
PHYS30201 Mathematical Fundamentals of Quantum Mechanics 2016-17:
Examples 1

The questions marked * are problems which everyone should attempt. The rest are proofs that
fill in some of the more important gaps in the notes (or in one case (13) a harder example).

1. * (i) Show that C3, the set of all complex number triplets, with addition and multiplication
defined as usual for a row vector, is a complex vector space.
(ii) Consider the set of all “arrow” vectors in the plane, without reference to any coordinate
system. Show using representative drawings that the set satisfies all the rules of a real vector
space. What is the zero vector? Draw an arbitrary vector and its inverse vector.

2. * Do the following form a real vector space, according to the mathematical definition?
(i) The set of real functions f(x) defined where 0 ≤ x ≤ L, with f(0) = f(L) = 0.
(ii) The set of real functions which are periodic in L, i.e. f(0) = f(L).
(iii) The set of real functions for which f(0) = 4.

3. * Consider the set of all third-order polynomials in a real variable x, with complex coefficients,
defined for −1 ≤ x ≤ 1. Show that the set satisfies all the rules of a complex vector space.
What is the zero vector? The inverse vector corresponding to (3 + ix + (1 − 2i)x3)? What
is the dimension of this space? Write down two possible set of basis vectors. What changes
if only odd functions are included?

4. In an arbitrary vector space,
i) show that the zero vector |0〉 is unique. (Assume that there is a second vector |b〉 which
also satisfies |v〉+ |b〉 = |v〉, and show that |b〉 = |0〉.)
ii) show that 0|v〉 = |0〉 for any |v〉.

5. * Classify each of these two sets of vectors in R3 as linearly dependent or independent:

a) {(1, 1, 0), (1, 0, 1), (3, 2, 1)}. b) {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Find the coordinate of the vector (2, 4, 6) in the linearly independent set (note that at this
point you should not use scalar products).

6. Show that for an N -dimensional vector space, VN , any set of N linearly independent vectors
forms a basis. (Hint: look carefully at the definitions of “N -dimensional” and “basis”, and
show that assuming that the set is not a basis leads to a contradiction.)

7. (i)* Which of the following are valid subspaces of real 3D space, where vectors xi + yj + zk
are considered as dispacements from the origin:

(a) The positive x axis; (b) the plane z = 1; (c) the plane x+ y + z = 0?
(ii) Show that the set of all vectors orthogonal to a given vector |v〉 in VN form an N − 1
dimensional subspace.

8. (i) Consider a product space VN ⊗ VM . Use the result of qu. 4 to show that |v〉 ⊗ |0〉 and
|0〉 ⊗ |w〉 are equal to one another and to the null vector in the product space. Write down
one or more equivalent expressions for the inverse of |v〉 ⊗ |w〉.
(ii)* Consider the following two vector spaces: odd 3rd order polynomials in x and odd 3rd
order polynomials in y. What is the dimension of the individual and product space? Write
down examples of seperable and inseperable members of the product space.



9. * The kets |a〉 and |b〉 are represented in a certain orthonormal basis by

(
−2

2i

)
and(

2 + 3i
2i

)
respectively. Find the numerical values of 〈a|b〉 and 〈b|a〉, and the norm of

|c〉 = |a〉+ |b〉.

10. * {|1〉, |2〉, |3〉} are orthonormal vectors. Let |ψ〉 = C
(
|1〉 + 2i|2〉 + (1 + i)|3〉

)
. Find the

constant C if |ψ〉 is to be normalised.

11. * From the set in qu. 5 which is linearly independent, form an orthonomal basis by Gram-
Schmidt orthogonalisation

12. Prove the Schwarz and triangle inequalities:

i) |〈b|a〉| ≤ |a| |b|. (Hint: defining |φ〉 = |a〉 −C|b〉, where C = 〈b|a〉/〈b|b〉, use the fact that
〈φ|φ〉 must be non-negative.)

ii) |a+ b| ≤ |a| + |b|. ( Hint: as both sides are non-negative, consider the squares of both
sides; then use the Schwarz inequality.)

