hence to one
another. Practical calculations often start by specifying a basis and working with the corre-
sponding representations of vectors in that basis. We will repeatedly find the same calculations
recurring for physically different vector spaces that happen to have the same dimension.

If we have another basis, {|yi〉}, |v〉 will be represented by a different column vector in this
basis, and the |xi〉 will have more than one non-zero component.

Example: given a 2D real vector space with a basis {|x1〉, |x2〉} and another
{|y1〉 = |x1〉+|x2〉, |y2〉 = |x1〉−|x2〉}, and |v〉 = 2|x1〉 + 3|x2〉 = 5

2
|y1〉 − 1

2
|y1〉, we have for

instance

|v〉 −→
x

(
2
3

)
, |v〉 −→

y

(
5/2
−1/2

)
, |y2〉 −→

x

(
1
−1

)
, |x1〉 −→

y

(
1/2
1/2

)
.

Subspaces and direct sums
Shankar pp 17-18

Given an N -D vector space VN , a subset of its elements that form a vector space among
themselves is a subspace.

For examples in ordinary 3-D space:
• all vectors along the x axis are a 1-D subspace: V1

x

• all vectors in the xy plane which includes the origin are a 2-D subspace: V2
xy.

Note both of these contain the origin, and the inverse of any vector in the subspace.

Any n-D subset of a basis of VN will span a new subspace Vn P. Of course the space contains
all linear combinations of these basis vectors, not just the vectors themselves.

Given two spaces, VN
a and VM

b , (where a and b are just labels), their so-called direct sum,
written VN

a ⊕ VM
b is the set containing all elements of VN

i and VM
j and all possible linear

combinations between them. This makes it closed, and so the direct sum is a new vector space.
A set consisting of N basis vectors from VN

a and M from VM
b forms a basis in VN

a ⊕VM
b , which

is an N +M dimensional space. VN
a and VM

b are subspaces of this space.

Example: V1
x ⊕ V 1

y = V2
xy. Bases for the two 1-D spaces are the 1-element sets {i} and {j}; so

{i, j} is a basis on their direct sum. V1
x and V1

y are now subspaces of the new space V2
xy. Note

that V2
xy contains points off the x and y axes which are not in either of the component spaces,

but are produced by linear combinations (e.g. 2i− 10j).

Note that for this to work, the two spaces must have only the zero vector in common. The
direct sum of the xy plane and the xz plane is not four-dimensional!

Product spaces
Shankar pp 248-249 (chapter 10)

A different way of combining two spaces is the “tensor direct product”, denoted VN
a ⊗ VM

b .
Though important in quantum mechanics, it is hard to come up with examples from classical
physics. They arise when a system has two distinct aspects, both of which are vectors, and in
order to specify the state of the system both vectors have to be given.



If {|ai〉} and {|bi〉} are basis sets for the two spaces, one possible basis for the product space is
formed by picking one from each—say the ith from the first set and the jth from the second
set. There are N ×M possibilities, so the product space has dimension N ×M . These states
are written |i, j〉 ≡ |ai〉⊗ |bj〉. The ⊗ is best regarded simply as a separator; it doesn’t indicate
any operation that is carried out.

Note that for |p〉, |q〉 ∈ VN
a and |v〉, |w〉 ∈ VM

b , while all vectors |p〉⊗|v〉 are in VN
a ⊗VM

b , not all
vectors in the product space can be written in this way. Those that can are called separable,
i.e. they have a specified vector in each separate space. The vector α|p〉 ⊗ |v〉 + β|q〉 ⊗ |w〉
is in the product state but is not separable unless |p〉 ∝ |q〉 or |v〉 ∝ |w〉.2 This is where
the distinction between classical and quantum mechanics comes in. In quantum mechanics, a
non-separable state is called an entangled state.

Linearity and associative and distributive laws hold, eg(
α|p〉

)
⊗
(
β|v〉+ γ|w〉

)
= αβ

(
|p〉 ⊗ |v〉

)
+ αγ

(
|p〉 ⊗ |w〉

)
Note |v〉 ⊗ |0〉 and |0〉 ⊗ |w〉 are the same and equal to the null vector P.

1.3 Inner Products

Definitions
Shankar pp 7-9, Riley 8.1.2, Griffiths A.2

In applications in physics we usually want to define the length or “norm” of a vector, and
the “angle” between two vectors. To be precise, we define the inner product of |v〉 and |w〉,
written 〈v|w〉, as a complex number that obeys three rules:

(I) 〈v|w〉 = 〈w|v〉∗. (Skew symmetry)

(II) 〈v|v〉 ≥ 0, with equality if and only if |v〉 is the zero vector. (Positive definiteness)

(III) 〈v|
(
α|u〉+β|w〉

)
= α〈v|u〉+β〈v|w〉, where α, β ∈ C. (Linearity on the right or ket side).

