PHYS30201 Mathematical Fundamentals of Quantum Mechanics: Particle Data Group Clebsch-Gordan coefficients

In a system with two contributions to angular momentum j_1 and j_2 , Clebsch-Gordan coefficients are used to write states good of total angular momentum J and z-component M, $|j_1, j_2; J, M\rangle$ or just $|J, M\rangle$, in terms of the basis $\{m_1, m_2\}$, $|j_1, m_1\rangle \otimes |j_2, m_2\rangle$:

$$|j_1, j_2; J, M\rangle = \sum_{m_1 m_2} \langle j_1, m_1; j_2, m_2 | J, M\rangle \left(|j_1, m_1\rangle \otimes |j_2, m_2\rangle \right)$$
 and $|j_1, m_1\rangle \otimes |j_2, m_2\rangle = \sum_{JM} \langle j_1, m_1; j_2, m_2 | J, M\rangle |j_1, j_2; J, M\rangle$

where the numbers denoted by $\langle j_1, m_1; j_2, m_2 | J, M \rangle$ are the Clebsch-Gordan coefficients; they vanish unless $j_1 + j_2 \geq J \geq |j_1 - j_2|$, and $m_1 + m_2 = M$. There is a conventional tabulation which can be found in various places including the Particle Data Group site, but the notation takes some explanation.

There is one table for each j_1, j_2 pair. The table consists of a series of blocks, one for each value of M. Along the top are possible values of M and at the left are possible values of M and M are possible values of M are possible values of M and M are possible values of M and M are possible values of M and M are possible values of M are possible values of M and M are possible values of M are possible values of M and M are possible values of M are possible values of M and M are possible values of M are possible values of M and M are possible values of

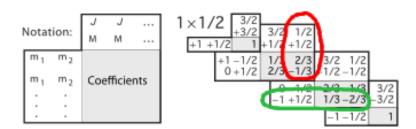
Each block stands for something which could be written like this one for $j_1 = 1$, $j_2 = \frac{1}{2}$ and $M = m_1 + m_2 = \frac{1}{2}$:

		J	3/2	1/2
		M	+1/2	+1/2
m_1	m_2			
+1	-1/2		1/3	2/3
0	+1/2		2/3	-1/3

For compactness the numbers in the blocks are the coefficients squared times their sign; thus $-\frac{1}{2}$ stands for $-\sqrt{\frac{1}{2}}$.

As an example consider the table for coupling $j_1 = 1$ and $j_2 = \frac{1}{2}$ to get $J = \frac{3}{2}$ or $\frac{1}{2}$. For clarity we will use the notation $|J, M\rangle$ in place of $|j_1, j_2; J, M\rangle$.

In red the coefficients of $|1,1\rangle \otimes |\frac{1}{2},-\frac{1}{2}\rangle$ and $|1,0\rangle \otimes |\frac{1}{2},\frac{1}{2}\rangle$ in $|\frac{1}{2},\frac{1}{2}\rangle$ are highlighted

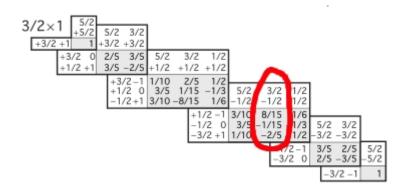


$$|\frac{1}{2}, \frac{1}{2}\rangle = \sqrt{\frac{2}{3}} |1, 1\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle - \sqrt{\frac{1}{3}} |1, 0\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle.$$

In green are the components for the decomposition

$$|1,-1\rangle \otimes |\frac{1}{2},\frac{1}{2}\rangle = \sqrt{\frac{1}{3}}|\frac{3}{2},-\frac{1}{2}\rangle - \sqrt{\frac{2}{3}}|\frac{1}{2},-\frac{1}{2}\rangle.$$

Or for coupling $j_1 = \frac{3}{2}$ and $j_2 = 1$:



giving for example

$$|\frac{3}{2}, -\frac{1}{2}\rangle = \sqrt{\frac{8}{15}} |\frac{3}{2}, \frac{1}{2}\rangle \otimes |1, -1\rangle - \sqrt{\frac{1}{15}} |\frac{3}{2}, -\frac{1}{2}\rangle \otimes |1, 0\rangle - \sqrt{\frac{2}{5}} |\frac{3}{2}, -\frac{3}{2}\rangle \otimes |1, 1\rangle$$

If instead one wants $j_1 = 1$ and $j_2 = \frac{3}{2}$, we use the relation

$$\langle j_2, m_2; j_1, m_1 | J, M \rangle = (-1)^{J - j_1 - j_2} \langle j_1, m_1; j_2, m_2 | J, M \rangle$$

Note that table of Clebsch-Gordan coefficients are given for states of j_1 and j_2 coupling up to total J. But as j is a generic angular momentum, that covers s and l coupling to j, or s_1 and s_2 coupling to S etc.