13. Consider the set of all 2× 2 complex matrices, with the sum defined in the usual way, and
with the inner product of two matrices M and N being defined as 1

2
Tr(M†N). Note that in

this question matrices are (abstract) vectors, not operators on vectors. (Note Tr(αA+βB) =
αTr(A) + βTr(B) (linearity), Tr(AB . . .MN) = Tr(NAB . . .M) and Tr(A†) = Tr(A)∗.)
i) Show that the set satisfies all the rules of a complex vector space; write down the zero

vector, and the inverse vector of the matrix

(
a b
c d

)
. (Note the latter is NOT the multi-

plicative matrix inverse, but the inverse under addition).
ii) Show that the inner product satisfies all the required rules.
iii) Show that the following matrices form as orthonormal basis in the space:

|1〉 =
√

1
2

(
1 1
1 1

)
|2〉 =

√
1
2

(
1 −1
−1 1

)
|3〉 =

√
1
2

(
1 −1
1 −1

)
|4〉 =

√
1
2

(
1 1
−1 −1

)
Find the coefficients mi of |M〉 =

(
a b
c d

)
in this basis, and verify that 〈M |M〉 =

∑
i |mi|2.

14. * Let {|i〉} be an orthonormal basis of VN . Let ai be the ith coordinate of |a〉 in this basis,
and bi that of |b〉, so that |a〉 =

∑
i ai|i〉 and |b〉 =

∑
i bi|i〉. Â, B̂ etc are operators in the

space. Prove the following:

i) ai = 〈i|a〉 and b∗i = 〈b|i〉
ii) 〈b|a〉 =

∑
i b
∗
i ai = 〈a|b〉∗

iii)
∑

i |i〉〈i| = Î. (Hint: show that acting on an arbitrary ket |a〉 gives |a〉 again.)

iv) 〈b|Â|a〉 =
∑

ij b
∗
iAijaj, where Aij = 〈i|A|j〉.

v)
∑

ij Aij|i〉〈j| = Â. (Hint: consider its action on an arbitrary ket |a〉.)

vi) 〈i|B̂Â|k〉 =
∑

j BijAjk. (Hint: insert the identity operator between B̂ and Â. Watch the
indices!)

vii) Defining Ĉ so that 〈b|Â|a〉 = 〈a|Ĉ|b〉
∗
, show that Cij = A∗ji. (By definition Ĉ = Â†, so

this demonstrates that the adjoint operator is represented by the Hermitian conjugate
matrix.)



15. * A certain operator Ĝ acts on vectors in a 3-D vector space and has the following effects
on a certain orthonormal basis set {|1〉, |2〉, |3〉}:

Ĝ|1〉 = |1〉+ |2〉
Ĝ|2〉 = −|1〉+ |2〉
Ĝ|3〉 = 0

Write down the matrix representation of Ĝ in this basis. Which column vectors represent
|ψ〉 and Ĝ|ψ〉, where |ψ〉 is the vector from qu. 10?

16. * For each of the following matrices, state whether it is Hermitian, unitary, both, or neither:

(i)

(
1 0
0 1

)
; (ii)

(
0 1
0 0

)
; (iii)

(
1 −i
i 2

)
; (iv)

(
0 i
1 0

)
.

17. Let Û be a unitary operator and Â a Hermitian one on VN :

i) * Show that for any ket |v〉 in VN , 〈v|Â2|v〉 ≥ 0.

ii) Show that ÛÂÛ † and Û †ÂÛ are Hermitian;

iii) Show that if the kets {|ui〉} form an orthonormal basis, so do {|vi〉}, where |vi〉 = Û †|ui〉.
iv) Show that det(ÛÂÛ †) = det(Â) and Tr(ÛÂÛ †) = Tr(Â). (You may need to remind

yourself of the properties of traces and determinants of products, some are given in qu. 13
above.)