A vector space with an inner product is called an inner-product space. The term Hilbert
space is also used; in finite-dimensional spaces at least they are equivalent for our purposes.

Examples
• For real vectors in 3-D the usual scalar product satisfies these rules P.
• So does the “sum of products” rule

∑
i viwi for lists of real numbers (RN).

• However the “sum of products” rule does NOT work for lists of complex numbers (CN); but∑
i v
∗
iwi does.

It follows that for vectors from a complex vector space, if |p〉 = α|u〉+ β|v〉,

〈p|w〉 = α∗〈u|w〉+ β∗〈v|w〉 :

i.e. inner products are “anti-linear” or “conjugate-linear” on the left P.

Two vectors are orthogonal if their inner product is zero: 〈v|w〉 = 0 = 〈w|v〉.
We choose the norm or length of a vector |v〉 to be |v| =

√
〈v|v〉. If |v| = 1, |v〉 is normalised.

2|p〉 ∝ |q〉 means that there is some scalar α such that |p〉 = α|q〉



Orthonormal bases
Shankar pp 9-12, 14-15, Riley 8.1.2, Griffiths A.2

A set of vectors in a vector space VN , {|i〉} ≡ {|1〉, |2〉, ...|n〉}, all of unit norm, and all orthogonal
to each other, is called an orthonormal set. By definition they satisfy 〈i|j〉 = δij (i.e. 1 if
i = j and 0 otherwise).

(We could equally have denoted the basis {|xi〉}. Especially if we are talking about vectors in
real 3D space we might use the notation {|ei〉} instead.)

Vectors in an orthonormal set are linearly independent P, so n ≤ N .

If there are enough vectors in the orthonormal set to make a basis (for finite-dimensional spaces,
n = N), we call it an orthonormal basis or complete orthonormal set.

Every [finite-dimensional] vector space has an orthonormal basis P (actually infinitely many).
(This theorem is actually true even for infinite-dimensional vector spaces but the proof is hard.)

Coordinates in an orthonormal basis have very simple expressions: if |v〉 =
∑

i vi|i〉, then
vi = 〈i|v〉 P.

If vi and wi, are the coordinates of |v〉 and |w〉 respectively, 〈v|w〉 =
∑

i v
∗
iwi and 〈v|v〉 =∑

i v
∗
i vi =

∑
i |vi|2 ≥ 0 P.

(Remember in proving these, you need to use different indices (“dummy indices”) for each sum,
and these in turn must be different from any “free” index, which stands for any of 1 . . . N . Thus
for example 〈i|v〉 =

∑
j vj〈i|j〉.)

Though coordinates are basis-dependent, the sums that give norms and inner products are
basis-independent, as will be shown later.

Gram-Schmidt orthogonalisation can be used to construct an orthonormal basis {|i〉} from
a set {|vi〉} of N linearly-independent vectors. First, let |1〉 be |v1〉/|v1|. Then take |v2〉, subtract
off the component parallel to |1〉, and normalise:

|2〉 = C2

(
|v2〉 − 〈1|v2〉|1〉

)
where |C2|−2 = 〈v2|v2〉 − 〈v2|1〉〈1|v2〉

Continue taking the remaining |vj〉 in turn, subtract off the component parallel to each previ-
ously constructed |i〉, normalise and call the result |j〉:

|j〉 = Cj

(
|vj〉 −

j−1∑
i=1

〈i|vj〉|i〉

)

where Cj is the normalisation constant. The resulting basis is not unique, because it depends
on the ordering of the basis vectors, which is arbitrary; also the normalisation constants are
only defined up to a phase. (This construction proves the existence of an orthonormal basis,
as asserted above.)

Bras
Shankar pp 11-14, Griffiths 3.6

In Dirac notation, the inner product 〈v|w〉 is considered as a bra 〈v| acting on ket |w〉 to form
a (scalar) “bracket”. Another way of saying this is that a bra 〈v| is an object with the property



that it can be combined with any ket |w〉 from VN to give the inner product 〈v|w〉. For each ket,
there is a corresponding bra and vice versa, so 〈w|v〉 = 〈v|w〉∗ will be the result of combining
the bra 〈w| with the ket |v〉.
Mathematically, if the ket lives in a vector space VN , then the bra is an element of another
vector space, called the dual of VN , but we will not need this distinction. (Students often
stumble over the concept of bras when they first meet them, so the interpretation in terms of
row vectors to be given below is a very useful picture.)

