
A guide to matrix representations

We start by considering, for definiteness, a three-dimensional vector space. We meet many of
these in the course; the most obvious one is the space of ordinary 3-d position vectors, but it
could be the set of second-order polynomials, or the space of functions f(θ, φ) for which
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or the energy eigenstates of the 2-d harmonic oscillator with E = 3~ω, or of the 3-d harmonic
oscillator with E = 5

2
~ω, or the symmetric states of two spin-1

2
particles, or the spin states of

a Z0 boson.... The first of these is a real vector space, the second could be real or complex
but the rest are all complex. To avoid confusion with ordinary position vectors, and also with
column vectors, we will call the members of the space “states”, and denote them |ψ〉, where ψ
is some convenient label which may take many forms.

The space we are discussing has an inner product between pairs of states. For position vectors it
is the scalar product, for the two functions f(θ, φ) and g(θ, φ) it is

∫ 2π
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f ∗(θ, φ)g(θ, φ) sin θdθdφ,

for the energy eigenstates it is
∫
φ∗(r)ψ(r)ddr (with d = 2 or 3), and so on. The inner product

is denoted 〈φ|ψ〉, where f , ψ, φ are all labels. 〈φ|ψ〉 = 〈ψ|φ〉∗.
In our space, we choose three normalised basis state {|1〉, |2〉, |3〉} which are orthogonal to one
another: 〈1|1〉 = 〈2|2〉 = 〈3|3〉 = 1 and 〈1|2〉 = 〈2|3〉 = 〈1|3〉 = 0. (Again, 1, 2 and 3 are just
labels; in position space they would be written as unit vectors {e1, e2, e3}). Any state in the
space can be written as a sum over these three basis states:

|ψ〉 = v1|1〉+ v2|2〉+ v3|3〉

and the list of numbers—coefficients— (v1, v2, v3) defines the state. It isn’t actually the state,
but it fully specifies the state (given that we know the basis). We say that the number triplet
is a representation of the state. Clearly |1〉 is represented by (1, 0, 0), |2〉 by (0, 1, 0) and |3〉
by (0, 0, 1). Because of orthogonality, v1 = 〈1|ψ〉 etc.

Operators change states into other states. An operator is fully defined by what it does to
the states of the basis, since then we can find what it does to any other state. And the
state produced by the operator from, say, |1〉 can like any other state be written in terms of
{|1〉, |2〉, |3〉}. So we might have

Q̂|1〉 = a|1〉+ b|2〉+ c|3〉, Q̂|2〉 = d|1〉+ e|2〉+ f |3〉, Q̂|3〉 = g|1〉+ h|2〉+ k|3〉

and hence

|ξ〉 ≡ Q̂|ψ〉 = (av1 + dv2 + gv3)|1〉+ (bv1 + ev2 + hv3)|2〉+ (cv1 + fv2 + kv3)|3〉

or equivalently, denoting these coeffients (w1, w2, w3), w1
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The action of Q̂ on any state |α〉 can be found from the action of this matrix on the number
triplet which represents |α〉. So, in this basis, the matrix represents Q̂.



If we want to pick out a particular element of the matrix, say the 2nd row, 3rd column, here
denoted h, we see that it is the coefficient of |2〉 in Q̂|3〉, or 〈2|Q̂|3〉. We usually write that
element of a matrix Q as Q23, so Qij = 〈i|Q̂|j〉.
To recap, if we use the symbol −→

{1,2,3}
to mean “is represented in the {|1〉, |2〉, |3〉} basis by”, we

have
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and

|ξ〉 = Q̂|ψ〉 −→
{1,2,3}

w = Qv.

Often the basis has been chosen to be a set of eigenstates of some operator R̂, in which case
we use a shorter notation −→

R
(but note that the order of the state matters for the actual form

of the representation).

Now the states
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satisfy 〈1′|1′〉 = 〈2′|2′〉 = 〈3′|3′〉 = 1 and 〈1′|2′〉 = 〈1′|3′〉 = 〈2′|3′〉 = 0, so they are an
equally good choice for a basis (in a complex space). But in this new basis, the column
vectors and matrices which represent states and operators will be different. For instance |ψ〉 =
v′1|1′〉+ v′2|2′〉+ v′3|3′〉 where
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If we call the matrix S, then we see that its columns are just the representations of the new
states {|1′〉, |2′〉, |3′〉} in the old basis {|1〉, |2〉, |3〉}: S23 = 〈2|3′〉 etc.

We can show that S is unitary, so S−1 = S†, and mutiplying the equation above by S† gives v′1
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So
v′ = S†v, and v = Sv′

If in the new basis, ξ = w′1|1′〉+ w′2|2′〉+ w′3|3′〉,

w′ = S†w = S†Qv = S†QSS†v = Q′v′,



where in the last-but-one step we inserted the identity matrix I = SS†. So in the new basis,
the representation of Q̂ is Q′ = S†QS.

We chose a particular set of new states here, but it should be clear that any unitary matrix
S corresponds to a change to some new basis. (If the space is real, we are restricted to real
unitary matrices, also called orthogonal matrices.) Since the eigenstates of a Hermitian operator
Â are always orthogonal, so are the eigenvectors of its representation A in some basis. We can
construct a matrix S whose columns are these (normalised) eigenvectors, and this effects a
change of basis to one in which A′ is diagonal. The representation of states and operators in
this basis would be denoted by −→

A
. Here S is not the representation of an operator, but a way

of obtaining representations of the same states and operators in different representations.

A concrete example is given by the space of solutions to Eq.(1), in which the differential operator
is in fact L̂2. The basis we use most often is the set of three states which are also eigenstates
of L̂z, −i~∂/∂φ; these are the three l = 1 spherical harmonics with m = {1, 0,−1}. If we use
these as our initial basis, the second basis we considered consists of the eigenstates of L̂y. Then
we can explicitly construct representations of the operators in the Ly basis, given those in the

initial (L̂z) basis:
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Clearly since the first set of matrices satisfy the required commutation relations, [L̂x, L̂y] = i~L̂z
and cyclic permutations thereof, so do the second set.

When we are discussing spaces of (restricted sets of) functions, such as solutions of Eq.(1),
or degenerate states of the 2 or 3-dimensional harmonic oscillator, the distinction between the
states and their representations is not too hard to keep in mind: any number triplet (v1, v2, v3)
represents a linear combination of basis functions and hence another function. In more abstract
spaces like spin space, though, the distinction is perhaps harder to keep in mind, because we
don’t have a representation-independent mathematical description of the states, only words
like “spin-up along the z axis”. However at another level the functions themselves become just
another representation (or “realisation”) of the abstract vector space: the differential operators
and spherical harmonics are a realisation of the abstract angular momentum algebra. So we
can write
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where −→
x

or −→
r

means “is represented in the position basis by”.

Two symbols are typically used for the matrix which changes the representation, S and U (one
stands for “similarity transform”, which reflects the “similarity” of all relations between vectors
and operators in the two bases, the other for “unitary”. Unfortunately both Û(t) and Ŝ have
special meanings, so we should have been more imaginative!