18. A Hermitian operator on VN , Ω̂, has non-degenerate eigenvalues {ωi} and normalised eigen-
vectors {|ωi〉}. Prove that:

i) the eigenvalues are real and the eigenvectors are orthogonal.

ii)
∑

i ωi|ωi〉〈ωi| = Ω̂. (Hint: show that both sides give the same result when acting on an
arbitrary ket |a〉, which you should first write in terms of the basis {|ωi〉}.)

19. Û is a unitary operator on VN .

i) From Û †Û = Î, prove that in any orthonormal basis the columns of the corresponding
matrix U are orthonormal vectors, and from Û Û † = Î prove the same for the rows.

ii) If Û has non-degenerate eigenvalues {ωi} and normalised eigenvectors {|ωi〉}, prove that
the eigenvalues have unit norm and the eigenvectors are orthogonal.

iii) How many real parameters are needed to uniquely define a complex N×N unitary matrix?
(Hint: One complex number needs two real numbers to define it. You might want to start
by satisfying yourself that the number is N2 for a Hermitian matrix.)

20. * Find the eigenvalues and eigenvectors of

i)

(
0 −i
i 0

)
ii)

(
a b
b a

)
iii)

(
1 1
0 1

)
iv)

(
cos θ sin θ
sin θ − cos θ

)
v)

(
cos θ sin θ
− sin θ cos θ

)
,

where θ is real. Comment on your results.



21. * Find the eigenvalues and eigenvectors of M =

 0 1 0
1 0 1
0 1 0

. Verify that the matrix of

normalised eigenvectors S is unitary (equivalently that the eigenvectors are orthogonal) and
that S†MS is diagonal.

22. * Find the eigenvalues and eigenvectors of N =

 5 0 1
0 6 0
1 0 5

 (Hint: (0, 1, 0)> is obviously

one of them, and the other two must be orthogonal to it, of the form (a, 0, b)>, so in fact

you only need to consider

(
5 1
1 5

)
to find (a, b)>.)

Vertify that N commutes with M from the previous question. If, as is likely, you have not
obtained the same set of eigenvectors for both, explain why the theorem that a common set
of eigenvectors can be found is not violated.

23. * Let S =

(
cos θ − sin θ
sin θ cos θ

)
. Verify that S is unitary. Working in ordinary real space, in

the plane, show that this is the transformation matrix between the bases {e1, e2}, being unit
vectors in the x and y directions, and basis vectors which are rotated by θ anticlockwise with
respect to these, e′1 = cos θ e1+sin θ e2 and e′2 = − sin θ e1+cos θ e2 (defining Sij = 〈ei|e′j〉). If
another vector a has coordinates (cosα, sinα) in the first basis, show that it has coordinates(
cos(α−θ), sin(α−θ)

)
in the second basis. Draw a diagram to illustrate these vectors. Show

also that, viewed as an active transformation, Sa is a new vector rotated by θ anticlockwise
with respect to a.

24. Use the fact that Hermitian and unitary matrices can be diagonalised by a unitary transfor-
mation to provide a simple proof that the trace and determinant of such a matrix are the
sum and product of the eigenvalues. (The result is more general though.)

25. * If Ω =

(
0 1
1 0

)
, show that eiaΩ = cos a I+ i sin aΩ. (Hint: there is no need to diagonalise

here, just use the power series directly.)

26. * Let {|1〉, |2〉} be an orthonormal basis in V2, and let

(
0 1
1 0

)
be the representation of

an operator Ω̂ in this basis. We can form a product space from two copies of this space
V2 ⊗ V2 (we omit labels since the order is enough to distinguish the two). Write down four
orthonormal basis vectors of this product space. In this basis, calculate the matrix elements
and hence write down the matrix representations of the following operators: Ω̂ ⊗ Î, Î ⊗ Ω̂
and Ω̂ ⊗ Ω̂, and show that the third is the matrix product of the first two. Based on your
results from qu. 20(ii) (with a = 0), write down one eigenvector of Ω̂⊗ Ω̂, and express it in
terms of the four basis vectors of the product space.