Given a basis {|i〉}, the corresponding bras {〈i|} span the space of bras, and an arbitrary bra
can be expanded 〈v| =

∑
i v
∗
i 〈i|, with 〈v|i〉 = v∗i . Thus the coordinates of the bra 〈v| are v∗i

P.
Note that if the ket |w〉 =

(
α|u〉+ β|v〉

)
, the corresponding bra is 〈w| =

(
α∗〈u|+ β∗〈v|

)
.

If we represent a ket |v〉 as a column matrix of coordinates v:

|v〉 →


v1

v2
...
vN

 ≡ v,

the corresponding bra is a row matrix:

〈v| → (v∗1, v
∗
2, . . . v

∗
N) = (v>)∗ ≡ v†.

and the ordinary rules of matrix multiplication make the operation of a bra on a ket give a
single complex number:

〈v|w〉 → (v∗1, . . . v
∗
N)

 w1
...

wN

 =
N∑
i=1

v∗iwi

just as before.

Note that the basis kets given by 〈1| → (1, 0, . . . , 0, 0) etc.

Inequalities
Shankar pp 16-17, Riley 8.1.3, Griffiths A.2

The Schwarz Inequality: for any vectors |v〉, |w〉, |〈v|w〉| ≤ |v| |w| P.
The equality holds only if |v〉 ∝ |w〉 P.
Notice that the same rule applies to ordinary dot products, since | cos θ| ≤ 1.

The triangle inequality: If |w〉 = |u〉 ± |v〉, then |w| ≤ |u|+ |v| P.
Notice that this holds for the lengths of ordinary “arrow” vectors that form a triangle! By
symmetry, the result is cyclic, i.e. |v| ≤ |w|+ |u| etc.

Inner products in product spaces

Let {|p〉, |q〉} ∈ Va and {|v〉, |w〉} ∈ Vb, and let an inner product be defined on each space. The
inner product in the product space Va ⊗ Vb is defined as

(
〈p| ⊗ 〈v|

)(
|q〉 ⊗ |w〉

)
= 〈p|q〉〈v|w〉,

which of course is a scalar.



If {|pi〉} and {|vi〉} are orthonormal bases in each space, then {|pi〉 ⊗ |vj〉} is an orthonormal
basis in the product space (there are of course others, which need not be separable).



1.4 Operators

Definition
Shankar 18-20, Riley 8.2, 7.2.1, Griffiths A.3

Operators change kets into other kets in the same vector space:

Â|v〉 = |w〉

For the moment we mark operators with a hat, .̂

Linear operators (we will not consider others) have the property that

Â (α|v〉+ β|w〉) = αÂ|v〉+ βÂ|w〉 and
(
αÂ+ βB̂

)
|v〉 = αÂ|v〉+ βB̂|v〉.

Hence any operator acting on the zero vector gives zero.
The identity operator Î leaves a ket unchanged: Î|v〉 = |v〉.
The product of two operators, say ÂB̂, means “apply B̂ first and then apply Â to the
result”. If B̂|v〉 = |u〉, ÂB̂|v〉 = Â|u〉.
Â and B̂ will not in general commute, in which case this is not the same as B̂Â|v〉.
If, for all kets in the space, B̂Â|v〉 = |v〉, then B̂ is called the inverse of Â and denoted Â−1.
We can write Â−1Â = Î. For finite dimensional spaces, ÂÂ−1 = Î also P.

Not all operators have inverses. However if the equation Â|v〉 = |0〉 has no solutions except
|v〉 = |0〉, the inverse Â−1 does exist P.

Inverse of matrix products: if Ĉ = ÂB̂, then Ĉ−1 = B̂−1Â−1 P.

Identity and Projection operators
Shankar 22-24, (Riley 8.4), Griffiths 3.6

The object |a〉〈b| is in fact an operator since, acting on any ket |v〉, it gives another ket, 〈b|v〉|a〉.
(Whatever |v〉 we choose, the resulting ket is always proportional to |a〉.) This is termed the
outer product of |a〉 and |b〉, and is entirely distinct from the inner product 〈b|a〉, which is a
scalar.

Using an orthonormal basis {|i〉}, we can define projection operators, P̂i = |i〉〈i|, which
“pull out” only the part of a vector |v〉 which is parallel to |i〉: P̂i|v〉 = vi|i〉. The product of
two projection operators is zero or equivalent to a single projection P: P̂iP̂j = δijP̂i.

These are examples of operators which do not have an inverse, since P̂i|v〉 = 0 will be satisfied
for many non-zero kets |v〉. The lack of an inverse reflects the fact that when we operate with
P̂i on a vector, we lose all information about components orthogonal to |i〉, and no operator
can restore it.

One very useful way of writing the identity operator is as follows P:

Î =
∑
i

P̂i =
∑
i

|i〉〈i|

This is called the completeness relation. The sum must be over projectors onto an orthonor-
mal basis.



Matrix representation of operators
Shankar 20-22, 25, Riley 8.3, 7.3.1, Griffiths A.3

[Comment on notation in Riley: Riley uses boldface for abstract vectors where we use kets,
and calligraphic letters without “hats” for operators: hence Â|v〉 = |u〉 is written Av = u. We
use boldface for column vectors and matrices of components, but Riley uses a sans-serif font,
so Av = u is a matrix equation.]

We can form the inner product of |u〉 ≡ Â|v〉 with another vector |w〉, to get 〈w|u〉 = 〈w|
(
Â|v〉

)
.

This is called a matrix element of Â, and is more often written 〈w|Â|v〉.
If we have an orthonormal basis {|i〉}, we can form all possible matrix elements of Â between
vectors of the basis, Aij = 〈i|Â|j〉; these are the coordinates of Â in this basis. Then P

Â|v〉 =
∑
ij

Aijvj|i〉 and 〈w|Â|v〉 =
∑
ij

w∗iAijvj.

The numbers Aij can be arranged in a matrix A, i labelling the row and j the column, which
gives

〈w|Â|v〉 = (w∗1, w
∗
2, . . . w

∗
N)


A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
...

...
...

...
AN1 AN2 . . . ANN




v1

v2
...

vN

 = w†Av (1.1)

The ith column of matrix A is just the coordinates of |Ai〉 ≡ Â|i〉, i.e. the transformed basis
ket.

If the determinant of A vanishes, its columns are not linearly independent. That means that
{|Ai〉} is not a basis, and the vectors |Av〉 belong to a lower-dimensional sub-space of VN .
Hence det A = 0 means that Â−1 does not exist.

The matrix elements of the product of two operators can be found by inserting the completeness
relation

∑
k |k〉〈k| as an identity operator in ÂB̂ = ÂÎB̂:

(AB)ij = 〈i|ÂB̂|j〉 =
∑
k

〈i|Â|k〉〈k|B̂|j〉 =
∑
k

AikBkj

i.e. the usual matrix multiplication formula.

Examples:

Identity: Iij = 〈i|Î|j〉 = 〈i|j〉 = δij. So

Î →


1 0 0 . . .
0 1 0
0 0 1
...

. . .

 .



Projectors: 〈i|P̂k|j〉 = 〈i|k〉〈k|j〉 = δikδjk = δijδik (note we do not use a summation conven-
tion), eg

P̂3 →


0 0 0 0 . . .
0 0 0 0
0 0 1 0
0 0 0 0
...

. . .


i.e. 1 on the diagonal for the selected row/column

An outer product: The matrix elements of Ĉ = |v〉〈w| are just cij = viw
∗
j . We can obtain a

square matrix from a column and a row vector if we multiply them in that order (as opposed
to the opposite order which gives the inner product, a scalar):

v1

v2
...

vN

 (w∗1, w
∗
2, . . . w

∗
N) =


v1w

∗
1 v1w

∗
2 . . . v1w

∗
N

v2w
∗
1 v2w

∗
2

...
...

. . .

vNw
∗
1 . . . vNw

∗
N



Adjoints
Shankar pp 25-27, (Riley 8.6), Griffiths A.3, A.6

An operator such as |a〉〈b| can clearly act on bras as well as kets: 〈u|
(
|a〉〈b|

)
=
(
〈u|a〉

)
〈b|.

In fact all operators can act to the left on bras as well as to the right on kets. This is obvious
from the matrix representation in an orthonormal basis, since a row vector can be multiplied
from the right by a matrix.

Now the ket |u〉 = Â|v〉 has a bra equivalent, 〈u|, but for most operators it is not the same
as 〈p| = 〈v|Â. We define the adjoint of Â, Â†, as the operator that, acting to the left, gives
the bra corresponding to the ket which results from Â, acting to the right: 〈u| = 〈v|Â†. Hence
〈w|Â|v〉 = 〈v|Â†|w〉∗.
Â† has matrix elements A†ij = A∗ji

P i.e. the matrix representation of the adjoint operator
is the transposed complex conjugate of the original matrix, also called the Hermitian
conjugate. It follows that (Â†)† = Â, i.e. the adjoint of the adjoint is the original.

Adjoints of products: (ÂB̂)† = B̂†Â†.

Adjoints of scalars: if B̂ = cÂ, B̂† = c∗Â†. Complex numbers go to their complex conjugates
in the adjoint.

The adjoint of |a〉〈b| is |b〉〈a| P.

Operators in product spaces

Let Ĉa be an operator in a vector space Va and D̂b one in Vb. Then in the product space
Va ⊗ Vb we can form product operators Ĉa ⊗ D̂b, which act on the kets as follows:(

Ĉa ⊗ D̂b

)(
|p〉 ⊗ |v〉

)
=
(
Ĉa|p〉

)
⊗
(
D̂b|v〉

)
.



Here it is particularly important to be clear that we are not multiplying Ĉa and D̂b together; they
act in different spaces. Once again ⊗ should be regarded as a separator, not a multiplication.

Denoting the identity operators in each space as Îa and Îb respectively, in the product space
the identity operator is Îa⊗ Îb. An operator in which each additive term acts in only one space,
such as Ĉa ⊗ Îb + Îa ⊗ D̂b, is called a separable operator. Ĉa ⊗ Îb and Ia ⊗ D̂b commute.

The inverse of Ĉa ⊗ D̂b is Ĉ−1
a ⊗ D̂−1

b and the adjoint, Ĉ†a ⊗ D̂
†
b. (The order is NOT reversed,

since each still has to act in the correct space.)

Matrix elements work as follows: (〈p| ⊗ 〈v|)
(
Ĉa ⊗ D̂b

)
(|q〉 ⊗ |w〉) = 〈p|Ĉa|q〉〈v|D̂b|w〉. (This

is the arithmetic product of two scalars.)

The labels a and b are redundant since the order of the operators in the product tells us which
acts in which space. Alternatively if we keep the labels, it is common to write Ĉa when we
mean Ĉa ⊗ Îb and Ĉa D̂b (or even, since they commute, D̂b Ĉa) when we mean Ĉa ⊗ D̂b.

1.5 Hermitian and Unitary operators

Definition and Properties of Hermitian operators
Shankar p 27, Riley 8.12.5, Griffiths A.3

An operator Ĥ is Hermitian if Ĥ† = Ĥ or anti-Hermitian if Ĝ† = −Ĝ. Another term for
Hermitian is self-adjoint.

In real spaces Hermitian operators are represented by symmetric matrices, H> = H.

For Hermitian operators, if |u〉 = Ĥ|v〉 and |z〉 = Ĥ|w〉, then 〈z| = 〈w|Ĥ, and 〈w|Ĥ|v〉 =
〈w|u〉 = 〈z|v〉 P.
It follows that 〈v|Ĥ|w〉 = 〈w|Ĥ|v〉∗ and 〈v|Ĥ2|v〉 ≥ 0 P.

Definition and Properties of Unitary operators
Shankar pp 28-29, Riley 8.12.6, Griffiths A.3

An operator Û is unitary if Û † = Û−1. (In infinite dimensional spaces Û Û † = Î and Û †Û = Î
must both be checked.)

In real spaces unitary operators are represented by orthogonal matrices, U> = U−1.

Unitary operators preserve the inner product, i.e. if Û |v〉 = |v′〉 and Û |w〉 = |w′〉, then
〈v|w〉 = 〈v′|w′〉 P. (The use of a “prime”, ′, just creates a new label. It has nothing to do with
differentiation!)

The columns of a unitary matrix are orthonormal vectors, as are the rows P.

Since the matrix contains N columns (or rows), where N is the dimension of the vector space,
these orthonormal sets are actually complete bases.

The converse is also true: any matrix whose columns (or rows) form orthonormal vectors is
guaranteed to be unitary.

The determinant of a unitary matrix is a complex number of unit modulus P.



Unitary transformations: Change of basis
Shankar pp 29-30, Riley 8.15, Griffiths A.4

Let us define two orthonormal bases in VN , {|xi〉} and {|yi〉}. We will label components in

these bases by superscripts (x) and (y), eg v
(x)
i = 〈xi|v〉, A(y)

ij = 〈yi|Â|yj〉.

The components in the two bases are related by the matrix S, where Sij = 〈xi|yj〉 (and (S†)ij =
〈yi|xj〉) as follows P:

v
(y)
i =

∑
j

S∗ji v
(x)
j ⇒ v(y) = S†v(x); A

(y)
ij = S∗kiAklSlj ⇒ A(y) = S†A(x)S.

A simple example of a change of basis in a two-dimensional space is given by |y1〉 = cos θ|x1〉+

sin θ|x2〉 and |y2〉 = cos θ|x2〉 − sin θ|x1〉. Then S =

(
cos θ − sin θ
sin θ cos θ

)
.

We often use {|i〉} and {|i′〉} for the two bases, with Sij = 〈i|j′〉, vi = 〈i|v〉 and v′i = 〈i′|v〉.
S is a unitary matrix: (S†S)ij =

∑
k〈yi|xk〉〈xk|yj〉 = δij. Hence (as we already knew) inner

products (〈v|w〉) and matrix elements (〈v|Â|w〉) are independent of coordinate system, even if
the individual numbers we sum to get them are different.

In addition, Tr(A(x)) = Tr(A(y)) and det(A(x)) = det(A(y)), so these also are basis-independent P.
For that reason we can assign these properties to the operators and talk about about Tr(Â)
and det(Â).3

The reverse transformation, from y-basis to x-basis, is done by interchanging S† and S.

Note that A(x) and A(y) are representations of the same abstract operator Â in different bases
(similarly v(x), v(y) of the abstract ket |v〉). Therefore, S is not an operator, since it does not
change the abstract kets. We call this a passive transformation or coordinate change.

However there are also unitary operators which do change the kets. An example is a rotation of
a vector in ordinary 3D (real) space (an active transformation), which is represented by the
transpose of the (orthogonal) matrix which transforms between rotated coordinate systems.

1.6 Eigenvectors and Eigenvalues

Note that from now on, we will write the zero vector as 0. We may even use |0〉 for a non-zero
vector with label 0!

Basic properties
Shankar pp 30-35, Riley 8.13, Griffiths A.5

The eigenvalue equation for a linear operator Ω̂ is

Ω̂|ω〉 = ω|ω〉.

The equation is solved by finding both the allowed values of the scalar number ω, the eigen-
value, and for each eigenvalue the corresponding ket |ω〉, the eigenvector or eigenket.

3The trace of a matrix A is the sum of the diagonal elements: Tr(A) =
∑

iAii.



The German word “eigen” means “own” or “characteristic”— i.e. the eigenkets are a special
set of vectors for each particular operator which have a very simple behaviour when operated
on: no change in “direction”, just a multiplication by a scalar eigenvalue. As we have done
above, we habitually use the eigenvalue (“ω”) to label the corresponding eigenket (“|ω〉”).

The zero vector does not count as an eigenvector.

If |ω〉 is a solution to the eigenvalue equation, so is α|ω〉 for any α 6= 0. All such multiples
are considered to be a single eigenvector, and we usually quote the normalized value, with real
elements if that is possible.

We can rewrite the eigenvalue equation as (Ω̂−ωÎ)|ω〉 = 0. (We can insert the identity operator
at will as it does nothing. The final zero is of course the zero vector.)

This is an equation that we want to solve for a non-zero |ω〉, so (Ω̂−ωÎ) cannot have an inverse,
and its determinant must vanish. This is the the characteristic equation:

det(Ω̂− ωÎ) = 0.

In any basis this is the determinant of an N×N matrix, which is an Nth-order polynomial in ω.
The fundamental theorem of algebra states that such a polynomial has N roots ω1, ω2 . . . ωN ,
where some roots may be repeated and roots may be complex even if the coefficients are real.
Therefore any operator on VN has N eigenvalues, not necessarily all different.

The sum of all eigenvalues of Ω̂ (including repeated ones) is Tr(Ω̂), and their product equals
det(Â) P. Thus if Ω̂ has any zero eigenvalues, its inverse does not exist.

For each non-repeated eigenvalue ωi we will call the corresponding eigenvector |ωi〉 Working
in an orthonormal basis, the equation (Ω̂ − ωiÎ)|ωi〉 = 0 will give N − 1 linearly-independent
equations for the components of |ωi〉, so—as we knew—we can determine |ωi〉 only up to a
multiplicative constant.

A set of eigenvectors corresponding to distinct eigenvalues is linearly independent. P

For an eigenvalue which is repeated n times, there will be at least N − n linearly-independent
equations. These will have up to n linearly-independent solutions. Thus an operator with
repeated eigenvalues will have up to N linearly-independent eigenvectors.

Hermitian and unitary operators
Shankar pp 35-40, Riley 8.13.2 & 18.13.3, 7.12.3, Griffiths A.6

Important results P:

I) For Hermitian operators, eigenvalues are real.

II) For unitary operators, eigenvalues have unit modulus, i.e. they can be written eiθ, θ ∈ R.

III) For both Hermitian and unitary operators, eigenkets with different eigenvalues are orthog-
onal.

IV) For all Hermitian and unitary operators, the eigenvectors span the space. (The general
proof of this one is more involved, but it follows from (III) if all the eigenvalues are distinct).
This is called the Spectral Theorem.

Suppose a Hermitian or unitary operator Ω̂ has a repeated eigenvalue, say ω1 = ω2 = . . . = ωn =
λ. By the spectral theorem there are n linearly-independent solutions |λ,m〉 (where m = 1 . . . n



is just a label here). These eigenvectors are said to be degenerate (same eigenvector). Then
any linear combination

∑n
m=1 cm|λ,m〉 is also an eigenvector. Therefore any vector in the

subspace spanned by the set {|λ,m〉} is an eigenvector of Ω̂. We call this an eigenspace. Even
if the first set of degenerate eigenvectors we found was not orthogonal, a new orthogonal basis
in the sub-space can always be found (by the Gram-Schmidt method or otherwise). Thus we
can always find a set of N orthonormal eigenvectors of Ω̂.

Any Hermitian or unitary operator can be written in terms of this orthonormal basis as

Ω̂ =
∑
i,m

ωi|wi,m〉〈wi,m|.

This is called the spectral resolution of Ω̂. The first sum is over distinct eigenvalues. The
second sum runs over all the states within each eigenspace; for non-degenerate eigenvalues it is
not needed. We will not always write it explicitly, often just referring to the set of N vectors
{|ωi〉}, but if degeneracy is present an orthogonalised basis is always meant.

Diagonalisation of Hermitian or unitary operators
Shankar pp 40-43, Riley 8.16, Griffiths A.5

To convert from some orthonormal basis {|xi〉} to the eigenvector basis {|ωi〉} in which Ω̂
is diagonal, we need the unitary conversion matrix Sij = 〈xj|ωi〉. The columns of S are the
eigenvectors of Ω in the original basis, hence it is sometimes called the matrix of eigenvectors.

Using this matrix to change coordinates we get:

v(ω) = S†v(x), Ω(ω) = S†Ω(x)S,

where superscripts in braces indicate the basis in which |v〉 and Ω̂ are represented.

However we do not need to perform the operation to know what we will get for Ω(ω):

Ω̂ −→
ω


ω1

ω2

. . .

ωN


(all the off-diagonal elements being zero). The order is arbitrary of course, though we often
choose ascending order (since they are, of course, real).

Commuting Hermitian Operators
Shankar pp 43-46, Riley 8.13.5

If the commutator [Ω̂, Λ̂] = 0 (where Ω̂ and Λ̂ are Hermitian), there is at least one basis of
common eigenvectors (therefore both operators are represented by diagonal matrices in this
basis).

Proof outline: by considering [Ω̂, Λ̂]|ωi〉 = 0 we can immediately see that Λ̂|ωi〉 is also an
eigenvector of Ω̂ with eigenvalue ωi. In the absence of degeneracy, that can only be the case
if Λ̂|ωi〉 is proportional to |ωi〉, so the non-degenerate eigenstates of Ω̂ are also those of Λ̂. If



there is degeneracy, though, Λ̂|ωi〉 only needs to be another state in the same n-dimensional
eigenspace of Ω̂. However we know we can find n orthogonal eigenvectors of Λ̂ within that
subspace (i.e. we can diagonalise Λ̂ within that subspace) and the resulting eigenvectors of Λ̂
are an equally valid basis of degenerate eigenstates of Ω̂. We can now label the states |ωi, λj〉,
and λj is no longer just an arbitrary label.

There may still be states that have the same ωi and the same λi, but we can repeat with
further commuting operators until we have a complete set of commuting operators defining
a unique orthonormal basis, in which each basis ket can be labelled unambiguously by the
eigenvalues |ω, λ, γ, . . .〉 of the operators {Ω̂, Λ̂, Γ̂, . . .}.
Examples of commuting operators are those in a product space of the form Ĉa⊗ Îb and Îa⊗ D̂b.
If an operator is separable, i.e. it can be written as Ĉa⊗ Îb + Îa⊗ D̂b, then the eigenvectors are
|ci〉 ⊗ |dj〉 with eigenvalue ci + dj. As already mentioned the operator is often written Ĉa + D̂b,
where the label makes clear which space each operator acts in; similarly the eigenstates are
often written |ci, dj〉.

1.7 Functions of Operators

Shankar pp 54-57, Riley 8.5, Griffiths A.6

We can add operators, multiply them by scalars, and take products of them. Hence we can
define a power series

f(Ω̂) =
∞∑
n=0

anΩ̂n.

This will make sense if it converges to a definite limit. In its eigenbasis a Hermitian operator
is diagonal, so the power series acts on each diagonal element separately:

f(Ω̂) −→
ω


f(ω1)

f(ω2)
. . .

f(ωN)


i.e. the power series converges for the operator if it converges for all its eigenvalues, and the
eigenvalues of f(Ω̂) are just the corresponding functions of the eigenvalues of Ω̂.

A very important operator function is the exponential, which is defined though the power series

eΩ̂ ≡
∞∑
n=0

Ω̂n

n!
.

Since the corresponding power series for eω converges for all finite numbers, this is defined for
all Hermitian operators, and its eigenvalues are eωi .

From the definition it is clear that if Ω̂ and Λ̂ do not commute, eΩ̂eΛ̂ 6= eΩ̂+Λ̂.
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1.8 Summary

• A real or complex vector space is a set of abstract vectors, written as kets (e.g. |v〉), which
is closed under both addition and multiplication by scalar real or complex numbers: all vectors
you can reach by any combination of addition and scalar multiplication are elements of the
vector space. There must be a zero vector |0〉 (or often, just 0) and vector have inverses:
|v〉+ | − v〉 = |0〉.

• Linearly-independent sets of vectors are sets in which no member can be written as a
linear sum of the others. A basis is a set of linearly-independent vectors big enough to allow
any vector in the space to be written as a sum over the basis vectors. All bases have the same
size, which is the dimension of the space.

• The coordinates of an arbitrary vector in a given basis are the factors that multiply each
basis vector |i〉 in the linear sum: |v〉 =

∑
vi|i〉. The column vector of these coordinate is the

representation of |v〉 in this basis. The representation depends on the basis.

• In some vector spaces there exists an inner product of two vectors, 〈v|w〉, which give us
orthogonality, the norm of each vector, and hence allows us to construct orthonormal
bases.

• In an orthonormal basis, coordinates are given by vi = 〈i|v〉, and from coordinates we can
evaluate inner products 〈v|w〉 =

∑
i v
∗
iwi and norms of arbitrary vectors.

• We can think of the left side of inner products as bras, 〈a|, represented by row matrices if kets
are column matrices (with elements that are complex conjugates, v∗i ). Inner products are then
given by ordinary matrix multiplication.

• Direct tensor product spaces are composite spaces in which kets are obtained by taking a ket
from each of two separate spaces: |p〉 ⊗ |v〉 (or taking sums of such terms). Inner products are
taken in each space separately:

(
〈p|⊗〈v|

)(
|q〉⊗|w〉

)
= 〈p|q〉〈v|w〉. A basis of the product space

can be formed by taking all possible combinations of basis vectors from each subspace—M ×N
for the product of an M and an N -dimensional space.

• Linear operators change kets to kets: Â|u〉 = |v〉, or bras to bras: 〈u|Â = 〈w|.

• The adjoint operator Â† is defined by 〈u|Â† = 〈v|. For any |v〉 and |x〉, we have 〈v|Â†|x〉 =
〈x|Â|v〉∗

• Operators can be multiplied: ÂB̂ means “do B then A”. They may not commute.

• They may have inverses: ÂÂ−1 = Î = Â−1Â.

• (ÂB̂)† = B̂†Â†; (ÂB̂)−1 = B̂−1Â−1

• In an orthonormal basis {|i〉}, Î =
∑N

i |i〉〈i|; this is the completeness relation.

• Operators in a product space have the form Â⊗ P̂ (or sums of such terms) with(
Â⊗ P̂

)(
|a〉 ⊗ |v〉

)
−
(
Â|a〉

)
⊗
(
P̂ |v〉

)
.

• Operators in N -dimensional vector spaces can be represented as N ×N matrices.



• Operator product and inverses correspond to matrix products and inverses. The adjoint is the
transposed complex conjugate matrix or Hermitian conjugate.

• A Hermitian operator satisfies Â = Â† (‘Self-Adjoint’) and 〈w|Â|v〉 = 〈v|Â|w〉∗.

• A unitary operator satisfies Û−1 = Û †; like a rotation or change of coordinates

• Eigenvectors (eigenkets) and eigenvalues satisfy Â|ai〉 = ai|ai〉.

• Eigenvectors of Hermitian and unitary operators can form an orthonormal basis (eigenbasis).

• Hermitian operators are diagonal in their eigenbasis {|ωi〉}, the diagonal elements are the
eigenvalues and Ω̂ = ωi

∑N
i |ωi〉〈ωi|.

• Given a complete sets of commuting Hermitian operators: each such set defines a unique
eigenbasis, with each vector uniquely labelled by its eigenvalues for the operators in the set.

• Functions of operators are defined through power series; for Hermitian (or unitary) opera-
tors, diagonalize the matrix and apply function to each diagonal element (eigenvalue).
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